Skip to main content
Top
Published in: Current Treatment Options in Neurology 6/2015

01-06-2015 | Pediatric Neurology (RM Boustany, Section Editor)

Treatment of Neurofibromatosis Type 1

Authors: Caterina Sabatini, MD, Donatella Milani, MD, Francesca Menni, MD, Gianluca Tadini, MD, Susanna Esposito, MD

Published in: Current Treatment Options in Neurology | Issue 6/2015

Login to get access

Opinion statement

Neurofibromatosis type 1 (NF1) is a genetic multisystemic disorder involving the skin, the central and peripheral nervous systems, bones, and the cardiovascular and endocrine systems. This condition is caused by inherited or de novo mutations of the NF1 gene at the 17q11.2 chromosomal region, a gene that codes for the protein neurofibromin. Neurofibromin is particularly expressed in neural cells and inhibits the RAS pathway, which regulates cellular proliferation and differentiation. The typically age-dependent emergence of diagnostic signs and the risk for severe complications in the first years of life simultaneously makes a precocious diagnosis crucial and makes the management of children with suspected NF1 challenging. Currently, no standardized specific treatments for NF1 and its complications are available. However, in recent years, increasing knowledge of the pathogenetic mechanisms has motivated the scientific search behind targeted biological agents that might change the course of the disease. Numerous clinical trials for the treatment of the most typical NF1 complications, such as plexiform neurofibromas (Ns) and NF1-related tumors, have been conducted. Consequently, encouraging in vitro and in vivo results are emerging. Insufficient efficacy and safety in in vivo data do not permit the routine use of these drugs in clinical practice. Radiotherapy appears to be indicated only for high-grade soft-tissue sarcomas, whereas surgical approaches should be considered for malignant peripheral nerve sheath tumors (MPNSTs) and Ns, optic pathway gliomas, and bone dystrophic changes because they might improve quality of life. Further prospective studies, however, are needed to confirm the efficacy, safety, and cost/benefit ratio of new therapeutic approaches and the optimal timing for their use in patients with NF1.
Literature
1.
go back to reference Jett K, Friedman MJ. Clinical and genetic aspects of neurofibromatosis 1. Genet Med. 2010;12:1–11.CrossRefPubMed Jett K, Friedman MJ. Clinical and genetic aspects of neurofibromatosis 1. Genet Med. 2010;12:1–11.CrossRefPubMed
2.
go back to reference National Institutes of Health Consensus Development Conference Statement: Neurofibromatosis. Arch Neurol (Chicago). 1988;45:575–8. National Institutes of Health Consensus Development Conference Statement: Neurofibromatosis. Arch Neurol (Chicago). 1988;45:575–8.
3.
go back to reference DeBella K, Szudek J, Friedman JM. Use of the national institutes of health criteria for diagnosis of neurofibromatosis 1 in children. Pediatrics. 2000;105:608–14.CrossRefPubMed DeBella K, Szudek J, Friedman JM. Use of the national institutes of health criteria for diagnosis of neurofibromatosis 1 in children. Pediatrics. 2000;105:608–14.CrossRefPubMed
4.
go back to reference Stoll C. Difficulties in the diagnosis of neurofibomatosis-1 in children. Am J Med Genet. 2002;112:422–6.CrossRefPubMed Stoll C. Difficulties in the diagnosis of neurofibomatosis-1 in children. Am J Med Genet. 2002;112:422–6.CrossRefPubMed
5.••
go back to reference Tadini G, Milani D, Menni F, et al. Is it time to change the neurofibromatosis type 1 diagnostic criteria? Eur J Intern Med. 2014;25:506–10. An interesting paper that provides emerging criteria useful for a precocious diagnosis of NF1 in paediatric age.CrossRefPubMed Tadini G, Milani D, Menni F, et al. Is it time to change the neurofibromatosis type 1 diagnostic criteria? Eur J Intern Med. 2014;25:506–10. An interesting paper that provides emerging criteria useful for a precocious diagnosis of NF1 in paediatric age.CrossRefPubMed
6.
7.
go back to reference Sabbagh A, Pasmant E, Imbard A, Luscan A, Soares M, Blanché H, et al. NF1 molecular characterization and neurofibromatosis type I genotype–phenotype correlation: the French experience. Hum Mutat. 2013;34:1510–8.CrossRefPubMed Sabbagh A, Pasmant E, Imbard A, Luscan A, Soares M, Blanché H, et al. NF1 molecular characterization and neurofibromatosis type I genotype–phenotype correlation: the French experience. Hum Mutat. 2013;34:1510–8.CrossRefPubMed
8.
go back to reference Riccardi VM. Diagnostic and management considerations posed by multiple café au lait spots. Arch Dermatol. 2009;145:8.CrossRef Riccardi VM. Diagnostic and management considerations posed by multiple café au lait spots. Arch Dermatol. 2009;145:8.CrossRef
9.
go back to reference Cambiaghi S, Restano L, Caputo R. Juvenile xanthogranuloma associated with neurofibromatosis 1: 14 patients without evidence of hematologic malignancies. Pediatr Dermatol. 2004;21:97–101.CrossRefPubMed Cambiaghi S, Restano L, Caputo R. Juvenile xanthogranuloma associated with neurofibromatosis 1: 14 patients without evidence of hematologic malignancies. Pediatr Dermatol. 2004;21:97–101.CrossRefPubMed
10.
go back to reference Fenot M, Stalder JF, Barbarot S. Juvenile xanthogranulomas are highly prevalent but transient in young children with neurofibromatosis type 1. J Am Acad Dermatol. 2014;71:389–90.CrossRefPubMed Fenot M, Stalder JF, Barbarot S. Juvenile xanthogranulomas are highly prevalent but transient in young children with neurofibromatosis type 1. J Am Acad Dermatol. 2014;71:389–90.CrossRefPubMed
11.
go back to reference Marque M, Roubertie A, Jaussent A, et al. Nevus anemicus in neurofibromatosis type 1: a potential new diagnostic criterion. J Am Acad Dermatol. 2013;69:768–75.CrossRefPubMed Marque M, Roubertie A, Jaussent A, et al. Nevus anemicus in neurofibromatosis type 1: a potential new diagnostic criterion. J Am Acad Dermatol. 2013;69:768–75.CrossRefPubMed
12.
go back to reference Zeller J, Wechsler J, Revuz J, et al. Blue-red macules and pseudoatrophic macules in neurofibromatosis 1. Ann Dermatol Venereol. 2002;129:180–1.PubMed Zeller J, Wechsler J, Revuz J, et al. Blue-red macules and pseudoatrophic macules in neurofibromatosis 1. Ann Dermatol Venereol. 2002;129:180–1.PubMed
13.
go back to reference Tadini G, Brena M, Pezzani L, et al. Anemic nevus in neurofibromatosis type 1. Dermatology. 2013;226:115–8.CrossRefPubMed Tadini G, Brena M, Pezzani L, et al. Anemic nevus in neurofibromatosis type 1. Dermatology. 2013;226:115–8.CrossRefPubMed
14.
go back to reference Rosser T, Packer RJ. Neurofibromas in children with neurofibromatosis 1. J Child Neurol. 2002;17:585.CrossRefPubMed Rosser T, Packer RJ. Neurofibromas in children with neurofibromatosis 1. J Child Neurol. 2002;17:585.CrossRefPubMed
16.
go back to reference Overdiek A, Winner U, Mayatepek E, et al. Schwann cells from human neurofibromas show increased proliferation rates under the influence of progesterone. Pediatr Res. 2008;64:40–3.CrossRefPubMed Overdiek A, Winner U, Mayatepek E, et al. Schwann cells from human neurofibromas show increased proliferation rates under the influence of progesterone. Pediatr Res. 2008;64:40–3.CrossRefPubMed
17.
go back to reference Tonsgard JH, Kwak SM, Short MP, et al. CT imaging in adults with neurofibromatosis-1: frequent asymptomatic plexiform lesions. Neurology. 1998;50:1755.CrossRefPubMed Tonsgard JH, Kwak SM, Short MP, et al. CT imaging in adults with neurofibromatosis-1: frequent asymptomatic plexiform lesions. Neurology. 1998;50:1755.CrossRefPubMed
19.
go back to reference Ferner RE, Gutmann DH. International consensus statement on malignant peripheral nerve sheath tumors in neurofibromatosis. Cancer Res. 2002;62:1573–7.PubMed Ferner RE, Gutmann DH. International consensus statement on malignant peripheral nerve sheath tumors in neurofibromatosis. Cancer Res. 2002;62:1573–7.PubMed
20.
go back to reference Listernick R, Louis DN, Packer RJ, et al. Optic pathway gliomas in children with neurofibromatosis 1: consensus statement from the NF1 optic pathway glioma task force. Ann Neurol. 1997;41:143–9.CrossRefPubMed Listernick R, Louis DN, Packer RJ, et al. Optic pathway gliomas in children with neurofibromatosis 1: consensus statement from the NF1 optic pathway glioma task force. Ann Neurol. 1997;41:143–9.CrossRefPubMed
21.
go back to reference Listernick R, Charrow J, Greenwald MJ, et al. Natural history of optic pathway tumors in children with neurofibromatosis type 1: a longitudinal study. J Pediatr. 1994;125:63–6.CrossRefPubMed Listernick R, Charrow J, Greenwald MJ, et al. Natural history of optic pathway tumors in children with neurofibromatosis type 1: a longitudinal study. J Pediatr. 1994;125:63–6.CrossRefPubMed
22.
go back to reference Perilongo G, Moras P, Carollo C, et al. Spontaneous partial regression of low-grade glioma in children with neurofibromatosis 1: a real possibility. J Child Neurol. 1999;14:352–6.CrossRefPubMed Perilongo G, Moras P, Carollo C, et al. Spontaneous partial regression of low-grade glioma in children with neurofibromatosis 1: a real possibility. J Child Neurol. 1999;14:352–6.CrossRefPubMed
23.
go back to reference Sharif S, Upadhyaya M, Ferner R, et al. A molecular analysis of individuals with neurofibromatosis type 1 (NF1) and optic pathway gliomas (OPGs), and an assessment of genotype-phenotype correlations. J Med Genet. 2011;48:256–60.CrossRefPubMed Sharif S, Upadhyaya M, Ferner R, et al. A molecular analysis of individuals with neurofibromatosis type 1 (NF1) and optic pathway gliomas (OPGs), and an assessment of genotype-phenotype correlations. J Med Genet. 2011;48:256–60.CrossRefPubMed
24.
go back to reference Fisher MJ, Loguidice M, Gutmann DH, et al. Visual outcomes in children with neurofibromatosis type 1-associated optic pathway glioma following chemotherapy: a multicenter retrospective analysis. Neuro Oncol. 2012;14:790–7.CrossRefPubMedCentralPubMed Fisher MJ, Loguidice M, Gutmann DH, et al. Visual outcomes in children with neurofibromatosis type 1-associated optic pathway glioma following chemotherapy: a multicenter retrospective analysis. Neuro Oncol. 2012;14:790–7.CrossRefPubMedCentralPubMed
25.
go back to reference Habiby R, Silverman B, Listernick R, et al. Precocious puberty in children with neurofibromatosis type 1. J Pediatr. 1995;126:364–7.CrossRefPubMed Habiby R, Silverman B, Listernick R, et al. Precocious puberty in children with neurofibromatosis type 1. J Pediatr. 1995;126:364–7.CrossRefPubMed
26.
go back to reference Korones DN, Padowski J, Factor BA, et al. Do children with optic pathway tumors have an increased frequency of other central nervous system tumors? Neuro Oncol. 2003;5:116–20.PubMedCentralPubMed Korones DN, Padowski J, Factor BA, et al. Do children with optic pathway tumors have an increased frequency of other central nervous system tumors? Neuro Oncol. 2003;5:116–20.PubMedCentralPubMed
28.
go back to reference Ferner RE, Huson SM, Thomas N, et al. Guidelines for the diagnosis and management of individuals with neurofibromatosis 1. J Med Genet. 2007;44:81–8.CrossRefPubMedCentralPubMed Ferner RE, Huson SM, Thomas N, et al. Guidelines for the diagnosis and management of individuals with neurofibromatosis 1. J Med Genet. 2007;44:81–8.CrossRefPubMedCentralPubMed
29.
go back to reference Avery RA, Ferner RE, Listernick R, et al. Visual acuity in children with low grade gliomas of the visual pathway: implications for patient care and clinical research. J Neurooncol. 2012;110:1–7.CrossRefPubMed Avery RA, Ferner RE, Listernick R, et al. Visual acuity in children with low grade gliomas of the visual pathway: implications for patient care and clinical research. J Neurooncol. 2012;110:1–7.CrossRefPubMed
31.
go back to reference Margariti PN, Blekas K, Katzioti FG, et al. Magnetization transfer ratio and volumetric analysis of the brain in macrocephalic patients with neurofibromatosis type 1. Eur Radiol. 2007;17:433–8.CrossRefPubMed Margariti PN, Blekas K, Katzioti FG, et al. Magnetization transfer ratio and volumetric analysis of the brain in macrocephalic patients with neurofibromatosis type 1. Eur Radiol. 2007;17:433–8.CrossRefPubMed
32.
go back to reference Steen RG, Taylor JS, Langston JW, et al. Prospective evaluation of the brain in asymptomatic children with neurofibromatosis type 1: relationship of macrocephaly to T1 relaxation changes and structural brain abnormalities. Am J Neuroradiol. 2001;22:810–7.PubMed Steen RG, Taylor JS, Langston JW, et al. Prospective evaluation of the brain in asymptomatic children with neurofibromatosis type 1: relationship of macrocephaly to T1 relaxation changes and structural brain abnormalities. Am J Neuroradiol. 2001;22:810–7.PubMed
33.
go back to reference Ostendorf AP, Gutmann DH, Weisenberg JLZ. Epilepsy in individuals with neurofibromatosis type 1. Epilepsia. 2013;54:1810–4.CrossRefPubMed Ostendorf AP, Gutmann DH, Weisenberg JLZ. Epilepsy in individuals with neurofibromatosis type 1. Epilepsia. 2013;54:1810–4.CrossRefPubMed
34.
go back to reference Hsieh HY, Fung HC, Wang CJ, et al. Epileptic seizures in neurofibromatosis type 1 are related to intracranial tumors but not to neurofibromatosis bright objects. Seizure. 2011;20:606–11.CrossRefPubMed Hsieh HY, Fung HC, Wang CJ, et al. Epileptic seizures in neurofibromatosis type 1 are related to intracranial tumors but not to neurofibromatosis bright objects. Seizure. 2011;20:606–11.CrossRefPubMed
35.
go back to reference Hervey-Jumper SL, Singla N, Gebarski SS, et al. Diffuse pontine lesions in children with neurofibromatosis type 1: making a case for unidentified bright objects. Pediatr Neurosurg. 2013;49:55–9.CrossRefPubMed Hervey-Jumper SL, Singla N, Gebarski SS, et al. Diffuse pontine lesions in children with neurofibromatosis type 1: making a case for unidentified bright objects. Pediatr Neurosurg. 2013;49:55–9.CrossRefPubMed
36.
go back to reference Hyman SL, Shores EA, North KN. The nature and frequency of cognitive deficits in children with neurofibromatosis type 1. Neurology. 2005;65:1037–44.CrossRefPubMed Hyman SL, Shores EA, North KN. The nature and frequency of cognitive deficits in children with neurofibromatosis type 1. Neurology. 2005;65:1037–44.CrossRefPubMed
37.
go back to reference Lehtonen A, Howi E, Trump D, et al. Behaviour in children with neurofibromatosis type 1: cognition, executive function, attention, emotion, and social competence. Dev Med Child Neurol. 2013;55:111–25.CrossRefPubMed Lehtonen A, Howi E, Trump D, et al. Behaviour in children with neurofibromatosis type 1: cognition, executive function, attention, emotion, and social competence. Dev Med Child Neurol. 2013;55:111–25.CrossRefPubMed
38.
go back to reference Dilts CV, Carey JC, Kircher JC, et al. Children and adolescents with neurofibromatosis 1: a behavioral phenotype. J Dev Behav Pediatr. 1996;17:229–39.CrossRefPubMed Dilts CV, Carey JC, Kircher JC, et al. Children and adolescents with neurofibromatosis 1: a behavioral phenotype. J Dev Behav Pediatr. 1996;17:229–39.CrossRefPubMed
39.
go back to reference Krab LC, Aarsen FK, de Goede-Bolder A, et al. Impact of neurofibromatosis type 1 on school performance. J Child Neurol. 2008;23:1002–10.PubMed Krab LC, Aarsen FK, de Goede-Bolder A, et al. Impact of neurofibromatosis type 1 on school performance. J Child Neurol. 2008;23:1002–10.PubMed
40.
go back to reference Garg S, Green J, Leadbitter K, et al. Neurofibromatosis type 1 and autism spectrum disorder. Pediatrics. 2013;132:1642–8.CrossRef Garg S, Green J, Leadbitter K, et al. Neurofibromatosis type 1 and autism spectrum disorder. Pediatrics. 2013;132:1642–8.CrossRef
41.
go back to reference Arrington DK, Danehy AR, Peleggi A, et al. Calvarial defects and skeletal dysplasia in patients with neurofibromatosis type 1. J Neurosurg Pediatr. 2013;11:410–6.CrossRefPubMed Arrington DK, Danehy AR, Peleggi A, et al. Calvarial defects and skeletal dysplasia in patients with neurofibromatosis type 1. J Neurosurg Pediatr. 2013;11:410–6.CrossRefPubMed
42.
go back to reference Riccardi VM. A controlled multiphase trial of ketotifen to minimize neurofibroma-associated pain and itching. Arch Dermatol. 1993;129:577–81.CrossRefPubMed Riccardi VM. A controlled multiphase trial of ketotifen to minimize neurofibroma-associated pain and itching. Arch Dermatol. 1993;129:577–81.CrossRefPubMed
43.
go back to reference Jakacki RI, Dombi E, Potter DM, et al. Phase I trial of pegylated interferon-alpha-2b in young patients with plexiform neurofibromas. Neurology. 2011;76:265–72.CrossRefPubMedCentralPubMed Jakacki RI, Dombi E, Potter DM, et al. Phase I trial of pegylated interferon-alpha-2b in young patients with plexiform neurofibromas. Neurology. 2011;76:265–72.CrossRefPubMedCentralPubMed
44.
go back to reference Kebudi R, Cakir FB, Gorgun O. Interferon-α for unresectable progressive and symptomatic plexiform neurofibromas. J Pediatr Hematol Oncol. 2013;35:e115–7.CrossRefPubMed Kebudi R, Cakir FB, Gorgun O. Interferon-α for unresectable progressive and symptomatic plexiform neurofibromas. J Pediatr Hematol Oncol. 2013;35:e115–7.CrossRefPubMed
45.
go back to reference Packer RJ, Gutmann DH, Rubenstein A, et al. Plexiform neurofibromas in NF1: toward biologic-based therapy. Neurology. 2002;58:1461–70.CrossRefPubMed Packer RJ, Gutmann DH, Rubenstein A, et al. Plexiform neurofibromas in NF1: toward biologic-based therapy. Neurology. 2002;58:1461–70.CrossRefPubMed
46.
go back to reference Gupta A, Cohen B, Ruggierri P, et al. A phase I study of thalidomide for the treatment of plexiform neurofibroma in patients with neurofibromatosis 1 (NF1). Neurology. 2000;54:12–3. Gupta A, Cohen B, Ruggierri P, et al. A phase I study of thalidomide for the treatment of plexiform neurofibroma in patients with neurofibromatosis 1 (NF1). Neurology. 2000;54:12–3.
47.
go back to reference Widemann BC, Salzer WL, Arceci RJ, et al. Phase I trial and pharmacokinetic study of the arnesyltransferase inhibitor tipifarnib in children with refractory solid tumors or neurofibromatosis type I and plexiform neurofibromas. J Clin Oncol. 2006;24:507–16.CrossRefPubMed Widemann BC, Salzer WL, Arceci RJ, et al. Phase I trial and pharmacokinetic study of the arnesyltransferase inhibitor tipifarnib in children with refractory solid tumors or neurofibromatosis type I and plexiform neurofibromas. J Clin Oncol. 2006;24:507–16.CrossRefPubMed
48.•
go back to reference Widemann BC, Dombi E, Gillespie A, et al. Phase 2 randomized, flexible crossover, double-blinded, placebo-controlled trial of the farnesyltransferase inhibitor tipifarnib in children and young adults with neurofibromatosis type 1 and progressive plexiform neurofibromas. Neuro Oncol. 2014;16:707–18. A study showing that tipifarnib was well tolerated but did not significantly prolong time of tumor progression of plexiform Ns compared with placebo.CrossRefPubMedCentralPubMed Widemann BC, Dombi E, Gillespie A, et al. Phase 2 randomized, flexible crossover, double-blinded, placebo-controlled trial of the farnesyltransferase inhibitor tipifarnib in children and young adults with neurofibromatosis type 1 and progressive plexiform neurofibromas. Neuro Oncol. 2014;16:707–18. A study showing that tipifarnib was well tolerated but did not significantly prolong time of tumor progression of plexiform Ns compared with placebo.CrossRefPubMedCentralPubMed
49.
go back to reference Demestre M, Herzberg J, Holtkamp N, et al. Imatinib mesylate (Glivec) inhibits Schwann cell viability and reduces the size of human plexiform neurofibroma in a xenograft model. J Neurooncol. 2010;98:11–9.CrossRefPubMed Demestre M, Herzberg J, Holtkamp N, et al. Imatinib mesylate (Glivec) inhibits Schwann cell viability and reduces the size of human plexiform neurofibroma in a xenograft model. J Neurooncol. 2010;98:11–9.CrossRefPubMed
50.•
go back to reference Robertson KA, Nalepa G, Yang FC, et al. Imatinib mesylate for plexiform neurofibromas in patients with neurofibromatosis type 1: a phase 2 trial. Lancet Oncol. 2012;13:1218–24. This trial shows the possible role of imatinib mesylate in the treatment of clinically significant plexiform Ns in children and adults with NF1; it is significant for understanding the importance of a targeted therapy based on pathogenetical mechanisms.CrossRefPubMed Robertson KA, Nalepa G, Yang FC, et al. Imatinib mesylate for plexiform neurofibromas in patients with neurofibromatosis type 1: a phase 2 trial. Lancet Oncol. 2012;13:1218–24. This trial shows the possible role of imatinib mesylate in the treatment of clinically significant plexiform Ns in children and adults with NF1; it is significant for understanding the importance of a targeted therapy based on pathogenetical mechanisms.CrossRefPubMed
51.•
go back to reference Wie J, Freytag M, Schobe Y, et al. Nilotinib is more potent than imatinib for treating plexiform neurofibroma in vitro and in vivo. PLoS ONE. 2014;9:e107760. An interesting study suggesting that nilotinib may be more potent than imatinib for treating plexiform Ns and may also be better tolerated.CrossRef Wie J, Freytag M, Schobe Y, et al. Nilotinib is more potent than imatinib for treating plexiform neurofibroma in vitro and in vivo. PLoS ONE. 2014;9:e107760. An interesting study suggesting that nilotinib may be more potent than imatinib for treating plexiform Ns and may also be better tolerated.CrossRef
52.
go back to reference Jiang W, Schnabel C, Spyra M, et al. Efficacy and selectivity of nilotinib on NF1-associated tumors in vitro. J Neurooncol. 2014;116:231–6.CrossRefPubMed Jiang W, Schnabel C, Spyra M, et al. Efficacy and selectivity of nilotinib on NF1-associated tumors in vitro. J Neurooncol. 2014;116:231–6.CrossRefPubMed
53.
go back to reference Widemann BC, Babovic-Vuksanovic D, Dombi E, et al. Phase II trial of pirfenidone in children and young adults with neurofibromatosis type 1 and progressive plexiform neurofibromas. Pediatr Blood Cancer. 2014;61:1598–602.CrossRefPubMed Widemann BC, Babovic-Vuksanovic D, Dombi E, et al. Phase II trial of pirfenidone in children and young adults with neurofibromatosis type 1 and progressive plexiform neurofibromas. Pediatr Blood Cancer. 2014;61:1598–602.CrossRefPubMed
54.
go back to reference Weiss B, Widemann BC, Wolters P, et al. Sirolimus for non-progressive NF1-associated plexiform neurofibromas: an NF clinical trials consortium phase II study. Pediatr Blood Cancer. 2014;61:982–6.CrossRefPubMed Weiss B, Widemann BC, Wolters P, et al. Sirolimus for non-progressive NF1-associated plexiform neurofibromas: an NF clinical trials consortium phase II study. Pediatr Blood Cancer. 2014;61:982–6.CrossRefPubMed
55.•
go back to reference Hua C, Zehou O, Ducassou S, et al. Sirolimus improves pain in NF1 patients with severe plexiform neurofibromas. Pediatrics. 2014;133:e1792–7. A study showing that sirolimus for inoperable symptomatic plexiform Ns in patients with NF1 permitted stabilization of mass and produced unpredictable and important alleviation of pain in all cases with good tolerance.CrossRefPubMed Hua C, Zehou O, Ducassou S, et al. Sirolimus improves pain in NF1 patients with severe plexiform neurofibromas. Pediatrics. 2014;133:e1792–7. A study showing that sirolimus for inoperable symptomatic plexiform Ns in patients with NF1 permitted stabilization of mass and produced unpredictable and important alleviation of pain in all cases with good tolerance.CrossRefPubMed
56.
go back to reference Aerang K, Dombi E, Tepas K, et al. Phase I trial and pharmacokinetic study of sorafenib in children with neurofibromatosis type I and plexiform neurofibromas. Pediatr Blood Cancer. 2013;60:396–401.CrossRef Aerang K, Dombi E, Tepas K, et al. Phase I trial and pharmacokinetic study of sorafenib in children with neurofibromatosis type I and plexiform neurofibromas. Pediatr Blood Cancer. 2013;60:396–401.CrossRef
57.
go back to reference Wu J, Dombi E, Jousma E, et al. Preclinical testing of sorafenib and RAD001 in the Nf(flox/flox); DhhCre mouse model of plexiform neurofibroma using magnetic resonance imaging. Pediatr Blood Cancer. 2012;58:173–80.CrossRefPubMedCentralPubMed Wu J, Dombi E, Jousma E, et al. Preclinical testing of sorafenib and RAD001 in the Nf(flox/flox); DhhCre mouse model of plexiform neurofibroma using magnetic resonance imaging. Pediatr Blood Cancer. 2012;58:173–80.CrossRefPubMedCentralPubMed
58.
go back to reference Kinebuchi Y, Noguchi W, Igawa Y, et al. Recurrent retroperitoneal malignant nerve sheath tumor associated with neurofibromatosis type 1 responding to carboplatin and etoposide combined chemotherapy. Int J Clin Oncol. 2005;10:353–6.CrossRefPubMed Kinebuchi Y, Noguchi W, Igawa Y, et al. Recurrent retroperitoneal malignant nerve sheath tumor associated with neurofibromatosis type 1 responding to carboplatin and etoposide combined chemotherapy. Int J Clin Oncol. 2005;10:353–6.CrossRefPubMed
59.
go back to reference Steins MB, Serve H, Zuhlsdorf M, et al. Carboplatin/etoposide induces remission of metastasised malignant peripheral nerve tumours (malignant schwannoma) refractory to first-line therapy. Oncol Rep. 2002;9:627–30.PubMed Steins MB, Serve H, Zuhlsdorf M, et al. Carboplatin/etoposide induces remission of metastasised malignant peripheral nerve tumours (malignant schwannoma) refractory to first-line therapy. Oncol Rep. 2002;9:627–30.PubMed
60.
go back to reference Brosius SN, Turk AN, Byer SJ, et al. Combinatorial therapy with tamoxifen and trifluoperazine effectively inhibits malignant peripheral nerve sheath tumor growth by targeting complementary signaling cascades. J Neuropathol Exp Neurol. 2014;73:1078–90.CrossRefPubMed Brosius SN, Turk AN, Byer SJ, et al. Combinatorial therapy with tamoxifen and trifluoperazine effectively inhibits malignant peripheral nerve sheath tumor growth by targeting complementary signaling cascades. J Neuropathol Exp Neurol. 2014;73:1078–90.CrossRefPubMed
61.
go back to reference Reena PT, Gibbs IC, Xu LW, et al. Treatment options for optic pathway gliomas. Curr Treat Options Neurol. 2015;17:2.CrossRef Reena PT, Gibbs IC, Xu LW, et al. Treatment options for optic pathway gliomas. Curr Treat Options Neurol. 2015;17:2.CrossRef
62.
go back to reference Torres KE, Liu J, Young E, et al. Expression of ‘drugable’ tyrosine kinase receptors in malignant peripheral nerve sheath tumour: potential molecular therapeutic targets for a chemoresistant cancer. Histopathology. 2011;59:143–61.CrossRef Torres KE, Liu J, Young E, et al. Expression of ‘drugable’ tyrosine kinase receptors in malignant peripheral nerve sheath tumour: potential molecular therapeutic targets for a chemoresistant cancer. Histopathology. 2011;59:143–61.CrossRef
63.
go back to reference Stricker TP, Henriksen KJ, Tonsgard JH, et al. Expression profiling of 519 kinase genes in matched malignant peripheral nerve sheath tumor/plexiform neurofibroma samples is discriminatory and identifies mitotic regulators BUB1B, PBK and NEK2 as overexpressed with transformation. Mod Pathol. 2013;26:930–43.CrossRefPubMed Stricker TP, Henriksen KJ, Tonsgard JH, et al. Expression profiling of 519 kinase genes in matched malignant peripheral nerve sheath tumor/plexiform neurofibroma samples is discriminatory and identifies mitotic regulators BUB1B, PBK and NEK2 as overexpressed with transformation. Mod Pathol. 2013;26:930–43.CrossRefPubMed
64.•
go back to reference Kaul A, Toonen JA, Cimino PJ, et al. Akt- or MEK-mediated mTOR inhibition suppresses Nf1 optic glioma growth. Neuro Oncol. 2014. This paper discusses possible biological targets for specific therapy of NF1-related OPGs. Kaul A, Toonen JA, Cimino PJ, et al. Akt- or MEK-mediated mTOR inhibition suppresses Nf1 optic glioma growth. Neuro Oncol. 2014. This paper discusses possible biological targets for specific therapy of NF1-related OPGs.
65.
go back to reference Chabernaud C, Mennes M, Kardel PG, et al. Lovastatin regulates brain spontaneous low-frequency brain activity in neurofibromatosis type 1. Neurosci Lett. 2012;515:28–33.CrossRefPubMedCentralPubMed Chabernaud C, Mennes M, Kardel PG, et al. Lovastatin regulates brain spontaneous low-frequency brain activity in neurofibromatosis type 1. Neurosci Lett. 2012;515:28–33.CrossRefPubMedCentralPubMed
66.
go back to reference Mainberger F, Nikolai HJ, Zenker M, et al. Lovastatin improves impaired synaptic plasticity and phasic alertness in patients with neurofibromatosis type 1. BMC Neurol. 2013;13:131.CrossRefPubMedCentralPubMed Mainberger F, Nikolai HJ, Zenker M, et al. Lovastatin improves impaired synaptic plasticity and phasic alertness in patients with neurofibromatosis type 1. BMC Neurol. 2013;13:131.CrossRefPubMedCentralPubMed
67.
go back to reference van der Vaart T, Plasschaert E, Rietman AB, et al. Simvastatin for cognitive deficits and behavioural problems in patients with neurofibromatosis type 1 (NF1-SIMCODA): a randomised, placebo-controlled trial. Lancet Neurol. 2013;12:1076–83.CrossRefPubMed van der Vaart T, Plasschaert E, Rietman AB, et al. Simvastatin for cognitive deficits and behavioural problems in patients with neurofibromatosis type 1 (NF1-SIMCODA): a randomised, placebo-controlled trial. Lancet Neurol. 2013;12:1076–83.CrossRefPubMed
68.
go back to reference Créange A, Zeller J, Rostaing-Rigattieri S, et al. Neurological complications of neurofibromatosis type 1 in adulthood. Brain. 1999;122:473–81.CrossRefPubMed Créange A, Zeller J, Rostaing-Rigattieri S, et al. Neurological complications of neurofibromatosis type 1 in adulthood. Brain. 1999;122:473–81.CrossRefPubMed
69.
go back to reference Carotenuto M, Esposito M. Nutraceuticals safety and efficacy in migraine without aura in a population of children affected by neurofibromatosis type 1. Neurol Sci. 2013;34:1905–9.CrossRefPubMed Carotenuto M, Esposito M. Nutraceuticals safety and efficacy in migraine without aura in a population of children affected by neurofibromatosis type 1. Neurol Sci. 2013;34:1905–9.CrossRefPubMed
70.
go back to reference Widemann BC. Current status of sporadic and neurofibromatosis type 1-associated malignant peripheral nerve sheath tumors. Curr Oncol Rep. 2009;11:322–8.CrossRefPubMed Widemann BC. Current status of sporadic and neurofibromatosis type 1-associated malignant peripheral nerve sheath tumors. Curr Oncol Rep. 2009;11:322–8.CrossRefPubMed
71.
go back to reference Carli M, Ferrari A, Mattke A, et al. Pediatric malignant peripheral nerve sheath tumor: the Italian and German soft tissue sarcoma cooperative group. J Clin Oncol. 2005;23:8422–30.CrossRefPubMed Carli M, Ferrari A, Mattke A, et al. Pediatric malignant peripheral nerve sheath tumor: the Italian and German soft tissue sarcoma cooperative group. J Clin Oncol. 2005;23:8422–30.CrossRefPubMed
72.
go back to reference Kawabata S, Watanabe K, Hosogane N, et al. Surgical correction of severe cervical kyphosis in patients with neurofibromatosis type 1. J Neurosurg Spine. 2013;8:274–9.CrossRef Kawabata S, Watanabe K, Hosogane N, et al. Surgical correction of severe cervical kyphosis in patients with neurofibromatosis type 1. J Neurosurg Spine. 2013;8:274–9.CrossRef
73.
go back to reference Stoker GE, Lenke LG, Dorward IG. Posterior vertebral column resection for the treatment of dystrophic kyphosis associated with type-1 neurofibromatosis. Spine. 2012;37:E1659–64.CrossRefPubMed Stoker GE, Lenke LG, Dorward IG. Posterior vertebral column resection for the treatment of dystrophic kyphosis associated with type-1 neurofibromatosis. Spine. 2012;37:E1659–64.CrossRefPubMed
Metadata
Title
Treatment of Neurofibromatosis Type 1
Authors
Caterina Sabatini, MD
Donatella Milani, MD
Francesca Menni, MD
Gianluca Tadini, MD
Susanna Esposito, MD
Publication date
01-06-2015
Publisher
Springer US
Published in
Current Treatment Options in Neurology / Issue 6/2015
Print ISSN: 1092-8480
Electronic ISSN: 1534-3138
DOI
https://doi.org/10.1007/s11940-015-0355-4

Other articles of this Issue 6/2015

Current Treatment Options in Neurology 6/2015 Go to the issue

Pediatric Neurology (R Boustany, Section Editor)

Treatment of Paroxysmal Dyskinesias in Children

Neuro-oncology (R Soffietti, Section Editor)

What is New in the Management of Epilepsy in Gliomas?

Multiple Sclerosis and Related Disorders (P Villoslada, Section Editor)

The Transition From First-Line to Second-Line Therapy in Multiple Sclerosis