Skip to main content
Top
Published in: Current Urology Reports 10/2019

01-10-2019 | Prostate Cancer | Prostate Cancer (S Prasad, Section Editor)

Immunotherapy in Metastatic Castration-Resistant Prostate Cancer: Past and Future Strategies for Optimization

Authors: Melissa A. Reimers, Kathryn E. Slane, Russell K. Pachynski

Published in: Current Urology Reports | Issue 10/2019

Login to get access

Abstract

Purpose of Review

To date, prostate cancer has been poorly responsive to immunotherapy. In the current review, we summarize and discuss the current literature on the use of vaccine therapy and checkpoint inhibitor immunotherapy in metastatic castration-resistant prostate cancer (mCRPC).

Recent Findings

Sipuleucel-T currently remains the only FDA-approved immunotherapeutic agent for prostate cancer. Single-agent phase 3 vaccine trials with GVAX and PROSTVAC have failed to demonstrate survival benefit to date. Clinical trials using combination approaches, including combination PROSTVAC along with a neoantigen vaccine and checkpoint inhibitor immunotherapy, are ongoing. Checkpoint inhibitor monotherapy clinical trials have demonstrated limited efficacy in advanced prostate cancer, and combination approaches and molecular patient selection are currently under investigation.

Summary

The optimal use of vaccine therapy and checkpoint inhibitor immunotherapy in metastatic castration-resistant prostate cancer remains to be determined. Ongoing clinical trials will continue to inform future clinical practice.
Literature
1.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.CrossRef
2.
go back to reference Kelly SP, Anderson WF, Rosenberg PS, Cook MB. Past, current, and future incidence rates and burden of metastatic prostate cancer in the United States. Eur Urol Focus. 2018;4(1):121–7.CrossRefPubMed Kelly SP, Anderson WF, Rosenberg PS, Cook MB. Past, current, and future incidence rates and burden of metastatic prostate cancer in the United States. Eur Urol Focus. 2018;4(1):121–7.CrossRefPubMed
3.
go back to reference Hurwitz AA, Foster BA, Kwon ED, Truong T, Choi EM, Greenberg NM, et al. Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res. 2000;60(9):2444–8.PubMed Hurwitz AA, Foster BA, Kwon ED, Truong T, Choi EM, Greenberg NM, et al. Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res. 2000;60(9):2444–8.PubMed
4.
go back to reference van Elsas A, Hurwitz AA, Allison JP. Combination immunotherapy of B16 melanoma using anti- cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med. 1999;190(3):355–66.CrossRefPubMedPubMedCentral van Elsas A, Hurwitz AA, Allison JP. Combination immunotherapy of B16 melanoma using anti- cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med. 1999;190(3):355–66.CrossRefPubMedPubMedCentral
5.
go back to reference Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.CrossRefPubMedPubMedCentral Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.CrossRefPubMedPubMedCentral
6.
go back to reference Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus Ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32.CrossRefPubMed Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus Ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32.CrossRefPubMed
7.
go back to reference Gandhi L, Rodriguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;378(22):2078–92.CrossRefPubMed Gandhi L, Rodriguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;378(22):2078–92.CrossRefPubMed
8.
go back to reference Paz-Ares L, Luft A, Vicente D, Tafreshi A, Gumus M, Mazieres J, et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med. 2018;379(21):2040–51.CrossRef Paz-Ares L, Luft A, Vicente D, Tafreshi A, Gumus M, Mazieres J, et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med. 2018;379(21):2040–51.CrossRef
9.
go back to reference Mehra R, Seiwert TY, Gupta S, Weiss J, Gluck I, Eder JP, et al. Efficacy and safety of pembrolizumab in recurrent/metastatic head and neck squamous cell carcinoma: pooled analyses after long-term follow- up in KEYNOTE-012. Br J Cancer. 2018;119(2):153–9.CrossRefPubMedPubMedCentral Mehra R, Seiwert TY, Gupta S, Weiss J, Gluck I, Eder JP, et al. Efficacy and safety of pembrolizumab in recurrent/metastatic head and neck squamous cell carcinoma: pooled analyses after long-term follow- up in KEYNOTE-012. Br J Cancer. 2018;119(2):153–9.CrossRefPubMedPubMedCentral
10.
go back to reference Balar AV, Castellano D, O'Donnell PH, Grivas P, Vuky J, Powles T, et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study. Lancet Oncol. 2017;18(11):1483–92.CrossRef Balar AV, Castellano D, O'Donnell PH, Grivas P, Vuky J, Powles T, et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study. Lancet Oncol. 2017;18(11):1483–92.CrossRef
11.
go back to reference • Beer TM, Kwon ED, Drake CG, Fizazi K, Logothetis C, Gravis G, et al. Randomized, double-blind, phase iii trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J Clin Oncol. 2017;35(1):40–7 Randomized, placebo-controlled phase III clinical trial of 598 patients with asymptomatic or minimally symptomatic chemotherapy-naïve mCRPC. Patients were randomized 2:1 to receive ipilimumab 10 mg/kg IV every 3 weeks or placebo. Primary endpoint of overall survival was not met. CrossRefPubMed • Beer TM, Kwon ED, Drake CG, Fizazi K, Logothetis C, Gravis G, et al. Randomized, double-blind, phase iii trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J Clin Oncol. 2017;35(1):40–7 Randomized, placebo-controlled phase III clinical trial of 598 patients with asymptomatic or minimally symptomatic chemotherapy-naïve mCRPC. Patients were randomized 2:1 to receive ipilimumab 10 mg/kg IV every 3 weeks or placebo. Primary endpoint of overall survival was not met. CrossRefPubMed
12.
go back to reference • Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, van den Eertwegh AJ, et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15(7):700–12 Randomized, placebo-controlled phase III clinical trial of 799 mCRPC patients with progression on docetaxel chemotherapy. Patients received 8 Gy radiation directed to an osseous metastasis followed by either ipilimumab 10 mg/kg IV every 3 weeks or placebo. Primary endpoint of overall survival was not met. CrossRefPubMedPubMedCentral • Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, van den Eertwegh AJ, et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15(7):700–12 Randomized, placebo-controlled phase III clinical trial of 799 mCRPC patients with progression on docetaxel chemotherapy. Patients received 8 Gy radiation directed to an osseous metastasis followed by either ipilimumab 10 mg/kg IV every 3 weeks or placebo. Primary endpoint of overall survival was not met. CrossRefPubMedPubMedCentral
13.
go back to reference Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499(7457):214–8.CrossRefPubMedPubMedCentral Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499(7457):214–8.CrossRefPubMedPubMedCentral
14.
go back to reference Danaher P, Warren S, Lu R, Samayoa J, Sullivan A, Pekker I, et al. Pan-cancer adaptive immune resistance as defined by the tumor inflammation signature (TIS): results from The Cancer Genome Atlas (TCGA). J Immunother Cancer. 2018;6(1):63.CrossRefPubMedPubMedCentral Danaher P, Warren S, Lu R, Samayoa J, Sullivan A, Pekker I, et al. Pan-cancer adaptive immune resistance as defined by the tumor inflammation signature (TIS): results from The Cancer Genome Atlas (TCGA). J Immunother Cancer. 2018;6(1):63.CrossRefPubMedPubMedCentral
15.
go back to reference Small EJ, Schellhammer PF, Higano CS, Redfern CH, Nemunaitis JJ, Valone FH, et al. Placebo- controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol. 2006;24(19):3089–94.CrossRefPubMed Small EJ, Schellhammer PF, Higano CS, Redfern CH, Nemunaitis JJ, Valone FH, et al. Placebo- controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol. 2006;24(19):3089–94.CrossRefPubMed
16.
go back to reference Higano CS, Schellhammer PF, Small EJ, Burch PA, Nemunaitis J, Yuh L, et al. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer. 2009;115(16):3670–9.CrossRefPubMed Higano CS, Schellhammer PF, Small EJ, Burch PA, Nemunaitis J, Yuh L, et al. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer. 2009;115(16):3670–9.CrossRefPubMed
17.
go back to reference •• Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–22 Randomized, placebo-controlled phase III clinical trial of 512 patients with asymptomatic or minimally symptomatic mCRPC. Patients were randomized 2:1 to receive sipuleucel-T or placebo. The study met its primary endpoint of overall survival, with a median survival of 25.8 months in the sipuleucel-T arm and 21.7 months in the control arm, for a benefit of 4.1 months. Sipuleucel-T was FDA approved in 2010. CrossRef •• Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–22 Randomized, placebo-controlled phase III clinical trial of 512 patients with asymptomatic or minimally symptomatic mCRPC. Patients were randomized 2:1 to receive sipuleucel-T or placebo. The study met its primary endpoint of overall survival, with a median survival of 25.8 months in the sipuleucel-T arm and 21.7 months in the control arm, for a benefit of 4.1 months. Sipuleucel-T was FDA approved in 2010. CrossRef
18.
go back to reference Schellhammer PF, Chodak G, Whitmore JB, Sims R, Frohlich MW, Kantoff PW. Lower baseline prostate-specific antigen is associated with a greater overall survival benefit from sipuleucel-T in the immunotherapy for prostate adenocarcinoma treatment (IMPACT) trial. Urology. 2013;81(6):1297–302.CrossRefPubMed Schellhammer PF, Chodak G, Whitmore JB, Sims R, Frohlich MW, Kantoff PW. Lower baseline prostate-specific antigen is associated with a greater overall survival benefit from sipuleucel-T in the immunotherapy for prostate adenocarcinoma treatment (IMPACT) trial. Urology. 2013;81(6):1297–302.CrossRefPubMed
19.
go back to reference Holl EK, McNamara MA, Healy P, Anand M, Concepcion RS, Breland CD, et al. Prolonged PSA stabilization and overall survival following sipuleucel-T monotherapy in metastatic castration-resistant prostate cancer patients. Prostate Cancer Prostatic Dis. 2019. Holl EK, McNamara MA, Healy P, Anand M, Concepcion RS, Breland CD, et al. Prolonged PSA stabilization and overall survival following sipuleucel-T monotherapy in metastatic castration-resistant prostate cancer patients. Prostate Cancer Prostatic Dis. 2019.
20.
go back to reference Sartor AO, Armstrong A, Ahaghotu C, McLeod D, Cooperberg M, Penson D, et al. PD24-12 overall survival analysis of African American and Caucasian patients receiving sipuleucel-T: preliminary data from the proceed registry. J Urol. 2017;197(4S):e456–e7.CrossRef Sartor AO, Armstrong A, Ahaghotu C, McLeod D, Cooperberg M, Penson D, et al. PD24-12 overall survival analysis of African American and Caucasian patients receiving sipuleucel-T: preliminary data from the proceed registry. J Urol. 2017;197(4S):e456–e7.CrossRef
21.
go back to reference Twardowski P, Wong JYC, Pal SK, Maughan BL, Frankel PH, Franklin K, et al. Randomized phase II trial of sipuleucel-T immunotherapy preceded by sensitizing radiation therapy and sipuleucel-T alone in patients with metastatic castrate resistant prostate cancer. Cancer Treat Res Commun. 2019;19:100116.CrossRefPubMed Twardowski P, Wong JYC, Pal SK, Maughan BL, Frankel PH, Franklin K, et al. Randomized phase II trial of sipuleucel-T immunotherapy preceded by sensitizing radiation therapy and sipuleucel-T alone in patients with metastatic castrate resistant prostate cancer. Cancer Treat Res Commun. 2019;19:100116.CrossRefPubMed
22.
go back to reference Fong L, Carroll P, Weinberg V, Chan S, Lewis J, Corman J, et al. Activated lymphocyte recruitment into the tumor microenvironment following preoperative sipuleucel-T for localized prostate cancer. J Natl Cancer Inst. 2014;106(11). Fong L, Carroll P, Weinberg V, Chan S, Lewis J, Corman J, et al. Activated lymphocyte recruitment into the tumor microenvironment following preoperative sipuleucel-T for localized prostate cancer. J Natl Cancer Inst. 2014;106(11).
23.
go back to reference Caram MEV, Ross R, Lin P, Mukherjee B. Factors associated with use of sipuleucel-T to treat patients with advanced prostate cancer. JAMA Netw Open. 2019;2(4):e192589.CrossRefPubMedPubMedCentral Caram MEV, Ross R, Lin P, Mukherjee B. Factors associated with use of sipuleucel-T to treat patients with advanced prostate cancer. JAMA Netw Open. 2019;2(4):e192589.CrossRefPubMedPubMedCentral
24.
go back to reference Simons JW, Carducci MA, Mikhak B, Lim M, Biedrzycki B, Borellini F, et al. Phase I/II trial of an allogeneic cellular immunotherapy in hormone-naive prostate cancer. Clin Cancer Res. 2006;12(11 Pt 1):3394–401.CrossRefPubMed Simons JW, Carducci MA, Mikhak B, Lim M, Biedrzycki B, Borellini F, et al. Phase I/II trial of an allogeneic cellular immunotherapy in hormone-naive prostate cancer. Clin Cancer Res. 2006;12(11 Pt 1):3394–401.CrossRefPubMed
25.
go back to reference Madan RA, Arlen PM, Mohebtash M, Hodge JW, Gulley JL. Prostvac-VF: a vector-based vaccine targeting PSA in prostate cancer. Expert Opin Investig Drugs. 2009;18(7):1001–11.CrossRefPubMedPubMedCentral Madan RA, Arlen PM, Mohebtash M, Hodge JW, Gulley JL. Prostvac-VF: a vector-based vaccine targeting PSA in prostate cancer. Expert Opin Investig Drugs. 2009;18(7):1001–11.CrossRefPubMedPubMedCentral
26.
go back to reference Kantoff PW, Schuetz TJ, Blumenstein BA, Glode LM, Bilhartz DL, Wyand M, et al. Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol. 2010;28(7):1099–105.CrossRefPubMedPubMedCentral Kantoff PW, Schuetz TJ, Blumenstein BA, Glode LM, Bilhartz DL, Wyand M, et al. Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol. 2010;28(7):1099–105.CrossRefPubMedPubMedCentral
27.
go back to reference Kantoff PWGJ, Pico-Navarro C. Revised overall survival analysis of a phase II, randomized, double- blind, controlled study of PROSTVAC in men with metastatic castration-resistant prostate cancer. J Clin Oncol. 2017;35:124–5.CrossRefPubMed Kantoff PWGJ, Pico-Navarro C. Revised overall survival analysis of a phase II, randomized, double- blind, controlled study of PROSTVAC in men with metastatic castration-resistant prostate cancer. J Clin Oncol. 2017;35:124–5.CrossRefPubMed
28.
go back to reference • Gulley JL, Borre M, Vogelzang NJ, Ng S, Agarwal N, Parker CC, et al. Phase III Trial of PROSTVAC in asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer. J Clin Oncol. 2019;37(13):1051–61 Randomized, placebo-controlled phase III clinical trial of 864 patients with mCRPC randomized to receive PROSTVAC + GM-CSF or placebo. The primary endpoint was overall survival, and the study was halted prematurely at the third interim analysis due to futility. CrossRefPubMed • Gulley JL, Borre M, Vogelzang NJ, Ng S, Agarwal N, Parker CC, et al. Phase III Trial of PROSTVAC in asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer. J Clin Oncol. 2019;37(13):1051–61 Randomized, placebo-controlled phase III clinical trial of 864 patients with mCRPC randomized to receive PROSTVAC + GM-CSF or placebo. The primary endpoint was overall survival, and the study was halted prematurely at the third interim analysis due to futility. CrossRefPubMed
29.
go back to reference Hansen AR, Massard C, Ott PA, Haas NB, Lopez JS, Ejadi S, et al. Pembrolizumab for advanced prostate adenocarcinoma: findings of the KEYNOTE-028 study. Ann Oncol. 2018;29(8):1807–13.CrossRefPubMed Hansen AR, Massard C, Ott PA, Haas NB, Lopez JS, Ejadi S, et al. Pembrolizumab for advanced prostate adenocarcinoma: findings of the KEYNOTE-028 study. Ann Oncol. 2018;29(8):1807–13.CrossRefPubMed
30.
go back to reference Mackall CL, Fry TJ, Gress RE. Harnessing the biology of IL-7 for therapeutic application. Nat Rev Immunol. 2011;11(5):330–42.CrossRef Mackall CL, Fry TJ, Gress RE. Harnessing the biology of IL-7 for therapeutic application. Nat Rev Immunol. 2011;11(5):330–42.CrossRef
31.
go back to reference Johnson LE, Brockstedt D, Leong M, Lauer P, Theisen E, Sauer JD, et al. Heterologous vaccination targeting prostatic acid phosphatase (PAP) using DNA and Listeria vaccines elicits superior anti-tumor immunity dependent on CD4+ T cells elicited by DNA priming. Oncoimmunology. 2018;7(8):e1456603.CrossRefPubMedPubMedCentral Johnson LE, Brockstedt D, Leong M, Lauer P, Theisen E, Sauer JD, et al. Heterologous vaccination targeting prostatic acid phosphatase (PAP) using DNA and Listeria vaccines elicits superior anti-tumor immunity dependent on CD4+ T cells elicited by DNA priming. Oncoimmunology. 2018;7(8):e1456603.CrossRefPubMedPubMedCentral
32.
go back to reference Hannan R, Zhang H, Wallecha A, Singh R, Liu L, Cohen P, et al. Combined immunotherapy with Listeria monocytogenes-based PSA vaccine and radiation therapy leads to a therapeutic response in a murine model of prostate cancer. Cancer Immunol Immunother. 2012;61(12):2227–38.CrossRefPubMed Hannan R, Zhang H, Wallecha A, Singh R, Liu L, Cohen P, et al. Combined immunotherapy with Listeria monocytogenes-based PSA vaccine and radiation therapy leads to a therapeutic response in a murine model of prostate cancer. Cancer Immunol Immunother. 2012;61(12):2227–38.CrossRefPubMed
33.
go back to reference NBea H. Phase I-II study of ADXS31-142 alone and in combination with pembrolizumab in patients with previously treated metastatic castration-resistant prostate cancer (mCRPC): the KEYNOTE- 046 trial. J Immunother Cancer. 2015;3(Suppl2):P153. NBea H. Phase I-II study of ADXS31-142 alone and in combination with pembrolizumab in patients with previously treated metastatic castration-resistant prostate cancer (mCRPC): the KEYNOTE- 046 trial. J Immunother Cancer. 2015;3(Suppl2):P153.
34.
go back to reference Mkrtichyan M, Chong N, Abu Eid R, Wallecha A, Singh R, Rothman J, et al. Anti-PD-1 antibody significantly increases therapeutic efficacy of Listeria monocytogenes (Lm)-LLO immunotherapy. J Immunother Cancer. 2013;1:15.CrossRefPubMedPubMedCentral Mkrtichyan M, Chong N, Abu Eid R, Wallecha A, Singh R, Rothman J, et al. Anti-PD-1 antibody significantly increases therapeutic efficacy of Listeria monocytogenes (Lm)-LLO immunotherapy. J Immunother Cancer. 2013;1:15.CrossRefPubMedPubMedCentral
35.
go back to reference Rekoske BT, Smith HA, Olson BM, Maricque BB, McNeel DG. PD-1 or PD-L1 blockade restores antitumor efficacy following SSX2 epitope-modified DNA vaccine immunization. Cancer Immunol Res. 2015;3(8):946–55.CrossRefPubMedPubMedCentral Rekoske BT, Smith HA, Olson BM, Maricque BB, McNeel DG. PD-1 or PD-L1 blockade restores antitumor efficacy following SSX2 epitope-modified DNA vaccine immunization. Cancer Immunol Res. 2015;3(8):946–55.CrossRefPubMedPubMedCentral
36.
go back to reference Zahm CD, Colluru VT, McNeel DG. Vaccination with high-affinity epitopes impairs antitumor efficacy by increasing PD-1 expression on CD8(+) T cells. Cancer immunology research. 2017;5(8):630–41.CrossRefPubMedPubMedCentral Zahm CD, Colluru VT, McNeel DG. Vaccination with high-affinity epitopes impairs antitumor efficacy by increasing PD-1 expression on CD8(+) T cells. Cancer immunology research. 2017;5(8):630–41.CrossRefPubMedPubMedCentral
37.
go back to reference McNeel DG, Eickhoff JC, Wargowski E, Zahm C, Staab MJ, Straus J, et al. Concurrent, but not sequential, PD-1 blockade with a DNA vaccine elicits anti-tumor responses in patients with metastatic, castration-resistant prostate cancer. Oncotarget. 2018;9(39):25586–96.CrossRefPubMedPubMedCentral McNeel DG, Eickhoff JC, Wargowski E, Zahm C, Staab MJ, Straus J, et al. Concurrent, but not sequential, PD-1 blockade with a DNA vaccine elicits anti-tumor responses in patients with metastatic, castration-resistant prostate cancer. Oncotarget. 2018;9(39):25586–96.CrossRefPubMedPubMedCentral
38.
go back to reference Lambricht L, Lopes A, Kos S, Sersa G, Preat V, Vandermeulen G. Clinical potential of electroporation for gene therapy and DNA vaccine delivery. Expert Opin Drug Deliv. 2016;13(2):295–310.CrossRefPubMed Lambricht L, Lopes A, Kos S, Sersa G, Preat V, Vandermeulen G. Clinical potential of electroporation for gene therapy and DNA vaccine delivery. Expert Opin Drug Deliv. 2016;13(2):295–310.CrossRefPubMed
39.
go back to reference de Bono JS. KEYNOTE-199: Pembrolizumab (pembro) for docetaxel-refractory metastatic castration-resistant prostate cancer (mCRPC). Journal of Clinical Oncology. 2018;36(15):suppl.5007.CrossRef de Bono JS. KEYNOTE-199: Pembrolizumab (pembro) for docetaxel-refractory metastatic castration-resistant prostate cancer (mCRPC). Journal of Clinical Oncology. 2018;36(15):suppl.5007.CrossRef
40.
go back to reference Padmanee S, Russel KP, Vivek N, Aude F, Gwenaelle G, Matt DG, et al. Initial results from a phase II study of nivolumab (NIVO) plus ipilimumab (IPI) for the treatment of metastatic castration-resistant prostate cancer (mCRPC; CheckMate 650). Journal of Clinical Oncology. 2019;37(7):suppl.142. Padmanee S, Russel KP, Vivek N, Aude F, Gwenaelle G, Matt DG, et al. Initial results from a phase II study of nivolumab (NIVO) plus ipilimumab (IPI) for the treatment of metastatic castration-resistant prostate cancer (mCRPC; CheckMate 650). Journal of Clinical Oncology. 2019;37(7):suppl.142.
41.
go back to reference Graff JN, Alumkal JJ, Drake CG, Thomas GV, Redmond WL, Farhad M, et al. Early evidence of anti- PD-1 activity in enzalutamide-resistant prostate cancer. Oncotarget. 2016;7(33):52810–7.CrossRefPubMedPubMedCentral Graff JN, Alumkal JJ, Drake CG, Thomas GV, Redmond WL, Farhad M, et al. Early evidence of anti- PD-1 activity in enzalutamide-resistant prostate cancer. Oncotarget. 2016;7(33):52810–7.CrossRefPubMedPubMedCentral
42.
go back to reference Bishop JL, Sio A, Angeles A, Roberts ME, Azad AA, Chi KN, et al. PD-L1 is highly expressed in enzalutamide resistant prostate cancer. Oncotarget. 2015;6(1):234–42.CrossRefPubMed Bishop JL, Sio A, Angeles A, Roberts ME, Azad AA, Chi KN, et al. PD-L1 is highly expressed in enzalutamide resistant prostate cancer. Oncotarget. 2015;6(1):234–42.CrossRefPubMed
43.
go back to reference Fong P. Keynote-365 cohort C: Pembrolizumab (pembro) plus enzalutamide (enza) in abiraterone (abi)-pretreated patients (pts) with metastatic castrate resistant prostate cance (mCRPC). Journal of Clinical Oncology. 2019;37(7):suppl (March 1 2019)):171.CrossRef Fong P. Keynote-365 cohort C: Pembrolizumab (pembro) plus enzalutamide (enza) in abiraterone (abi)-pretreated patients (pts) with metastatic castrate resistant prostate cance (mCRPC). Journal of Clinical Oncology. 2019;37(7):suppl (March 1 2019)):171.CrossRef
44.
go back to reference Gevensleben H, Dietrich D, Golletz C, Steiner S, Jung M, Thiesler T, et al. The immune checkpoint regulator PD-L1 is highly expressed in aggressive primary prostate cancer. Clin Cancer Res. 2016;22(8):1969–77.CrossRefPubMed Gevensleben H, Dietrich D, Golletz C, Steiner S, Jung M, Thiesler T, et al. The immune checkpoint regulator PD-L1 is highly expressed in aggressive primary prostate cancer. Clin Cancer Res. 2016;22(8):1969–77.CrossRefPubMed
45.
go back to reference •• Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;162(2):454 Comprehensive analysis of the genomic landscape of 150 patients with mCRPC. Aberrations of AR , ETS genes, TP53 and PTEN were most frequent. CrossRef •• Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;162(2):454 Comprehensive analysis of the genomic landscape of 150 patients with mCRPC. Aberrations of AR , ETS genes, TP53 and PTEN were most frequent. CrossRef
46.
go back to reference Quigley DA, Dang HX, Zhao SG, Lloyd P, Aggarwal R, Alumkal JJ, et al. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell. 2018;175(3):889.CrossRefPubMed Quigley DA, Dang HX, Zhao SG, Lloyd P, Aggarwal R, Alumkal JJ, et al. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell. 2018;175(3):889.CrossRefPubMed
47.
go back to reference Antonarakis ES, Shaukat F, Isaacsson Velho P, Kaur H, Shenderov E, Pardoll DM, et al. Clinical features and therapeutic outcomes in men with advanced prostate cancer and DNA mismatch repair gene mutations. Eur Urol. 2019;75(3):378–82.CrossRefPubMed Antonarakis ES, Shaukat F, Isaacsson Velho P, Kaur H, Shenderov E, Pardoll DM, et al. Clinical features and therapeutic outcomes in men with advanced prostate cancer and DNA mismatch repair gene mutations. Eur Urol. 2019;75(3):378–82.CrossRefPubMed
48.
go back to reference Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409–13.CrossRefPubMedPubMedCentral Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409–13.CrossRefPubMedPubMedCentral
49.
go back to reference Abida W, Cheng ML, Armenia J, Middha S, Autio KA, Vargas HA, et al. Analysis of the Prevalence of Microsatellite Instability in Prostate Cancer and Response to Immune Checkpoint Blockade. JAMA Oncol. 2019;5(4):471-8. Abida W, Cheng ML, Armenia J, Middha S, Autio KA, Vargas HA, et al. Analysis of the Prevalence of Microsatellite Instability in Prostate Cancer and Response to Immune Checkpoint Blockade. JAMA Oncol. 2019;5(4):471-8.
50.
go back to reference Karzai F, VanderWeele D, Madan RA, Owens H, Cordes LM, Hankin A, et al. Activity of durvalumab plus olaparib in metastatic castration-resistant prostate cancer in men with and without DNA damage repair mutations. J Immunother Cancer. 2018;6(1):141.CrossRefPubMedPubMedCentral Karzai F, VanderWeele D, Madan RA, Owens H, Cordes LM, Hankin A, et al. Activity of durvalumab plus olaparib in metastatic castration-resistant prostate cancer in men with and without DNA damage repair mutations. J Immunother Cancer. 2018;6(1):141.CrossRefPubMedPubMedCentral
51.
go back to reference Boudadi K, Suzman DL, Anagnostou V, Fu W, Luber B, Wang H, et al. Ipilimumab plus nivolumab and DNA-repair defects in AR-V7-expressing metastatic prostate cancer. Oncotarget. 2018;9(47):28561–71.CrossRefPubMedPubMedCentral Boudadi K, Suzman DL, Anagnostou V, Fu W, Luber B, Wang H, et al. Ipilimumab plus nivolumab and DNA-repair defects in AR-V7-expressing metastatic prostate cancer. Oncotarget. 2018;9(47):28561–71.CrossRefPubMedPubMedCentral
52.
go back to reference • Wu YM, Cieslik M, Lonigro RJ, Vats P, Reimers MA, Cao X, et al. Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer. Cell. 2018;173(7):1770–82 e14 CDK12 loss has been identified as a novel subtype of mCRPC, characterized by focal tandem duplications and increased gene fusions. CrossRefPubMed • Wu YM, Cieslik M, Lonigro RJ, Vats P, Reimers MA, Cao X, et al. Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer. Cell. 2018;173(7):1770–82 e14 CDK12 loss has been identified as a novel subtype of mCRPC, characterized by focal tandem duplications and increased gene fusions. CrossRefPubMed
53.
go back to reference Massari F, Ciccarese C, Calio A, Munari E, Cima L, Porcaro AB, et al. Magnitude of PD-1, PD-L1 and T lymphocyte expression on tissue from castration-resistant prostate adenocarcinoma: an exploratory analysis. Target Oncol. 2016;11(3):345–51.CrossRefPubMed Massari F, Ciccarese C, Calio A, Munari E, Cima L, Porcaro AB, et al. Magnitude of PD-1, PD-L1 and T lymphocyte expression on tissue from castration-resistant prostate adenocarcinoma: an exploratory analysis. Target Oncol. 2016;11(3):345–51.CrossRefPubMed
Metadata
Title
Immunotherapy in Metastatic Castration-Resistant Prostate Cancer: Past and Future Strategies for Optimization
Authors
Melissa A. Reimers
Kathryn E. Slane
Russell K. Pachynski
Publication date
01-10-2019
Publisher
Springer US
Published in
Current Urology Reports / Issue 10/2019
Print ISSN: 1527-2737
Electronic ISSN: 1534-6285
DOI
https://doi.org/10.1007/s11934-019-0931-3

Other articles of this Issue 10/2019

Current Urology Reports 10/2019 Go to the issue

Lower Urinary Tract Symptoms & Voiding Dysfunction (J Sandhu, Section Editor)

The Complex Relationship Between Lower Urinary Tract Symptoms and Sexual Health

Prostate Cancer (S Prasad, Section Editor)

The Microbiome and Prostate Cancer Risk

New Imaging Techniques (S Rais-Bahrami and K Porter, Section Editors)

Role of Positron Emission Tomography Imaging in Metabolically Active Renal Cell Carcinoma