Skip to main content
Top
Published in: Current Urology Reports 8/2017

Open Access 01-08-2017 | Urosurgery (P Sooriakumaran, Section Editor)

Training in Robotic Surgery—an Overview

Authors: Ashwin N. Sridhar, Tim P. Briggs, John D. Kelly, Senthil Nathan

Published in: Current Urology Reports | Issue 8/2017

Login to get access

Abstract

Purpose of Review

There has been a rapid and widespread adoption of the robotic surgical system with a lag in the development of a comprehensive training and credentialing framework. A literature search on robotic surgical training techniques and benchmarks was conducted to provide an evidence-based road map for the development of a robotic surgical skills for the novice robotic surgeon.

Recent Findings

A structured training curriculum is suggested incorporating evidence-based training techniques and benchmarks for progress. This usually involves sequential progression from observation, case assisting, acquisition of basic robotic skills in the dry and wet lab setting along with achievement of individual and team-based non-technical skills, modular console training under supervision, and finally independent practice.

Summary

Robotic surgical training must be based on demonstration of proficiency and safety in executing basic robotic skills and procedural tasks prior to independent practice.
Literature
2.
go back to reference Weinstein GS, OʼMalley BW, Desai SC, Quon H. Transoral robotic surgery: does the ends justify the means? Curr Opin Otolaryngol Head Neck Surg. Apr. 2009;17(2):126–31.CrossRefPubMed Weinstein GS, OʼMalley BW, Desai SC, Quon H. Transoral robotic surgery: does the ends justify the means? Curr Opin Otolaryngol Head Neck Surg. Apr. 2009;17(2):126–31.CrossRefPubMed
3.
go back to reference A. Toker, Robotic thoracic surgery: from the perspectives of European chest surgeons. J. Thorac. Dis., vol. 6 Suppl 2, no. Suppl 2, pp. S211-6, May 2014. A. Toker, Robotic thoracic surgery: from the perspectives of European chest surgeons. J. Thorac. Dis., vol. 6 Suppl 2, no. Suppl 2, pp. S211-6, May 2014.
4.
go back to reference van der Poel H, Brinkman W, van Cleynenbreugel B, Kallidonis P, Stolzenburg J-U, Liatsikos E, et al. Training in minimally invasive surgery in urology: European Association of Urology/International Consultation of Urological Diseases consultation. BJU Int. Mar. 2016;117(3):515–30.CrossRefPubMed van der Poel H, Brinkman W, van Cleynenbreugel B, Kallidonis P, Stolzenburg J-U, Liatsikos E, et al. Training in minimally invasive surgery in urology: European Association of Urology/International Consultation of Urological Diseases consultation. BJU Int. Mar. 2016;117(3):515–30.CrossRefPubMed
5.
go back to reference •• K. Ahmed, R. Khan, A. Mottrie, C. Lovegrove, R. Abaza, R. Ahlawat, T. Ahlering, G. Ahlgren, W. Artibani, E. Barret, X. Cathelineau, B. Challacombe, P. Coloby, M. S. Khan, J. Hubert, M. S. Michel, F. Montorsi, D. Murphy, J. Palou, V. Patel, P.-T. Piechaud, H. Van Poppel, P. Rischmann, R. Sanchez-Salas, S. Siemer, M. Stoeckle, J.-U. Stolzenburg, J.-E. Terrier, J. W. Thüroff, C. Vaessen, H. G. Van Der Poel, B. Van Cleynenbreugel, A. Volpe, C. Wagner, P. Wiklund, T. Wilson, M. Wirth, J. Witt, and P. Dasgupta, Development of a standardised training curriculum for robotic surgery: a consensus statement from an international multidisciplinary group of experts, BJU Int., vol. 116, no. 1, pp. 93–101, Jul. 2015. This study provides a structured pathway for training with validated development protocol. However, it fails to provide benchmarks for progression. •• K. Ahmed, R. Khan, A. Mottrie, C. Lovegrove, R. Abaza, R. Ahlawat, T. Ahlering, G. Ahlgren, W. Artibani, E. Barret, X. Cathelineau, B. Challacombe, P. Coloby, M. S. Khan, J. Hubert, M. S. Michel, F. Montorsi, D. Murphy, J. Palou, V. Patel, P.-T. Piechaud, H. Van Poppel, P. Rischmann, R. Sanchez-Salas, S. Siemer, M. Stoeckle, J.-U. Stolzenburg, J.-E. Terrier, J. W. Thüroff, C. Vaessen, H. G. Van Der Poel, B. Van Cleynenbreugel, A. Volpe, C. Wagner, P. Wiklund, T. Wilson, M. Wirth, J. Witt, and P. Dasgupta, Development of a standardised training curriculum for robotic surgery: a consensus statement from an international multidisciplinary group of experts, BJU Int., vol. 116, no. 1, pp. 93–101, Jul. 2015. This study provides a structured pathway for training with validated development protocol. However, it fails to provide benchmarks for progression.
6.
go back to reference • C. Lovegrove, G. Novara, A. Mottrie, K. A. Guru, M. Brown, B. Challacombe, R. Popert, J. Raza, H. Van der Poel, J. Peabody, P. Dasgupta, and K. Ahmed, Structured and modular training pathway for robot-assisted radical prostatectomy (RARP): validation of the RARP assessment score and learning curve assessment, Eur. Urol., vol. 69, no. 3, pp. 526–535, Mar. 2016. This study provides a structured modular pathway for training in RARP that can be modified for other robotic procedures. • C. Lovegrove, G. Novara, A. Mottrie, K. A. Guru, M. Brown, B. Challacombe, R. Popert, J. Raza, H. Van der Poel, J. Peabody, P. Dasgupta, and K. Ahmed, Structured and modular training pathway for robot-assisted radical prostatectomy (RARP): validation of the RARP assessment score and learning curve assessment, Eur. Urol., vol. 69, no. 3, pp. 526–535, Mar. 2016. This study provides a structured modular pathway for training in RARP that can be modified for other robotic procedures.
7.
go back to reference Stegemann AP, Ahmed K, Syed JR, Rehman S, Ghani K, Autorino R, et al. Fundamental skills of robotic surgery: a multi-institutional randomized controlled trial for validation of a simulation-based curriculum. Urology. Apr. 2013;81(4):767–74.CrossRefPubMed Stegemann AP, Ahmed K, Syed JR, Rehman S, Ghani K, Autorino R, et al. Fundamental skills of robotic surgery: a multi-institutional randomized controlled trial for validation of a simulation-based curriculum. Urology. Apr. 2013;81(4):767–74.CrossRefPubMed
8.
go back to reference Angell J, Gomez MS, Baig MM, Abaza R. Contribution of laparoscopic training to robotic proficiency: J. Endourol; Jun. 2013. Angell J, Gomez MS, Baig MM, Abaza R. Contribution of laparoscopic training to robotic proficiency: J. Endourol; Jun. 2013.
9.
go back to reference Kilic GS, Walsh TM, Borahay M, Zeybek B, Wen M, Breitkopf D. Effect of residents’ previous laparoscopic surgery experience on initial robotic suturing experience. ISRN Obstet Gynecol. Jan. 2012;2012:569456.PubMedPubMedCentral Kilic GS, Walsh TM, Borahay M, Zeybek B, Wen M, Breitkopf D. Effect of residents’ previous laparoscopic surgery experience on initial robotic suturing experience. ISRN Obstet Gynecol. Jan. 2012;2012:569456.PubMedPubMedCentral
10.
go back to reference Keehner MM, Tendick F, Meng MV, Anwar HP, Hegarty M, Stoller ML, et al. Spatial ability, experience, and skill in laparoscopic surgery. Am J Surg. 2004;188(1):71–5.CrossRefPubMed Keehner MM, Tendick F, Meng MV, Anwar HP, Hegarty M, Stoller ML, et al. Spatial ability, experience, and skill in laparoscopic surgery. Am J Surg. 2004;188(1):71–5.CrossRefPubMed
11.
go back to reference Louridas M, Quinn LE, Grantcharov TP. Predictive value of background experiences and visual spatial ability testing on laparoscopic baseline performance among residents entering postgraduate surgical training. Surg Endosc. Mar. 2016;30(3):1126–33.CrossRefPubMed Louridas M, Quinn LE, Grantcharov TP. Predictive value of background experiences and visual spatial ability testing on laparoscopic baseline performance among residents entering postgraduate surgical training. Surg Endosc. Mar. 2016;30(3):1126–33.CrossRefPubMed
12.
go back to reference V. K. Narula and W. S. Melvin, Robotic Surgical Systems, in Robotic Urologic Surgery, London: Springer London, pp. 5–14. V. K. Narula and W. S. Melvin, Robotic Surgical Systems, in Robotic Urologic Surgery, London: Springer London, pp. 5–14.
13.
go back to reference Kesavadas T, Stegemann A, Sathyaseelan G, Chowriappa A, Srimathveeravalli G, Seixas-Mikelus S, et al. Validation of robotic surgery simulator (RoSS). Stud Health Technol Inform. Jan. 2011;163:274–6.PubMed Kesavadas T, Stegemann A, Sathyaseelan G, Chowriappa A, Srimathveeravalli G, Seixas-Mikelus S, et al. Validation of robotic surgery simulator (RoSS). Stud Health Technol Inform. Jan. 2011;163:274–6.PubMed
14.
go back to reference Seixas-Mikelus SA, Kesavadas T, Srimathveeravalli G, Chandrasekhar R, Wilding GE, Guru KA. Face validation of a novel robotic surgical simulator. Urology. Aug. 2010;76(2):357–60.CrossRefPubMed Seixas-Mikelus SA, Kesavadas T, Srimathveeravalli G, Chandrasekhar R, Wilding GE, Guru KA. Face validation of a novel robotic surgical simulator. Urology. Aug. 2010;76(2):357–60.CrossRefPubMed
15.
go back to reference Kenney PA, Wszolek MF, Gould JJ, Libertino JA, Moinzadeh A. Face, content, and construct validity of dV-trainer, a novel virtual reality simulator for robotic surgery. Urology. Jun. 2009;73(6):1288–92.CrossRefPubMed Kenney PA, Wszolek MF, Gould JJ, Libertino JA, Moinzadeh A. Face, content, and construct validity of dV-trainer, a novel virtual reality simulator for robotic surgery. Urology. Jun. 2009;73(6):1288–92.CrossRefPubMed
16.
go back to reference Sethi AS, Peine WJ, Mohammadi Y, Sundaram CP. Validation of a novel virtual reality robotic simulator. J Endourol. Mar. 2009;23(3):503–8.CrossRefPubMed Sethi AS, Peine WJ, Mohammadi Y, Sundaram CP. Validation of a novel virtual reality robotic simulator. J Endourol. Mar. 2009;23(3):503–8.CrossRefPubMed
17.
go back to reference Seixas-Mikelus SA, Stegemann AP, Kesavadas T, Srimathveeravalli G, Sathyaseelan G, Chandrasekhar R, et al. Content validation of a novel robotic surgical simulator. BJU Int. Apr. 2011;107(7):1130–5.CrossRefPubMed Seixas-Mikelus SA, Stegemann AP, Kesavadas T, Srimathveeravalli G, Sathyaseelan G, Chandrasekhar R, et al. Content validation of a novel robotic surgical simulator. BJU Int. Apr. 2011;107(7):1130–5.CrossRefPubMed
18.
go back to reference Hung AJ, Patil MB, Zehnder P, Cai J, Ng CK, Aron M, et al. Concurrent and predictive validation of a novel robotic surgery simulator: a prospective, randomized study. J Urol. Feb. 2012;187(2):630–7.CrossRefPubMed Hung AJ, Patil MB, Zehnder P, Cai J, Ng CK, Aron M, et al. Concurrent and predictive validation of a novel robotic surgery simulator: a prospective, randomized study. J Urol. Feb. 2012;187(2):630–7.CrossRefPubMed
19.
go back to reference Whittaker G, Aydin A, Raison N, Kum F, Challacombe B, Khan MS, et al. Validation of the RobotiX mentor robotic surgery simulator. J Endourol. Mar. 2016;30(3):338–46.CrossRefPubMed Whittaker G, Aydin A, Raison N, Kum F, Challacombe B, Khan MS, et al. Validation of the RobotiX mentor robotic surgery simulator. J Endourol. Mar. 2016;30(3):338–46.CrossRefPubMed
20.
go back to reference T. Alzahrani, R. Haddad, A. Alkhayal, J. Delisle, L. Drudi, W. Gotlieb, S. Fraser, S. Bergman, F. Bladou, S. Andonian, and M. Anidjar, Validation of the da Vinci Surgical Skill Simulator across three surgical disciplines, Can. Urol. Assoc. J., vol. 7, no. 7–8, p. 520, Jul. 2013. T. Alzahrani, R. Haddad, A. Alkhayal, J. Delisle, L. Drudi, W. Gotlieb, S. Fraser, S. Bergman, F. Bladou, S. Andonian, and M. Anidjar, Validation of the da Vinci Surgical Skill Simulator across three surgical disciplines, Can. Urol. Assoc. J., vol. 7, no. 7–8, p. 520, Jul. 2013.
21.
go back to reference Liss MA, Abdelshehid C, Quach S, Lusch A, Graversen J, Landman J, et al. Validation, correlation, and comparison of the da Vinci Trainer ™ and the da Vinci Surgical Skills Simulator ™ using the Mimic ™ software for urologic robotic surgical education. J Endourol. Dec. 2012;26(12):1629–34.CrossRefPubMed Liss MA, Abdelshehid C, Quach S, Lusch A, Graversen J, Landman J, et al. Validation, correlation, and comparison of the da Vinci Trainer ™ and the da Vinci Surgical Skills Simulator ™ using the Mimic ™ software for urologic robotic surgical education. J Endourol. Dec. 2012;26(12):1629–34.CrossRefPubMed
22.
go back to reference Schreuder HWR, Persson JEU, Wolswijk RGH, Ihse I, Schijven MP, Verheijen RHM. Validation of a novel virtual reality simulator for robotic surgery. Sci World J. 2014;2014:1–10.CrossRef Schreuder HWR, Persson JEU, Wolswijk RGH, Ihse I, Schijven MP, Verheijen RHM. Validation of a novel virtual reality simulator for robotic surgery. Sci World J. 2014;2014:1–10.CrossRef
23.
go back to reference Chowriappa A, Raza SJ, Fazili A, Field E, Malito C, Samarasekera D, et al. Augmented-reality-based skills training for robot-assisted urethrovesical anastomosis: a multi-institutional randomised controlled trial. BJU Int. Feb. 2015;115(2):336–45.CrossRefPubMed Chowriappa A, Raza SJ, Fazili A, Field E, Malito C, Samarasekera D, et al. Augmented-reality-based skills training for robot-assisted urethrovesical anastomosis: a multi-institutional randomised controlled trial. BJU Int. Feb. 2015;115(2):336–45.CrossRefPubMed
24.
go back to reference Lerner MA, Ayalew M, Peine WJ, Sundaram CP. Does training on a virtual reality robotic simulator improve performance on the da Vinci surgical system? J Endourol. Mar. 2010;24(3):467–72.CrossRefPubMed Lerner MA, Ayalew M, Peine WJ, Sundaram CP. Does training on a virtual reality robotic simulator improve performance on the da Vinci surgical system? J Endourol. Mar. 2010;24(3):467–72.CrossRefPubMed
25.
go back to reference Hung AJ, Jayaratna IS, Teruya K, Desai MM, Gill IS, Goh AC. Comparative assessment of three standardized robotic surgery training methods: BJU Int; Mar. 2013. Hung AJ, Jayaratna IS, Teruya K, Desai MM, Gill IS, Goh AC. Comparative assessment of three standardized robotic surgery training methods: BJU Int; Mar. 2013.
26.
go back to reference Lendvay TS, Brand TC, White L, Kowalewski T, Jonnadula S, Mercer LD, et al. Virtual reality robotic surgery warm-up improves task performance in a dry laboratory environment: a prospective randomized controlled study. J Am Coll Surg. Jun. 2013;216(6):1181–92.CrossRefPubMedPubMedCentral Lendvay TS, Brand TC, White L, Kowalewski T, Jonnadula S, Mercer LD, et al. Virtual reality robotic surgery warm-up improves task performance in a dry laboratory environment: a prospective randomized controlled study. J Am Coll Surg. Jun. 2013;216(6):1181–92.CrossRefPubMedPubMedCentral
27.
go back to reference • N. Raison, K. Ahmed, N. Fossati, N. Buffi, A. Mottrie, P. Dasgupta, and H. Van Der Poel, Competency based training in robotic surgery: benchmark scores for virtual reality robotic simulation, BJU Int., vol. 119, no. 5, pp. 804–811, May 2017. This study provides important benchmarks for progression in VR simulation training. • N. Raison, K. Ahmed, N. Fossati, N. Buffi, A. Mottrie, P. Dasgupta, and H. Van Der Poel, Competency based training in robotic surgery: benchmark scores for virtual reality robotic simulation, BJU Int., vol. 119, no. 5, pp. 804–811, May 2017. This study provides important benchmarks for progression in VR simulation training.
28.
go back to reference Noureldin YA, Stoica A, Kassouf W, Tanguay S, Bladou F, Andonian S. Incorporation of the da Vinci Surgical Skills Simulator at urology Objective Structured Clinical Examinations (OSCEs): a pilot study. Can J Urol. Feb. 2016;23(1):8160–6.PubMed Noureldin YA, Stoica A, Kassouf W, Tanguay S, Bladou F, Andonian S. Incorporation of the da Vinci Surgical Skills Simulator at urology Objective Structured Clinical Examinations (OSCEs): a pilot study. Can J Urol. Feb. 2016;23(1):8160–6.PubMed
29.
go back to reference Ramos P, Montez J, Tripp A, Ng CK, Gill IS, Hung AJ. Face, content, construct and concurrent validity of dry laboratory exercises for robotic training using a global assessment tool. BJU Int. May 2014;113(5):836–42.CrossRefPubMed Ramos P, Montez J, Tripp A, Ng CK, Gill IS, Hung AJ. Face, content, construct and concurrent validity of dry laboratory exercises for robotic training using a global assessment tool. BJU Int. May 2014;113(5):836–42.CrossRefPubMed
30.
go back to reference • N. Y. Siddiqui, M. L. Galloway, E. J. Geller, I. C. Green, H.-C. Hur, K. Langston, M. C. Pitter, M. E. Tarr, M. A. Martino, and C. to, Validity and reliability of the robotic objective structured assessment of technical skills HHS Public Access, Obs. Gynecol, vol. 123, no. 6, pp. 1193–1199, 2014. This study provides important benchmarks for progression in drylab simulation training. • N. Y. Siddiqui, M. L. Galloway, E. J. Geller, I. C. Green, H.-C. Hur, K. Langston, M. C. Pitter, M. E. Tarr, M. A. Martino, and C. to, Validity and reliability of the robotic objective structured assessment of technical skills HHS Public Access, Obs. Gynecol, vol. 123, no. 6, pp. 1193–1199, 2014. This study provides important benchmarks for progression in drylab simulation training.
31.
go back to reference •• N. Y. Siddiqui, M. E. Tarr, E. J. Geller, A. P. Advincula, M. L. Galloway, I. C. Green, H.-C. Hur, M. C. Pitter, E. E. Burke, and M. A. Martino, Establishing benchmarks for minimum competence with dry lab robotic surgery drills, 2016. This study validates the benchmarks suggested previously. •• N. Y. Siddiqui, M. E. Tarr, E. J. Geller, A. P. Advincula, M. L. Galloway, I. C. Green, H.-C. Hur, M. C. Pitter, E. E. Burke, and M. A. Martino, Establishing benchmarks for minimum competence with dry lab robotic surgery drills, 2016. This study validates the benchmarks suggested previously.
32.
go back to reference M. R. Polin, N. Y. Siddiqui, B. A. Comstock, H. Hesham, C. Brown, T. S. Lendvay, and M. A. Martino, Crowdsourcing: a valid alternative to expert evaluation of robotic surgery skills, Am. J. Obstet. Gynecol., vol. 215, no. 5, p. 644.e1–644.e7, Nov. 2016. M. R. Polin, N. Y. Siddiqui, B. A. Comstock, H. Hesham, C. Brown, T. S. Lendvay, and M. A. Martino, Crowdsourcing: a valid alternative to expert evaluation of robotic surgery skills, Am. J. Obstet. Gynecol., vol. 215, no. 5, p. 644.e1–644.e7, Nov. 2016.
33.
go back to reference Laguna MP, Arce-Alcazar A, Mochtar CA, Van Velthoven R, Peltier A, de la Rosette JJMCH. Construct validity of the chicken model in the simulation of laparoscopic radical prostatectomy suture. J Endourol. Jan. 2006;20(1):69–73.CrossRefPubMed Laguna MP, Arce-Alcazar A, Mochtar CA, Van Velthoven R, Peltier A, de la Rosette JJMCH. Construct validity of the chicken model in the simulation of laparoscopic radical prostatectomy suture. J Endourol. Jan. 2006;20(1):69–73.CrossRefPubMed
34.
go back to reference Huri E, Ezer M, Chan E. The novel laparoscopic training 3D model in urology with surgical anatomic remarks: fresh-frozen cadaveric tissue. Türk Üroloji Dergisi/Turkish J Urol. Nov. 2016;42(4):224–9.CrossRef Huri E, Ezer M, Chan E. The novel laparoscopic training 3D model in urology with surgical anatomic remarks: fresh-frozen cadaveric tissue. Türk Üroloji Dergisi/Turkish J Urol. Nov. 2016;42(4):224–9.CrossRef
35.
go back to reference Wagner A, Munter M, Makarov D, Nielsen M, Scorpio D, Kavoussi LR. Totally laparoscopic creation of a novel stapled orthotopic neobladder in the porcine model. J Endourol. Jan. 2008;22(1):151–6.CrossRefPubMed Wagner A, Munter M, Makarov D, Nielsen M, Scorpio D, Kavoussi LR. Totally laparoscopic creation of a novel stapled orthotopic neobladder in the porcine model. J Endourol. Jan. 2008;22(1):151–6.CrossRefPubMed
36.
go back to reference Smith AL, Scott EM, Krivak TC, Olawaiye AB, Chu T, Richard SD. Dual-console robotic surgery: a new teaching paradigm. J Robot Surg. Jun. 2013;7(2):113–8.CrossRefPubMed Smith AL, Scott EM, Krivak TC, Olawaiye AB, Chu T, Richard SD. Dual-console robotic surgery: a new teaching paradigm. J Robot Surg. Jun. 2013;7(2):113–8.CrossRefPubMed
37.
go back to reference Santomauro M, Reina GA, Stroup SP, L’Esperance JO. Telementoring in robotic surgery. Curr Opin Urol. Mar. 2013;23(2):141–5.PubMed Santomauro M, Reina GA, Stroup SP, L’Esperance JO. Telementoring in robotic surgery. Curr Opin Urol. Mar. 2013;23(2):141–5.PubMed
38.
go back to reference Gawande AA, Zinner MJ, Studdert DM, Brennan TA. Analysis of errors reported by surgeons at three teaching hospitals. Surgery. Jun. 2003;133(6):614–21.CrossRefPubMed Gawande AA, Zinner MJ, Studdert DM, Brennan TA. Analysis of errors reported by surgeons at three teaching hospitals. Surgery. Jun. 2003;133(6):614–21.CrossRefPubMed
39.
go back to reference Yule S, Flin R, Paterson-Brown S, Maran N. Non-technical skills for surgeons in the operating room: a review of the literature. Surgery. Feb. 2006;139(2):140–9.CrossRefPubMed Yule S, Flin R, Paterson-Brown S, Maran N. Non-technical skills for surgeons in the operating room: a review of the literature. Surgery. Feb. 2006;139(2):140–9.CrossRefPubMed
40.
go back to reference •• T. C. Wood, N. Raison, S. Haldar, O. Brunckhorst, C. McIlhenny, P. Dasgupta, and K. Ahmed, Training tools for nontechnical skills for surgeons—a systematic review, J. Surg. Educ., Dec. 2016. This study is an excellent review of the non-technical skills assessment required for training. •• T. C. Wood, N. Raison, S. Haldar, O. Brunckhorst, C. McIlhenny, P. Dasgupta, and K. Ahmed, Training tools for nontechnical skills for surgeons—a systematic review, J. Surg. Educ., Dec. 2016. This study is an excellent review of the non-technical skills assessment required for training.
41.
go back to reference Suh I, Mukherjee M, Oleynikov D, Siu K-C. Training program for fundamental surgical skill in robotic laparoscopic surgery: Int. J. Med. Robot; Jun. 2011. Suh I, Mukherjee M, Oleynikov D, Siu K-C. Training program for fundamental surgical skill in robotic laparoscopic surgery: Int. J. Med. Robot; Jun. 2011.
42.
go back to reference Tausch TJ, Kowalewski TM, White LW, McDonough PS, Brand TC, Lendvay TS. Content and construct validation of a robotic surgery curriculum using an electromagnetic instrument tracker. J Urol. Sep. 2012;188(3):919–23.CrossRefPubMed Tausch TJ, Kowalewski TM, White LW, McDonough PS, Brand TC, Lendvay TS. Content and construct validation of a robotic surgery curriculum using an electromagnetic instrument tracker. J Urol. Sep. 2012;188(3):919–23.CrossRefPubMed
43.
go back to reference Arain NA, Dulan G, Hogg DC, Rege RV, Powers CE, Tesfay ST, et al. Comprehensive proficiency-based inanimate training for robotic surgery: reliability, feasibility, and educational benefit. Surg Endosc. Oct. 2012;26(10):2740–5.CrossRefPubMed Arain NA, Dulan G, Hogg DC, Rege RV, Powers CE, Tesfay ST, et al. Comprehensive proficiency-based inanimate training for robotic surgery: reliability, feasibility, and educational benefit. Surg Endosc. Oct. 2012;26(10):2740–5.CrossRefPubMed
44.
go back to reference Dulan G, Rege RV, Hogg DC, Gilberg-Fisher KK, Tesfay ST, Scott DJ. Content and face validity of a comprehensive robotic skills training program for general surgery, urology, and gynecology. Am J Surg. Apr. 2012;203(4):535–9.CrossRefPubMed Dulan G, Rege RV, Hogg DC, Gilberg-Fisher KK, Tesfay ST, Scott DJ. Content and face validity of a comprehensive robotic skills training program for general surgery, urology, and gynecology. Am J Surg. Apr. 2012;203(4):535–9.CrossRefPubMed
45.
go back to reference R. Smith, V. Patel, S. Chauhan, and R. Satava, Fundamentals of robotic surgery: outcomes measures and curriculum development, ncsaglobal.com , 2012. R. Smith, V. Patel, S. Chauhan, and R. Satava, Fundamentals of robotic surgery: outcomes measures and curriculum development, ncsaglobal.com , 2012.
Metadata
Title
Training in Robotic Surgery—an Overview
Authors
Ashwin N. Sridhar
Tim P. Briggs
John D. Kelly
Senthil Nathan
Publication date
01-08-2017
Publisher
Springer US
Published in
Current Urology Reports / Issue 8/2017
Print ISSN: 1527-2737
Electronic ISSN: 1534-6285
DOI
https://doi.org/10.1007/s11934-017-0710-y

Other articles of this Issue 8/2017

Current Urology Reports 8/2017 Go to the issue

Lower Urinary Tract Symptoms & Voiding Dysfunction (J Sandhu, Section Editor)

Where Are We Headed with Neuromodulation for Overactive Bladder?

Female Urology (K Kobashi, Section Editor)

Urologic Dermatology: a Review

Urosurgery (P Sooriakumaran, Section Editor)

The Role of Robotics in the Invasive Management of Bladder Cancer

Lower Urinary Tract Symptoms & Voiding Dysfunction (J Sandhu, Section Editor)

Changes in Management of Poorly Compliant Bladder in Botulinum Toxin A Era