Skip to main content
Top
Published in: Current Psychiatry Reports 5/2012

01-10-2012 | Attention-Deficit Disorder (R Bussing, Section Editor)

Emerging Support for a Role of Exercise in Attention-Deficit/Hyperactivity Disorder Intervention Planning

Authors: Olga G. Berwid, Jeffrey M. Halperin

Published in: Current Psychiatry Reports | Issue 5/2012

Login to get access

Abstract

Recent years have seen an expansion of interest in non-pharmacological interventions for attention-deficit/hyperactivity disorder (ADHD). Although considerable treatment development has focused on cognitive training programs, compelling evidence indicates that intense aerobic exercise enhances brain structure and function, and as such, might be beneficial to children with ADHD. This paper reviews evidence for a direct impact of exercise on neural functioning and preliminary evidence that exercise may have positive effects on children with ADHD. At present, data are promising and support the need for further study, but are insufficient to recommend widespread use of such interventions for children with ADHD.
Literature
1.
go back to reference American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. Washington DC: American Psychiatric Press 1994. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. Washington DC: American Psychiatric Press 1994.
2.
go back to reference Mannuzza S, Klein RG. Long-term prognosis in attention-deficit/hyperactivity disorder. Child Adolesc Psychiatr Clin N Am. 2000;9:711–26.PubMed Mannuzza S, Klein RG. Long-term prognosis in attention-deficit/hyperactivity disorder. Child Adolesc Psychiatr Clin N Am. 2000;9:711–26.PubMed
3.
go back to reference Barkley RA. Global issues related to the impact of untreated attention-deficit/hyperactivity disorder from childhood to young adulthood. Postgrad Med. 2008;120:48–59.PubMedCrossRef Barkley RA. Global issues related to the impact of untreated attention-deficit/hyperactivity disorder from childhood to young adulthood. Postgrad Med. 2008;120:48–59.PubMedCrossRef
4.
go back to reference Conners CK. Forty years of methylphenidate treatment in attention-deficit/ hyperactivity disorder. J Atten Disord. 2002;6:S17–30.PubMed Conners CK. Forty years of methylphenidate treatment in attention-deficit/ hyperactivity disorder. J Atten Disord. 2002;6:S17–30.PubMed
5.
go back to reference Greenhill LL, Halperin JM, Abikoff H. Stimulant medications. J Am Acad Child Adolesc Psychiatry. 1999;38:503–12.PubMedCrossRef Greenhill LL, Halperin JM, Abikoff H. Stimulant medications. J Am Acad Child Adolesc Psychiatry. 1999;38:503–12.PubMedCrossRef
6.
go back to reference Spencer T, Biederman J, Wilens T, et al. Pharmacotherapy of attention-deficit hyperactivity disorder across the life cycle. J Am Acad Child Adolesc Psychiatry. 1996;35:409–32.PubMedCrossRef Spencer T, Biederman J, Wilens T, et al. Pharmacotherapy of attention-deficit hyperactivity disorder across the life cycle. J Am Acad Child Adolesc Psychiatry. 1996;35:409–32.PubMedCrossRef
7.
go back to reference Pelham Jr WE, Fabiano GA. Behavior modification. Child Adolesc Psychiatr Clin N Am. 2000;9:671–88. ix.PubMed Pelham Jr WE, Fabiano GA. Behavior modification. Child Adolesc Psychiatr Clin N Am. 2000;9:671–88. ix.PubMed
8.
go back to reference Pelham Jr WE, Fabiano GA. Evidence-based psychosocial treatments for attention-deficit/hyperactivity disorder. J Clin Child Adolesc Psychol. 2008;37:184–214.PubMed Pelham Jr WE, Fabiano GA. Evidence-based psychosocial treatments for attention-deficit/hyperactivity disorder. J Clin Child Adolesc Psychol. 2008;37:184–214.PubMed
9.
go back to reference Sanchez RJ, Crismon ML, Barner JC, et al. Assessment of adherence measures with different stimulants among children and adolescents. Pharmacotherapy. 2005;25:909–17.PubMedCrossRef Sanchez RJ, Crismon ML, Barner JC, et al. Assessment of adherence measures with different stimulants among children and adolescents. Pharmacotherapy. 2005;25:909–17.PubMedCrossRef
10.
go back to reference Perwien A, Hall J, Swensen A, et al. Stimulant treatment patterns and compliance in children and adults with newly treated attention-deficit/hyperactivity disorder. J Manag Care Pharm. 2004;10:122–9.PubMed Perwien A, Hall J, Swensen A, et al. Stimulant treatment patterns and compliance in children and adults with newly treated attention-deficit/hyperactivity disorder. J Manag Care Pharm. 2004;10:122–9.PubMed
11.
go back to reference Molina BS, Hinshaw SP, Swanson JM, et al. The MTA at 8years: prospective follow-up of children treated for combined-type ADHD in a multisite study. J Am Acad Child Adolesc Psychiatry. 2009;48:484–500.PubMedCrossRef Molina BS, Hinshaw SP, Swanson JM, et al. The MTA at 8years: prospective follow-up of children treated for combined-type ADHD in a multisite study. J Am Acad Child Adolesc Psychiatry. 2009;48:484–500.PubMedCrossRef
12.
go back to reference Shaw P, Eckstrand K, Sharp W, et al. Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc Natl Acad Sci U S A. 2007;104:19649–54.PubMedCrossRef Shaw P, Eckstrand K, Sharp W, et al. Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc Natl Acad Sci U S A. 2007;104:19649–54.PubMedCrossRef
13.
go back to reference Giedd JN, Rapoport JL. Structural MRI of pediatric brain development: what have we learned and where are we going? Neuron. 2010;67:728–34.PubMedCrossRef Giedd JN, Rapoport JL. Structural MRI of pediatric brain development: what have we learned and where are we going? Neuron. 2010;67:728–34.PubMedCrossRef
14.
go back to reference Halperin JM, Schulz KP. Revisiting the role of the prefrontal cortex in the pathophysiology of attention-deficit/hyperactivity disorder. Psychol Bull. 2006;132:560–81.PubMedCrossRef Halperin JM, Schulz KP. Revisiting the role of the prefrontal cortex in the pathophysiology of attention-deficit/hyperactivity disorder. Psychol Bull. 2006;132:560–81.PubMedCrossRef
15.
go back to reference Bedard AC, Trampush JW, Newcorn JH, et al. Perceptual and motor inhibition in adolescents/young adults with childhood-diagnosed ADHD. Neuropsychology. 2010;24:424–34.PubMedCrossRef Bedard AC, Trampush JW, Newcorn JH, et al. Perceptual and motor inhibition in adolescents/young adults with childhood-diagnosed ADHD. Neuropsychology. 2010;24:424–34.PubMedCrossRef
16.
go back to reference Halperin JM, Trampush JW, Miller CJ, et al. Neuropsychological outcome in adolescents/young adults with childhood ADHD: profiles of persisters, remitters and controls. J Child Psychol Psychiatry. 2008;49:958–66.PubMedCrossRef Halperin JM, Trampush JW, Miller CJ, et al. Neuropsychological outcome in adolescents/young adults with childhood ADHD: profiles of persisters, remitters and controls. J Child Psychol Psychiatry. 2008;49:958–66.PubMedCrossRef
17.
go back to reference Shaw P, Lerch J, Greenstein D, et al. Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry. 2006;63:540–9.PubMedCrossRef Shaw P, Lerch J, Greenstein D, et al. Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry. 2006;63:540–9.PubMedCrossRef
18.
go back to reference Schulz KP, Newcorn JH, Fan J, et al. Brain activation gradients in ventrolateral prefrontal cortex related to persistence of ADHD in adolescence. J Am Acad Child Adolesc Psychiatry. 2005;44:47–54.PubMedCrossRef Schulz KP, Newcorn JH, Fan J, et al. Brain activation gradients in ventrolateral prefrontal cortex related to persistence of ADHD in adolescence. J Am Acad Child Adolesc Psychiatry. 2005;44:47–54.PubMedCrossRef
19.
go back to reference •• Halperin JM, Healey DM. The influences of environmental enrichment, cognitive enhancement, and physical exercise on brain development: can we alter the developmental trajectory of ADHD? Neurosci Biobehav Rev. 2011;35:621–34. This review examines the emerging literature on the underlying neural determinants of ADHD, along with research demonstrating powerful influences of environmental factors on brain development and functioning. Based on these largely distinct scientific literatures, the authors propose an approach that employs directed play and physical exercise to promote brain growth, which, in turn, could lead to the development of potentially more enduring treatments for the disorder. PubMedCrossRef •• Halperin JM, Healey DM. The influences of environmental enrichment, cognitive enhancement, and physical exercise on brain development: can we alter the developmental trajectory of ADHD? Neurosci Biobehav Rev. 2011;35:621–34. This review examines the emerging literature on the underlying neural determinants of ADHD, along with research demonstrating powerful influences of environmental factors on brain development and functioning. Based on these largely distinct scientific literatures, the authors propose an approach that employs directed play and physical exercise to promote brain growth, which, in turn, could lead to the development of potentially more enduring treatments for the disorder. PubMedCrossRef
20.
go back to reference Sonuga-Barke EJ, Halperin JM. Developmental phenotypes and causal pathways in attention deficit/hyperactivity disorder: potential targets for early intervention? J Child Psychol Psychiatry. 2010;51:368–89.PubMedCrossRef Sonuga-Barke EJ, Halperin JM. Developmental phenotypes and causal pathways in attention deficit/hyperactivity disorder: potential targets for early intervention? J Child Psychol Psychiatry. 2010;51:368–89.PubMedCrossRef
21.
22.
go back to reference Klingberg T, Forssberg H, Westerberg H. Training of working memory in children with adhd. J Clin Exp Neuropsychol. 2002;24:781–91.PubMedCrossRef Klingberg T, Forssberg H, Westerberg H. Training of working memory in children with adhd. J Clin Exp Neuropsychol. 2002;24:781–91.PubMedCrossRef
23.
go back to reference Klingberg T, Fernell E, Olesen PJ, et al. Computerized training of working memory in children with adhd–a randomized, controlled trial. J Am Acad Child Adolesc Psychiatry. 2005;44:177–86.PubMedCrossRef Klingberg T, Fernell E, Olesen PJ, et al. Computerized training of working memory in children with adhd–a randomized, controlled trial. J Am Acad Child Adolesc Psychiatry. 2005;44:177–86.PubMedCrossRef
24.
go back to reference Halperin JM, Marks DJ, Bedard AC, et al. Training executive, attention, and motor skills: a proof-of-concept study in preschool children with ADHD. J Atten Disord. 2012. doi:10.1177/1087054711435681. Halperin JM, Marks DJ, Bedard AC, et al. Training executive, attention, and motor skills: a proof-of-concept study in preschool children with ADHD. J Atten Disord. 2012. doi:10.​1177/​1087054711435681​.
25.
go back to reference Tamm L, McCandless BD, Liang A, et al. Can attention itself be trained? attention training for children at-risk for adhd. In: McBurnett K, Pfiffner L, editors. Attention deficit hyperactivity disorder: concepts, controversies and new directions. New York: Informa Healthcare; 2008. p. 397–407. Tamm L, McCandless BD, Liang A, et al. Can attention itself be trained? attention training for children at-risk for adhd. In: McBurnett K, Pfiffner L, editors. Attention deficit hyperactivity disorder: concepts, controversies and new directions. New York: Informa Healthcare; 2008. p. 397–407.
26.
go back to reference Toplak ME, Connors L, Shuster J, et al. Review of cognitive, cognitive-behavioral, and neural-based interventions for attention-deficit/hyperactivity disorder (ADHD). Clin Psychol Rev. 2008;28:801–23.PubMedCrossRef Toplak ME, Connors L, Shuster J, et al. Review of cognitive, cognitive-behavioral, and neural-based interventions for attention-deficit/hyperactivity disorder (ADHD). Clin Psychol Rev. 2008;28:801–23.PubMedCrossRef
27.
28.
go back to reference Audiffren M. Acute exercise and psychological functions: a cognitive-energetic approach. In: McMorris T, Tomporowski PD, Audiffren M, editors. Exercise and cognitive function. Chichester: John Wiley & Sons; 2009. p. 3–39. Audiffren M. Acute exercise and psychological functions: a cognitive-energetic approach. In: McMorris T, Tomporowski PD, Audiffren M, editors. Exercise and cognitive function. Chichester: John Wiley & Sons; 2009. p. 3–39.
29.
go back to reference Vaynman S, Gomez-Pinilla F. Revenge of the "sit": how lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity. J Neurosci Res. 2006;84:699–715.PubMedCrossRef Vaynman S, Gomez-Pinilla F. Revenge of the "sit": how lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity. J Neurosci Res. 2006;84:699–715.PubMedCrossRef
30.
go back to reference van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci. 1999;2:266–70.PubMedCrossRef van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci. 1999;2:266–70.PubMedCrossRef
31.
go back to reference Bobinski F, Martins DF, Bratti T, et al. Neuroprotective and neuroregenerative effects of low-intensity aerobic exercise on sciatic nerve crush injury in mice. Neuroscience. 2011;194:337–48.PubMedCrossRef Bobinski F, Martins DF, Bratti T, et al. Neuroprotective and neuroregenerative effects of low-intensity aerobic exercise on sciatic nerve crush injury in mice. Neuroscience. 2011;194:337–48.PubMedCrossRef
32.
go back to reference Ding YH, Li J, Zhou Y, et al. Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Curr Neurovasc Res. 2006;3:15–23.PubMedCrossRef Ding YH, Li J, Zhou Y, et al. Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Curr Neurovasc Res. 2006;3:15–23.PubMedCrossRef
33.
go back to reference Swain RA, Harris AB, Wiener EC, et al. Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience. 2003;117:1037–46.PubMedCrossRef Swain RA, Harris AB, Wiener EC, et al. Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience. 2003;117:1037–46.PubMedCrossRef
34.
go back to reference Cotman CW, Berchtold NC, Christie LA. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 2007;30:464–72.PubMedCrossRef Cotman CW, Berchtold NC, Christie LA. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 2007;30:464–72.PubMedCrossRef
35.
36.
go back to reference Ding Q, Vaynman S, Souda P, et al. Exercise affects energy metabolism and neural plasticity-related proteins in the hippocampus as revealed by proteomic analysis. Eur J Neurosci. 2006;24:1265–76.PubMedCrossRef Ding Q, Vaynman S, Souda P, et al. Exercise affects energy metabolism and neural plasticity-related proteins in the hippocampus as revealed by proteomic analysis. Eur J Neurosci. 2006;24:1265–76.PubMedCrossRef
37.
go back to reference Tong L, Shen H, Perreau VM, et al. Effects of exercise on gene-expression profile in the rat hippocampus. Neurobiol Dis. 2001;8:1046–56.PubMedCrossRef Tong L, Shen H, Perreau VM, et al. Effects of exercise on gene-expression profile in the rat hippocampus. Neurobiol Dis. 2001;8:1046–56.PubMedCrossRef
38.
go back to reference Vaynman SS, Ying Z, Yin D, et al. Exercise differentially regulates synaptic proteins associated to the function of BDNF. Brain Res. 2006;1070:124–30.PubMedCrossRef Vaynman SS, Ying Z, Yin D, et al. Exercise differentially regulates synaptic proteins associated to the function of BDNF. Brain Res. 2006;1070:124–30.PubMedCrossRef
39.
go back to reference Farmer J, Zhao X, van Praag H, et al. Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience. 2004;124:71–9.PubMedCrossRef Farmer J, Zhao X, van Praag H, et al. Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience. 2004;124:71–9.PubMedCrossRef
40.
go back to reference Berchtold NC, Chinn G, Chou M, et al. Exercise primes a molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus. Neuroscience. 2005;133:853–61.PubMedCrossRef Berchtold NC, Chinn G, Chou M, et al. Exercise primes a molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus. Neuroscience. 2005;133:853–61.PubMedCrossRef
41.
go back to reference Trejo JL, Carro E, Torres-Aleman I. Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci. 2001;21:1628–34.PubMed Trejo JL, Carro E, Torres-Aleman I. Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci. 2001;21:1628–34.PubMed
42.
go back to reference Bailey SP, Davis JM, Ahlborn EN. Neuroendocrine and substrate responses to altered brain 5-HT activity during prolonged exercise to fatigue. J Appl Physiol. 1993;74:3006–12.PubMed Bailey SP, Davis JM, Ahlborn EN. Neuroendocrine and substrate responses to altered brain 5-HT activity during prolonged exercise to fatigue. J Appl Physiol. 1993;74:3006–12.PubMed
43.
go back to reference Elam M, Svensson TH, Thoren P. Brain monoamine metabolism is altered in rats following spontaneous, long-distance running. Acta Physiol Scand. 1987;130:313–6.PubMedCrossRef Elam M, Svensson TH, Thoren P. Brain monoamine metabolism is altered in rats following spontaneous, long-distance running. Acta Physiol Scand. 1987;130:313–6.PubMedCrossRef
44.
go back to reference Fordyce DE, Farrar RP. Physical activity effects on hippocampal and parietal cortical cholinergic function and spatial learning in F344 rats. Behav Brain Res. 1991;43:115–23.PubMedCrossRef Fordyce DE, Farrar RP. Physical activity effects on hippocampal and parietal cortical cholinergic function and spatial learning in F344 rats. Behav Brain Res. 1991;43:115–23.PubMedCrossRef
45.
go back to reference Fordyce DE, Wehner JM. Effects of aging on spatial learning and hippocampal protein kinase C in mice. Neurobiol Aging. 1993;14:309–17.PubMedCrossRef Fordyce DE, Wehner JM. Effects of aging on spatial learning and hippocampal protein kinase C in mice. Neurobiol Aging. 1993;14:309–17.PubMedCrossRef
46.
go back to reference Samorajski T, Delaney C, Durham L, et al. Effect of exercise on longevity, body weight, locomotor performance, and passive-avoidance memory of C57BL/6J mice. Neurobiol Aging. 1985;6:17–24.PubMedCrossRef Samorajski T, Delaney C, Durham L, et al. Effect of exercise on longevity, body weight, locomotor performance, and passive-avoidance memory of C57BL/6J mice. Neurobiol Aging. 1985;6:17–24.PubMedCrossRef
47.
go back to reference Colcombe SJ, Kramer AF, Erickson KI, et al. Cardiovascular fitness, cortical plasticity, and aging. Proc Natl Acad Sci U S A. 2004;101:3316–21.PubMedCrossRef Colcombe SJ, Kramer AF, Erickson KI, et al. Cardiovascular fitness, cortical plasticity, and aging. Proc Natl Acad Sci U S A. 2004;101:3316–21.PubMedCrossRef
48.
go back to reference Kramer AF, Erickson KI, Colcombe SJ. Exercise, cognition, and the aging brain. J Appl Physiol. 2006;101:1237–42.PubMedCrossRef Kramer AF, Erickson KI, Colcombe SJ. Exercise, cognition, and the aging brain. J Appl Physiol. 2006;101:1237–42.PubMedCrossRef
49.
go back to reference Colcombe SJ, Erickson KI, Scalf PE, et al. Aerobic exercise training increases brain volume in aging humans. J Gerontol (A Biol Sci Med Sci). 2006;61:1166–70.CrossRef Colcombe SJ, Erickson KI, Scalf PE, et al. Aerobic exercise training increases brain volume in aging humans. J Gerontol (A Biol Sci Med Sci). 2006;61:1166–70.CrossRef
50.
go back to reference Peyrin L, Pequignot JM, Lacour JR, et al. Relationships between catecholamine or 3-methoxy 4-hydroxy phenylglycol changes and the mental performance under submaximal exercise in man. Psychopharmacology. 1987;93:188–92.PubMedCrossRef Peyrin L, Pequignot JM, Lacour JR, et al. Relationships between catecholamine or 3-methoxy 4-hydroxy phenylglycol changes and the mental performance under submaximal exercise in man. Psychopharmacology. 1987;93:188–92.PubMedCrossRef
51.
go back to reference Querido JS, Sheel AW. Regulation of cerebral blood flow during exercise. Sports Med. 2007;37:765–82.PubMedCrossRef Querido JS, Sheel AW. Regulation of cerebral blood flow during exercise. Sports Med. 2007;37:765–82.PubMedCrossRef
52.
go back to reference Ferris LT, Williams JS, Shen CL. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med Sci Sports Exerc. 2007;39:728–34.PubMedCrossRef Ferris LT, Williams JS, Shen CL. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med Sci Sports Exerc. 2007;39:728–34.PubMedCrossRef
53.
go back to reference Gold SM, Schulz KH, Hartmann S, et al. Basal serum levels and reactivity of nerve growth factor and brain-derived neurotrophic factor to standardized acute exercise in multiple sclerosis and controls. J Neuroimmunol. 2003;138:99–105.PubMedCrossRef Gold SM, Schulz KH, Hartmann S, et al. Basal serum levels and reactivity of nerve growth factor and brain-derived neurotrophic factor to standardized acute exercise in multiple sclerosis and controls. J Neuroimmunol. 2003;138:99–105.PubMedCrossRef
54.
go back to reference Rasmussen P, Brassard P, Adser H, et al. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol. 2009;94:1062–9.PubMedCrossRef Rasmussen P, Brassard P, Adser H, et al. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol. 2009;94:1062–9.PubMedCrossRef
55.
go back to reference Seifert T, Brassard P, Wissenberg M, et al. Endurance training enhances BDNF release from the human brain. Am J Physiol Regul Integr Comp Physiol. 2010;298:R372–7.PubMedCrossRef Seifert T, Brassard P, Wissenberg M, et al. Endurance training enhances BDNF release from the human brain. Am J Physiol Regul Integr Comp Physiol. 2010;298:R372–7.PubMedCrossRef
56.
go back to reference Strohle A, Stoy M, Graetz B, et al. Acute exercise ameliorates reduced brain-derived neurotrophic factor in patients with panic disorder. Psychoneuroendocrinology. 2010;35:364–8.PubMedCrossRef Strohle A, Stoy M, Graetz B, et al. Acute exercise ameliorates reduced brain-derived neurotrophic factor in patients with panic disorder. Psychoneuroendocrinology. 2010;35:364–8.PubMedCrossRef
57.
go back to reference Tang SW, Chu E, Hui T, et al. Influence of exercise on serum brain-derived neurotrophic factor concentrations in healthy human subjects. Neurosci Lett. 2008;431:62–5.PubMedCrossRef Tang SW, Chu E, Hui T, et al. Influence of exercise on serum brain-derived neurotrophic factor concentrations in healthy human subjects. Neurosci Lett. 2008;431:62–5.PubMedCrossRef
58.
go back to reference Zoladz JA, Pilc A, Majerczak J, et al. Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men. J Physiol Pharmacol. 2008;59:119–32.PubMed Zoladz JA, Pilc A, Majerczak J, et al. Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men. J Physiol Pharmacol. 2008;59:119–32.PubMed
59.
go back to reference Baker LD, Frank LL, Foster-Schubert K, et al. Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol. 2010;67:71–9.PubMedCrossRef Baker LD, Frank LL, Foster-Schubert K, et al. Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol. 2010;67:71–9.PubMedCrossRef
60.
go back to reference Laurin D, Verreault R, Lindsay J, et al. Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch Neurol. 2001;58:498–504.PubMedCrossRef Laurin D, Verreault R, Lindsay J, et al. Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch Neurol. 2001;58:498–504.PubMedCrossRef
61.
go back to reference Colcombe SJ, Erickson KI, Raz N, et al. Aerobic fitness reduces brain tissue loss in aging humans. J Gerontol (A Biol Sci Med Sci). 2003;58:176–80.CrossRef Colcombe SJ, Erickson KI, Raz N, et al. Aerobic fitness reduces brain tissue loss in aging humans. J Gerontol (A Biol Sci Med Sci). 2003;58:176–80.CrossRef
62.
go back to reference Hyman C, Hofer M, Barde YA, et al. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature. 1991;350:230–2.PubMedCrossRef Hyman C, Hofer M, Barde YA, et al. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature. 1991;350:230–2.PubMedCrossRef
63.
go back to reference Knusel B, Winslow JW, Rosenthal A, et al. Promotion of central cholinergic and dopaminergic neuron differentiation by brain-derived neurotrophic factor but not neurotrophin 3. Proc Natl Acad Sci U S A. 1991;88:961–5.PubMedCrossRef Knusel B, Winslow JW, Rosenthal A, et al. Promotion of central cholinergic and dopaminergic neuron differentiation by brain-derived neurotrophic factor but not neurotrophin 3. Proc Natl Acad Sci U S A. 1991;88:961–5.PubMedCrossRef
64.
go back to reference del Campo N, Chamberlain SR, Sahakian BJ, et al. The roles of dopamine and noradrenaline in the pathophysiology and treatment of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2011;69:e145–57.PubMedCrossRef del Campo N, Chamberlain SR, Sahakian BJ, et al. The roles of dopamine and noradrenaline in the pathophysiology and treatment of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2011;69:e145–57.PubMedCrossRef
65.
go back to reference Volkow ND, Wang GJ, Newcorn JH, et al. Motivation deficit in ADHD is associated with dysfunction of the dopamine reward pathway. Mol Psychiatry. 2011;16:1147–54.PubMedCrossRef Volkow ND, Wang GJ, Newcorn JH, et al. Motivation deficit in ADHD is associated with dysfunction of the dopamine reward pathway. Mol Psychiatry. 2011;16:1147–54.PubMedCrossRef
66.
go back to reference Arnsten AF. Fundamentals of attention-deficit/hyperactivity disorder: circuits and pathways. J Clin Psychiatry. 2006;67 Suppl 8:7–12.PubMed Arnsten AF. Fundamentals of attention-deficit/hyperactivity disorder: circuits and pathways. J Clin Psychiatry. 2006;67 Suppl 8:7–12.PubMed
67.
go back to reference Shim SH, Hwangbo Y, Kwon YJ, et al. Increased levels of plasma brain-derived neurotrophic factor (BDNF) in children with attention deficit-hyperactivity disorder (ADHD). Prog Neuropsychopharmacol Biol Psych. 2008;32:1824–8.CrossRef Shim SH, Hwangbo Y, Kwon YJ, et al. Increased levels of plasma brain-derived neurotrophic factor (BDNF) in children with attention deficit-hyperactivity disorder (ADHD). Prog Neuropsychopharmacol Biol Psych. 2008;32:1824–8.CrossRef
68.
go back to reference Meredith G, Callen S, Scheuer DA. Brain-derived neurotrophic factor expression is increased in the rat amygdala, piriform cortex and hypothalamus following repeated amphetamine administration. Brain Res. 2002;949:218–27.PubMedCrossRef Meredith G, Callen S, Scheuer DA. Brain-derived neurotrophic factor expression is increased in the rat amygdala, piriform cortex and hypothalamus following repeated amphetamine administration. Brain Res. 2002;949:218–27.PubMedCrossRef
69.
go back to reference Fumagalli F, Cattaneo A, Caffino L, et al. Sub-chronic exposure to atomoxetine up-regulates BDNF expression and signalling in the brain of adolescent spontaneously hypertensive rats: comparison with methylphenidate. Pharmacol Res. 2010;62:523–9.PubMedCrossRef Fumagalli F, Cattaneo A, Caffino L, et al. Sub-chronic exposure to atomoxetine up-regulates BDNF expression and signalling in the brain of adolescent spontaneously hypertensive rats: comparison with methylphenidate. Pharmacol Res. 2010;62:523–9.PubMedCrossRef
70.
go back to reference Tsai SJ. Attention-deficit hyperactivity disorder may be associated with decreased central brain-derived neurotrophic factor activity: clinical and therapeutic implications. Med Hypotheses. 2007;68:896–9.PubMedCrossRef Tsai SJ. Attention-deficit hyperactivity disorder may be associated with decreased central brain-derived neurotrophic factor activity: clinical and therapeutic implications. Med Hypotheses. 2007;68:896–9.PubMedCrossRef
71.
go back to reference Chaddock L, Erickson KI, Prakash RS, et al. A functional MRI investigation of the association between childhood aerobic fitness and neurocognitive control. Biol Psychol. 2012;89:260–8.PubMedCrossRef Chaddock L, Erickson KI, Prakash RS, et al. A functional MRI investigation of the association between childhood aerobic fitness and neurocognitive control. Biol Psychol. 2012;89:260–8.PubMedCrossRef
72.
go back to reference Voss MW, Chaddock L, Kim JS, et al. Aerobic fitness is associated with greater efficiency of the network underlying cognitive control in preadolescent children. Neuroscience. 2011;199:166–76.PubMedCrossRef Voss MW, Chaddock L, Kim JS, et al. Aerobic fitness is associated with greater efficiency of the network underlying cognitive control in preadolescent children. Neuroscience. 2011;199:166–76.PubMedCrossRef
73.
go back to reference Wu CT, Pontifex MB, Raine LB, et al. Aerobic fitness and response variability in preadolescent children performing a cognitive control task. Neuropsychology. 2011;25:333–41.PubMedCrossRef Wu CT, Pontifex MB, Raine LB, et al. Aerobic fitness and response variability in preadolescent children performing a cognitive control task. Neuropsychology. 2011;25:333–41.PubMedCrossRef
74.
go back to reference Hillman CH, Kamijo K, Scudder M. A review of chronic and acute physical activity participation on neuroelectric measures of brain health and cognition during childhood. Prev Med. 2011;52 Suppl 1:S21–8.PubMedCrossRef Hillman CH, Kamijo K, Scudder M. A review of chronic and acute physical activity participation on neuroelectric measures of brain health and cognition during childhood. Prev Med. 2011;52 Suppl 1:S21–8.PubMedCrossRef
75.
go back to reference Kamijo K, Pontifex MB, O'Leary KC, et al. The effects of an afterschool physical activity program on working memory in preadolescent children. Dev Sci. 2011;14:1046–58.PubMedCrossRef Kamijo K, Pontifex MB, O'Leary KC, et al. The effects of an afterschool physical activity program on working memory in preadolescent children. Dev Sci. 2011;14:1046–58.PubMedCrossRef
76.
go back to reference Hillman CH, Buck SM, Themanson JR, et al. Aerobic fitness and cognitive development: Event-related brain potential and task performance indices of executive control in preadolescent children. Dev Psychol. 2009;45:114–29.PubMedCrossRef Hillman CH, Buck SM, Themanson JR, et al. Aerobic fitness and cognitive development: Event-related brain potential and task performance indices of executive control in preadolescent children. Dev Psychol. 2009;45:114–29.PubMedCrossRef
77.
go back to reference Centers for Disease Control and Prevention. The association between school-based physical activity, including physical education, and academic performance, (Atlanta, GA). 2010. Centers for Disease Control and Prevention. The association between school-based physical activity, including physical education, and academic performance, (Atlanta, GA). 2010.
78.
go back to reference Best JR. Effects of physical activity on children's executive function: contributions of experimental research on aerobic exercise. Dev Rev. 2010;30:331–551.PubMedCrossRef Best JR. Effects of physical activity on children's executive function: contributions of experimental research on aerobic exercise. Dev Rev. 2010;30:331–551.PubMedCrossRef
79.
go back to reference Barenberg J, Berse T, Dutke S. Executive functions in learning processes: do they benefit from physical activity? Educ Res Rev. 2011;6:208–22.CrossRef Barenberg J, Berse T, Dutke S. Executive functions in learning processes: do they benefit from physical activity? Educ Res Rev. 2011;6:208–22.CrossRef
80.
go back to reference Tomporowski PD, Davis CL, Miller PH, et al. Exercise and children's intelligence, cognition, and academic achievement. Educ Psychol Rev. 2008;20:111–31.PubMedCrossRef Tomporowski PD, Davis CL, Miller PH, et al. Exercise and children's intelligence, cognition, and academic achievement. Educ Psychol Rev. 2008;20:111–31.PubMedCrossRef
81.
go back to reference • Best JR. Exergaming immediately enhances children's executive function. Dev Psychol. 2011. This study is notable for its well-contrived experimental design to determine whether cognitive engagement during exercise (using video-games as a medium) interacts or adds to the cognitive benefits of acute exercise in typically developing school-age children. • Best JR. Exergaming immediately enhances children's executive function. Dev Psychol. 2011. This study is notable for its well-contrived experimental design to determine whether cognitive engagement during exercise (using video-games as a medium) interacts or adds to the cognitive benefits of acute exercise in typically developing school-age children.
82.
go back to reference • Davis CL, Tomporowski PD, McDowell JE, et al. Exercise improves executive function and achievement and alters brain activation in overweight children: a randomized, controlled trial. Health Psychol. 2011;30:91–8. This is the first study to examine the impact of physical exercise on the brain activation of children using fMRI PubMedCrossRef • Davis CL, Tomporowski PD, McDowell JE, et al. Exercise improves executive function and achievement and alters brain activation in overweight children: a randomized, controlled trial. Health Psychol. 2011;30:91–8. This is the first study to examine the impact of physical exercise on the brain activation of children using fMRI PubMedCrossRef
83.
go back to reference Ellemberg D, St-Louis-Deschenes M. The effect of acute physical exercise on cognitive function during development. Psychol Sport Exerc. 2010;11:122–6.CrossRef Ellemberg D, St-Louis-Deschenes M. The effect of acute physical exercise on cognitive function during development. Psychol Sport Exerc. 2010;11:122–6.CrossRef
84.
go back to reference Fisher A, Boyle JM, Paton JY, et al. Effects of a physical education intervention on cognitive function in young children: randomized controlled pilot study. BMC Pediatr. 2011;11:97.PubMedCrossRef Fisher A, Boyle JM, Paton JY, et al. Effects of a physical education intervention on cognitive function in young children: randomized controlled pilot study. BMC Pediatr. 2011;11:97.PubMedCrossRef
85.
go back to reference Hill LJ, Williams JH, Aucott L, et al. How does exercise benefit performance on cognitive tests in primary-school pupils? Dev Med Child Neurol. 2011;53:630–5.PubMedCrossRef Hill LJ, Williams JH, Aucott L, et al. How does exercise benefit performance on cognitive tests in primary-school pupils? Dev Med Child Neurol. 2011;53:630–5.PubMedCrossRef
87.
go back to reference Castelli DM, Hillman CH, Hirsch J, et al. FIT Kids: time in target heart zone and cognitive performance. Prev Med. 2011;52 Suppl 1:S55–9.PubMedCrossRef Castelli DM, Hillman CH, Hirsch J, et al. FIT Kids: time in target heart zone and cognitive performance. Prev Med. 2011;52 Suppl 1:S55–9.PubMedCrossRef
88.
go back to reference Trudeau F, Shephard RJ. Relationships of physical activity to brain health and the academic performance of schoolchildren. Am J Lifestyle Med. 2010;4:138–50.CrossRef Trudeau F, Shephard RJ. Relationships of physical activity to brain health and the academic performance of schoolchildren. Am J Lifestyle Med. 2010;4:138–50.CrossRef
89.
go back to reference Kibbe DL, Hackett J, Hurley M, et al. Ten years of TAKE 10!((R)): integrating physical activity with academic concepts in elementary school classrooms. Prev Med. 2011;52 Suppl 1:S43–50.PubMedCrossRef Kibbe DL, Hackett J, Hurley M, et al. Ten years of TAKE 10!((R)): integrating physical activity with academic concepts in elementary school classrooms. Prev Med. 2011;52 Suppl 1:S43–50.PubMedCrossRef
90.
go back to reference Mahar MT. Impact of short bouts of physical activity on attention-to-task in elementary school children. Prev Med. 2011;52 Suppl 1:S60–4.PubMedCrossRef Mahar MT. Impact of short bouts of physical activity on attention-to-task in elementary school children. Prev Med. 2011;52 Suppl 1:S60–4.PubMedCrossRef
91.
go back to reference Mahar MT, Murphy SK, Rowe DA, et al. Effects of a classroom-based program on physical activity and on-task behavior. Med Sci Sports Exerc. 2006;38:2086–94.PubMedCrossRef Mahar MT, Murphy SK, Rowe DA, et al. Effects of a classroom-based program on physical activity and on-task behavior. Med Sci Sports Exerc. 2006;38:2086–94.PubMedCrossRef
92.
go back to reference Allison DB, Faith MS, Franklin RD. Antecedent exercise in the treatment of disruptive behavior: a meta-analytic review. Clin Psychol Sci Pract. 1995;2:279–304.CrossRef Allison DB, Faith MS, Franklin RD. Antecedent exercise in the treatment of disruptive behavior: a meta-analytic review. Clin Psychol Sci Pract. 1995;2:279–304.CrossRef
93.
go back to reference Wilens TE, Biederman J, Spencer TJ. Attention deficit/hyperactivity disorder across the lifespan. Annu Rev Med. 2002;53:113–31.PubMedCrossRef Wilens TE, Biederman J, Spencer TJ. Attention deficit/hyperactivity disorder across the lifespan. Annu Rev Med. 2002;53:113–31.PubMedCrossRef
94.
go back to reference Tomporowski PD. Effects of acute bouts of exercise on cognition. Acta Psychol, (Amst). 2003;112:297–324.CrossRef Tomporowski PD. Effects of acute bouts of exercise on cognition. Acta Psychol, (Amst). 2003;112:297–324.CrossRef
95.
go back to reference Gapin JI, Labban JD, Etnier JL. The effects of physical activity on attention deficit hyperactivity disorder symptoms: the evidence. Prev Med. 2011;52 Suppl 1:S70–4.PubMedCrossRef Gapin JI, Labban JD, Etnier JL. The effects of physical activity on attention deficit hyperactivity disorder symptoms: the evidence. Prev Med. 2011;52 Suppl 1:S70–4.PubMedCrossRef
96.
go back to reference Verret C, Guay MC, Berthiaume C, et al. A physical activity program improves behavior and cognitive functions in children with ADHD: an exploratory study. J Atten Disord. 2012;16:71–80.PubMedCrossRef Verret C, Guay MC, Berthiaume C, et al. A physical activity program improves behavior and cognitive functions in children with ADHD: an exploratory study. J Atten Disord. 2012;16:71–80.PubMedCrossRef
97.
98.
go back to reference Medina JA, Netto TL, Muszkat M, et al. Exercise impact on sustained attention of ADHD children, methylphenidate effects. Atten Defic Hyperact Disord. 2010;2:49–58.PubMedCrossRef Medina JA, Netto TL, Muszkat M, et al. Exercise impact on sustained attention of ADHD children, methylphenidate effects. Atten Defic Hyperact Disord. 2010;2:49–58.PubMedCrossRef
99.
go back to reference Gapin J, Etnier JL. The relationship between physical activity and executive function performance in children with attention-deficit hyperactivity disorder. J Sport Exerc Psychol. 2010;32:753–63.PubMed Gapin J, Etnier JL. The relationship between physical activity and executive function performance in children with attention-deficit hyperactivity disorder. J Sport Exerc Psychol. 2010;32:753–63.PubMed
100.
go back to reference Chang YK, Liu S, Yu HH, et al. Effect of acute exercise on executive function in children with attention deficit hyperactivity disorder. Arch Clin Neuropsychol. 2012;27:225–37.PubMedCrossRef Chang YK, Liu S, Yu HH, et al. Effect of acute exercise on executive function in children with attention deficit hyperactivity disorder. Arch Clin Neuropsychol. 2012;27:225–37.PubMedCrossRef
Metadata
Title
Emerging Support for a Role of Exercise in Attention-Deficit/Hyperactivity Disorder Intervention Planning
Authors
Olga G. Berwid
Jeffrey M. Halperin
Publication date
01-10-2012
Publisher
Current Science Inc.
Published in
Current Psychiatry Reports / Issue 5/2012
Print ISSN: 1523-3812
Electronic ISSN: 1535-1645
DOI
https://doi.org/10.1007/s11920-012-0297-4

Other articles of this Issue 5/2012

Current Psychiatry Reports 5/2012 Go to the issue

Substance Use and Related Disorders (JR McKay, Section Editor)

Management of Pain With Comorbid Substance Abuse

Substance Use and Related Disorders (JR McKay, Section Editor)

Personalized Treatment of Alcohol Dependence