Skip to main content
Top
Published in: Current Oncology Reports 8/2023

02-05-2023 | Melanoma

Intratumoral Immunotherapy: Is It Ready for Prime Time?

Authors: Mario Ghosn, Lambros Tselikas, Stéphane Champiat, Frederic Deschamps, Baptiste Bonnet, Émilie Carre, Marine Testan, François-Xavier Danlos, Siham Farhane, Sandrine Susini, Steve Suzzoni, Samy Ammari, Aurélien Marabelle, Thierry De Baere

Published in: Current Oncology Reports | Issue 8/2023

Login to get access

Abstract

Purpose of Review

This review presents the rationale for intratumoral immunotherapy, technical considerations and safety. Clinical results from the latest trials are provided and discussed.

Recent Findings

Intratumoral immunotherapy is feasible and safe in a wide range of cancer histologies and locations, including lung and liver. Studies mainly focused on multi-metastatic patients, with some positive trials such as T-VEC in melanoma, but evidence of clinical benefit is still lacking. Recent results showed improved outcomes in patients with a low tumor burden.

Summary

Intratumoral immunotherapy can lower systemic toxicities and boost local and systemic immune responses. Several studies have proven the feasibility, repeatability, and safety of this approach, with some promising results in clinical trials. The clinical benefit might be improved in patients with a low tumor burden. Future clinical trials should focus on adequate timing of treatment delivery during the course of the disease, particularly in the neoadjuvant setting.
Literature
1.
go back to reference Larkin J, Chiarion-Sileni V, Gonzalez R, Grob J-J, Rutkowski P, Lao CD, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2019;381:1535–46.PubMedCrossRef Larkin J, Chiarion-Sileni V, Gonzalez R, Grob J-J, Rutkowski P, Lao CD, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2019;381:1535–46.PubMedCrossRef
2.
go back to reference Hellmann MD, Paz-Ares L, Bernabe Caro R, Zurawski B, Kim S-W, Carcereny Costa E, et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N Engl J Med. 2019;381:2020–31.PubMedCrossRef Hellmann MD, Paz-Ares L, Bernabe Caro R, Zurawski B, Kim S-W, Carcereny Costa E, et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N Engl J Med. 2019;381:2020–31.PubMedCrossRef
3.
go back to reference Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim T-Y, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 2020;382:1894–905.PubMedCrossRef Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim T-Y, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 2020;382:1894–905.PubMedCrossRef
4.
go back to reference Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 2018;378:158–68.PubMedCrossRef Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 2018;378:158–68.PubMedCrossRef
5.
go back to reference Verma V, Sprave T, Haque W, Simone CB, Chang JY, Welsh JW, et al. A systematic review of the cost and cost-effectiveness studies of immune checkpoint inhibitors. J Immunother Cancer. 2018;6:128.PubMedPubMedCentralCrossRef Verma V, Sprave T, Haque W, Simone CB, Chang JY, Welsh JW, et al. A systematic review of the cost and cost-effectiveness studies of immune checkpoint inhibitors. J Immunother Cancer. 2018;6:128.PubMedPubMedCentralCrossRef
6.
go back to reference Ramos-Casals M, Brahmer JR, Callahan MK, Flores-Chávez A, Keegan N, Khamashta MA, et al. Immune-related adverse events of checkpoint inhibitors. Nat Rev Dis Primers. 2020;6:38.PubMedPubMedCentralCrossRef Ramos-Casals M, Brahmer JR, Callahan MK, Flores-Chávez A, Keegan N, Khamashta MA, et al. Immune-related adverse events of checkpoint inhibitors. Nat Rev Dis Primers. 2020;6:38.PubMedPubMedCentralCrossRef
7.
go back to reference Coley WB. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc R Soc Med. 1910;3:1–48.PubMedPubMedCentral Coley WB. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc R Soc Med. 1910;3:1–48.PubMedPubMedCentral
8.•
go back to reference Marabelle A, Andtbacka R, Harrington K, Melero I, Leidner R, de Baere T, et al. Starting the fight in the tumor: expert recommendations for the development of human intratumoral immunotherapy (HIT-IT). Ann Oncol. 2018;29:2163–74. In this article, an expert meeting sponsored by the European Society for Medical Oncology provide valuable definitions of terms to be used in intratumoral immunotherapy clinical trials. Important recommendations on data collection methodologies are also provided.PubMedPubMedCentralCrossRef Marabelle A, Andtbacka R, Harrington K, Melero I, Leidner R, de Baere T, et al. Starting the fight in the tumor: expert recommendations for the development of human intratumoral immunotherapy (HIT-IT). Ann Oncol. 2018;29:2163–74. In this article, an expert meeting sponsored by the European Society for Medical Oncology provide valuable definitions of terms to be used in intratumoral immunotherapy clinical trials. Important recommendations on data collection methodologies are also provided.PubMedPubMedCentralCrossRef
9.
go back to reference Marabelle A, Tselikas L, de Baere T, Houot R. Intratumoral immunotherapy: using the tumor as the remedy. Ann Oncol. 2017;28:xii33–43.PubMedCrossRef Marabelle A, Tselikas L, de Baere T, Houot R. Intratumoral immunotherapy: using the tumor as the remedy. Ann Oncol. 2017;28:xii33–43.PubMedCrossRef
10.•
go back to reference Kimura Y, Ghosn M, Cheema W, Adusumilli PS, Solomon SB, Srimathveeralli G. Expanding the role of interventional oncology for advancing precision immunotherapy of solid tumors. Mol Ther Oncolytics. 2022;24:194–204. In this article, authors provide an important overview of the potential role of interventional radiology in immuno-oncology, particularly regarding chimeric antigen receptor T cell therapy.PubMedCrossRef Kimura Y, Ghosn M, Cheema W, Adusumilli PS, Solomon SB, Srimathveeralli G. Expanding the role of interventional oncology for advancing precision immunotherapy of solid tumors. Mol Ther Oncolytics. 2022;24:194–204. In this article, authors provide an important overview of the potential role of interventional radiology in immuno-oncology, particularly regarding chimeric antigen receptor T cell therapy.PubMedCrossRef
11.
go back to reference Vitale I, Shema E, Loi S, Galluzzi L. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat Med. 2021;27:212–24.PubMedCrossRef Vitale I, Shema E, Loi S, Galluzzi L. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat Med. 2021;27:212–24.PubMedCrossRef
12.
13.
go back to reference Sagiv-Barfi I, Czerwinski DK, Levy S, Alam IS, Mayer AT, Gambhir SS, et al. Eradication of spontaneous malignancy by local immunotherapy. Sci Transl Med. 2018;10:eaan488.CrossRef Sagiv-Barfi I, Czerwinski DK, Levy S, Alam IS, Mayer AT, Gambhir SS, et al. Eradication of spontaneous malignancy by local immunotherapy. Sci Transl Med. 2018;10:eaan488.CrossRef
14.
15.
go back to reference Shahrouki P, Lee JM, Barclay J, Khan SN, Genshaft S, Abtin F, et al. Technical feasibility and safety of repeated computed tomography-guided transthoracic intratumoral injection of gene-modified cellular immunotherapy in metastatic NSCLC. JTO Clin Res Rep. 2021;2:100242.PubMedPubMedCentral Shahrouki P, Lee JM, Barclay J, Khan SN, Genshaft S, Abtin F, et al. Technical feasibility and safety of repeated computed tomography-guided transthoracic intratumoral injection of gene-modified cellular immunotherapy in metastatic NSCLC. JTO Clin Res Rep. 2021;2:100242.PubMedPubMedCentral
16.
go back to reference Sheth RA, Murthy R, Hong DS, Patel S, Overman MJ, Diab A, et al. Assessment of image-guided intratumoral delivery of immunotherapeutics in patients with cancer. JAMA Netw Open. 2020;3:e207911.PubMedCrossRef Sheth RA, Murthy R, Hong DS, Patel S, Overman MJ, Diab A, et al. Assessment of image-guided intratumoral delivery of immunotherapeutics in patients with cancer. JAMA Netw Open. 2020;3:e207911.PubMedCrossRef
17.
go back to reference Suh RD, Goldin JG, Wallace AB, Sheehan RE, Heinze SB, Gitlitz BJ, et al. Metastatic renal cell carcinoma: CT-guided immunotherapy as a technically feasible and safe approach to delivery of gene therapy for treatment. Radiology. 2004;231:359–64.PubMedCrossRef Suh RD, Goldin JG, Wallace AB, Sheehan RE, Heinze SB, Gitlitz BJ, et al. Metastatic renal cell carcinoma: CT-guided immunotherapy as a technically feasible and safe approach to delivery of gene therapy for treatment. Radiology. 2004;231:359–64.PubMedCrossRef
18.
go back to reference Ghosn M, Cheema W, Zhu A, Livschitz J, Maybody M, Boas FE, et al. Image-guided interventional radiological delivery of chimeric antigen receptor (CAR) T cells for pleural malignancies in a phase I/II clinical trial. Lung Cancer. 2022;165:1–9.PubMedCrossRef Ghosn M, Cheema W, Zhu A, Livschitz J, Maybody M, Boas FE, et al. Image-guided interventional radiological delivery of chimeric antigen receptor (CAR) T cells for pleural malignancies in a phase I/II clinical trial. Lung Cancer. 2022;165:1–9.PubMedCrossRef
19.
go back to reference Waddill W, Wright W, Unger E, Stopeck A, Akporiaye E, Harris D, et al. Human gene therapy for melanoma: CT-guided interstitial injection. AJR Am J Roentgenol. 1997;169:63–7.PubMedCrossRef Waddill W, Wright W, Unger E, Stopeck A, Akporiaye E, Harris D, et al. Human gene therapy for melanoma: CT-guided interstitial injection. AJR Am J Roentgenol. 1997;169:63–7.PubMedCrossRef
20.
go back to reference Tselikas L, Dardenne A, de Baere T, Faron M, Ammari S, Farhane S, et al. Feasibility, safety and efficacy of human intra-tumoral immuno-therapy Gustave Roussy’s initial experience with its first 100 patients. Eur J Cancer. 2022;172:1–12.PubMedCrossRef Tselikas L, Dardenne A, de Baere T, Faron M, Ammari S, Farhane S, et al. Feasibility, safety and efficacy of human intra-tumoral immuno-therapy Gustave Roussy’s initial experience with its first 100 patients. Eur J Cancer. 2022;172:1–12.PubMedCrossRef
21.
go back to reference Tselikas L, Champiat S, Sheth RA, Yevich S, Ammari S, Deschamps F, et al. Interventional radiology for local immunotherapy in oncology. Clin Cancer Res. 2021;27:2698–705.PubMedCrossRef Tselikas L, Champiat S, Sheth RA, Yevich S, Ammari S, Deschamps F, et al. Interventional radiology for local immunotherapy in oncology. Clin Cancer Res. 2021;27:2698–705.PubMedCrossRef
22.•
go back to reference Melero I, Castanon E, Alvarez M, Champiat S, Marabelle A. Intratumoural administration and tumour tissue targeting of cancer immunotherapies. Nat Rev Clin Oncol. 2021;18:558–76. This article presents all currently used immunotherapy agents in intratumoral immunotherapy studies. Rationale and history of intratumoral immunotherapy are also provided.PubMedPubMedCentralCrossRef Melero I, Castanon E, Alvarez M, Champiat S, Marabelle A. Intratumoural administration and tumour tissue targeting of cancer immunotherapies. Nat Rev Clin Oncol. 2021;18:558–76. This article presents all currently used immunotherapy agents in intratumoral immunotherapy studies. Rationale and history of intratumoral immunotherapy are also provided.PubMedPubMedCentralCrossRef
23.
go back to reference Alvarez M, Molina C, De Andrea CE, Fernandez-Sendin M, Villalba M, Gonzalez-Gomariz J, et al. Intratumoral co-injection of the poly I:C-derivative BO-112 and a STING agonist synergize to achieve local and distant anti-tumor efficacy. J Immunother Cancer. 2021;9:e002953.PubMedPubMedCentralCrossRef Alvarez M, Molina C, De Andrea CE, Fernandez-Sendin M, Villalba M, Gonzalez-Gomariz J, et al. Intratumoral co-injection of the poly I:C-derivative BO-112 and a STING agonist synergize to achieve local and distant anti-tumor efficacy. J Immunother Cancer. 2021;9:e002953.PubMedPubMedCentralCrossRef
24.
go back to reference Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016;375:2561–9.PubMedPubMedCentralCrossRef Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016;375:2561–9.PubMedPubMedCentralCrossRef
25.
go back to reference Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis. 2010;30:52–60.PubMedCrossRef Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis. 2010;30:52–60.PubMedCrossRef
26.
go back to reference Gordic S, Corcuera-Solano I, Stueck A, Besa C, Argiriadi P, Guniganti P, et al. Evaluation of HCC response to locoregional therapy: validation of MRI-based response criteria versus explant pathology. J Hepatol. 2017;67:1213–21.PubMedCrossRef Gordic S, Corcuera-Solano I, Stueck A, Besa C, Argiriadi P, Guniganti P, et al. Evaluation of HCC response to locoregional therapy: validation of MRI-based response criteria versus explant pathology. J Hepatol. 2017;67:1213–21.PubMedCrossRef
27.
go back to reference Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50:122S-150S.PubMedCrossRef Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50:122S-150S.PubMedCrossRef
28.
go back to reference Hagemann AR, Cadungog M, Hagemann IS, Hammond R, Adams SF, Chu CS, et al. Tissue-based immune monitoring I: tumor core needle biopsies allow in-depth interrogation of the tumor microenvironment. Cancer Biol Ther. 2011;12:357–66.PubMedPubMedCentralCrossRef Hagemann AR, Cadungog M, Hagemann IS, Hammond R, Adams SF, Chu CS, et al. Tissue-based immune monitoring I: tumor core needle biopsies allow in-depth interrogation of the tumor microenvironment. Cancer Biol Ther. 2011;12:357–66.PubMedPubMedCentralCrossRef
29.
go back to reference Lara OD, Krishnan S, Wang Z, Corvigno S, Zhong Y, Lyons Y, et al. Tumor core biopsies adequately represent immune microenvironment of high-grade serous carcinoma. Sci Rep. 2019;9:17589.PubMedPubMedCentralCrossRef Lara OD, Krishnan S, Wang Z, Corvigno S, Zhong Y, Lyons Y, et al. Tumor core biopsies adequately represent immune microenvironment of high-grade serous carcinoma. Sci Rep. 2019;9:17589.PubMedPubMedCentralCrossRef
30.
go back to reference Muñoz NM, Williams M, Dixon K, Dupuis C, McWatters A, Avritscher R, et al. Influence of injection technique, drug formulation and tumor microenvironment on intratumoral immunotherapy delivery and efficacy. J Immunother Cancer. 2021;9:e001800.PubMedPubMedCentralCrossRef Muñoz NM, Williams M, Dixon K, Dupuis C, McWatters A, Avritscher R, et al. Influence of injection technique, drug formulation and tumor microenvironment on intratumoral immunotherapy delivery and efficacy. J Immunother Cancer. 2021;9:e001800.PubMedPubMedCentralCrossRef
31.
go back to reference Midia M, Odedra D, Shuster A, Midia R, Muir J. Predictors of bleeding complications following percutaneous image-guided liver biopsy: a scoping review. Diagn Interv Radiol. 2019;25:71–80.PubMedPubMedCentralCrossRef Midia M, Odedra D, Shuster A, Midia R, Muir J. Predictors of bleeding complications following percutaneous image-guided liver biopsy: a scoping review. Diagn Interv Radiol. 2019;25:71–80.PubMedPubMedCentralCrossRef
32.
go back to reference Singh AK, Shankar S, Gervais DA, Hahn PF, Mueller PR. Image-guided percutaneous splenic interventions. Radiographics. 2012;32:523–34.PubMedCrossRef Singh AK, Shankar S, Gervais DA, Hahn PF, Mueller PR. Image-guided percutaneous splenic interventions. Radiographics. 2012;32:523–34.PubMedCrossRef
33.
34.
go back to reference Park B-H, Hwang T, Liu T-C, Sze DY, Kim J-S, Kwon H-C, et al. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol. 2008;9:533–42.PubMedCrossRef Park B-H, Hwang T, Liu T-C, Sze DY, Kim J-S, Kwon H-C, et al. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol. 2008;9:533–42.PubMedCrossRef
35.
go back to reference Hamid O, Ismail R, Puzanov I. Intratumoral Immunotherapy-update 2019. Oncologist. 2020;25:e423–38.PubMedCrossRef Hamid O, Ismail R, Puzanov I. Intratumoral Immunotherapy-update 2019. Oncologist. 2020;25:e423–38.PubMedCrossRef
37.
38.
go back to reference Andtbacka RHI, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33:2780–8.PubMedCrossRef Andtbacka RHI, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33:2780–8.PubMedCrossRef
39.••
go back to reference Andtbacka RHI, Collichio F, Harrington KJ, Middleton MR, Downey G, Ӧhrling K, et al. Final analyses of OPTiM: a randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III-IV melanoma. J Immunother Cancer. 2019;7:145. This is the final analysis of the first positive phase III randomized multicenter clinical trial that compared patients with unresectable stage IIIB to IV melanoma that were treated with intralesional TVEC vs. subcutaneous GM-CSF. The trial confirmed improved overall survival in the TVEC arm compared to GM-CSF.PubMedPubMedCentralCrossRef Andtbacka RHI, Collichio F, Harrington KJ, Middleton MR, Downey G, Ӧhrling K, et al. Final analyses of OPTiM: a randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III-IV melanoma. J Immunother Cancer. 2019;7:145. This is the final analysis of the first positive phase III randomized multicenter clinical trial that compared patients with unresectable stage IIIB to IV melanoma that were treated with intralesional TVEC vs. subcutaneous GM-CSF. The trial confirmed improved overall survival in the TVEC arm compared to GM-CSF.PubMedPubMedCentralCrossRef
40.
go back to reference Gogas H. MASTERKEY-265: A phase III, randomized, placebo (Pbo)-controlled study of talimogene laherparepvec (T) plus pembrolizumab (P) for unresectable stage IIIB–IVM1c melanoma (MEL) [Internet]. 2021; Available from: Annals of Oncology (2021) 32 (suppl_5): S867-S905. https://doi.org/10.1016/annonc/annonc706 Gogas H. MASTERKEY-265: A phase III, randomized, placebo (Pbo)-controlled study of talimogene laherparepvec (T) plus pembrolizumab (P) for unresectable stage IIIB–IVM1c melanoma (MEL) [Internet]. 2021; Available from: Annals of Oncology (2021) 32 (suppl_5): S867-S905. https://​doi.​org/​10.​1016/​annonc/​annonc706
41.
go back to reference Karime C, Wang J, Woodhead G, Mody K, Hennemeyer CT, Borad MJ, et al. Tilsotolimod: an investigational synthetic toll-like receptor 9 (TLR9) agonist for the treatment of refractory solid tumors and melanoma. Expert Opin Investig Drugs. 2022;31:1–13.PubMedCrossRef Karime C, Wang J, Woodhead G, Mody K, Hennemeyer CT, Borad MJ, et al. Tilsotolimod: an investigational synthetic toll-like receptor 9 (TLR9) agonist for the treatment of refractory solid tumors and melanoma. Expert Opin Investig Drugs. 2022;31:1–13.PubMedCrossRef
42.
go back to reference Haymaker C, Johnson DH, Murthy R, Bentebibel S-E, Uemura MI, Hudgens CW, et al. Tilsotolimod with ipilimumab drives tumor responses in anti-PD-1 refractory melanoma. Cancer Discov. 2021;11:1996–2013.PubMedPubMedCentralCrossRef Haymaker C, Johnson DH, Murthy R, Bentebibel S-E, Uemura MI, Hudgens CW, et al. Tilsotolimod with ipilimumab drives tumor responses in anti-PD-1 refractory melanoma. Cancer Discov. 2021;11:1996–2013.PubMedPubMedCentralCrossRef
43.
go back to reference Butler MO, Robert C, Negrier S, In GK, Walker JW, Krajsova I, et al. ILLUMINATE 301: A randomized phase 3 study of tilsotolimod in combination with ipilimumab compared with ipilimumab alone in patients with advanced melanoma following progression on or after anti-PD-1 therapy. JCO. 2019;37:TPS9599–TPS9599.CrossRef Butler MO, Robert C, Negrier S, In GK, Walker JW, Krajsova I, et al. ILLUMINATE 301: A randomized phase 3 study of tilsotolimod in combination with ipilimumab compared with ipilimumab alone in patients with advanced melanoma following progression on or after anti-PD-1 therapy. JCO. 2019;37:TPS9599–TPS9599.CrossRef
45.
go back to reference Miura JT, Zager JS. Neo-DREAM study investigating Daromun for the treatment of clinical stage IIIB/C melanoma. Future Oncol. 2019;15:3665–74.PubMedCrossRef Miura JT, Zager JS. Neo-DREAM study investigating Daromun for the treatment of clinical stage IIIB/C melanoma. Future Oncol. 2019;15:3665–74.PubMedCrossRef
47.
go back to reference Oglesby A, Algazi AP, Daud AI. Intratumoral and combination therapy in melanoma and other skin cancers. Am J Clin Dermatol. 2019;20:781–96.PubMedCrossRef Oglesby A, Algazi AP, Daud AI. Intratumoral and combination therapy in melanoma and other skin cancers. Am J Clin Dermatol. 2019;20:781–96.PubMedCrossRef
48.
go back to reference Bhatia S, Miller NJ, Lu H, Longino NV, Ibrani D, Shinohara MM, et al. Intratumoral G100, a TLR4 agonist, induces antitumor immune responses and tumor regression in patients with Merkel cell carcinoma. Clin Cancer Res. 2019;25:1185–95.PubMedCrossRef Bhatia S, Miller NJ, Lu H, Longino NV, Ibrani D, Shinohara MM, et al. Intratumoral G100, a TLR4 agonist, induces antitumor immune responses and tumor regression in patients with Merkel cell carcinoma. Clin Cancer Res. 2019;25:1185–95.PubMedCrossRef
49.
go back to reference Heo J, Reid T, Ruo L, Breitbach CJ, Rose S, Bloomston M, et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med. 2013;19:329–36.PubMedPubMedCentralCrossRef Heo J, Reid T, Ruo L, Breitbach CJ, Rose S, Bloomston M, et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med. 2013;19:329–36.PubMedPubMedCentralCrossRef
50.
go back to reference Moehler M, Heo J, Lee HC, Tak WY, Chao Y, Paik SW, et al. Vaccinia-based oncolytic immunotherapy pexastimogene devacirepvec in patients with advanced hepatocellular carcinoma after sorafenib failure: a randomized multicenter Phase IIb trial (TRAVERSE). Oncoimmunology. 2019;8:1615817.PubMedPubMedCentralCrossRef Moehler M, Heo J, Lee HC, Tak WY, Chao Y, Paik SW, et al. Vaccinia-based oncolytic immunotherapy pexastimogene devacirepvec in patients with advanced hepatocellular carcinoma after sorafenib failure: a randomized multicenter Phase IIb trial (TRAVERSE). Oncoimmunology. 2019;8:1615817.PubMedPubMedCentralCrossRef
51.
go back to reference Abou-Alfa GK, Galle PR, Chao Y, Brown KT, Heo J, Borad MJ, et al. PHOCUS: a phase 3 randomized, open-label study comparing the oncolytic immunotherapy Pexa-Vec followed by sorafenib (SOR) vs SOR in patients with advanced hepatocellular carcinoma (HCC) without prior systemic therapy. JCO. 2016;34:TPS4146–TPS4146.CrossRef Abou-Alfa GK, Galle PR, Chao Y, Brown KT, Heo J, Borad MJ, et al. PHOCUS: a phase 3 randomized, open-label study comparing the oncolytic immunotherapy Pexa-Vec followed by sorafenib (SOR) vs SOR in patients with advanced hepatocellular carcinoma (HCC) without prior systemic therapy. JCO. 2016;34:TPS4146–TPS4146.CrossRef
53.
go back to reference Reig M, Forner A, Rimola J, Ferrer-Fàbrega J, Burrel M, Garcia-Criado Á, et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update. J Hepatol. 2022;76:681–93.PubMedCrossRef Reig M, Forner A, Rimola J, Ferrer-Fàbrega J, Burrel M, Garcia-Criado Á, et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update. J Hepatol. 2022;76:681–93.PubMedCrossRef
54.
go back to reference Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;378:2078–92.PubMedCrossRef Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;378:2078–92.PubMedCrossRef
55.
go back to reference Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375:1823–33.PubMedCrossRef Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375:1823–33.PubMedCrossRef
56.
57.
go back to reference Lee JM, Lee M-H, Garon E, Goldman JW, Salehi-Rad R, Baratelli FE, et al. Phase I trial of intratumoral injection of CCL21 gene-modified dendritic cells in lung cancer elicits tumor-specific immune responses and CD8+ T-cell infiltration. Clin Cancer Res. 2017;23:4556–68.PubMedPubMedCentralCrossRef Lee JM, Lee M-H, Garon E, Goldman JW, Salehi-Rad R, Baratelli FE, et al. Phase I trial of intratumoral injection of CCL21 gene-modified dendritic cells in lung cancer elicits tumor-specific immune responses and CD8+ T-cell infiltration. Clin Cancer Res. 2017;23:4556–68.PubMedPubMedCentralCrossRef
58.
go back to reference Adusumilli PS, Cherkassky L, Villena-Vargas J, Colovos C, Servais E, Plotkin J, et al. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci Transl Med. 2014;6:261ra151.PubMedPubMedCentralCrossRef Adusumilli PS, Cherkassky L, Villena-Vargas J, Colovos C, Servais E, Plotkin J, et al. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci Transl Med. 2014;6:261ra151.PubMedPubMedCentralCrossRef
59.
go back to reference Adusumilli PS, Zauderer MG, Rivière I, Solomon SB, Rusch VW, O’Cearbhaill RE, et al. A Phase I trial of regional mesothelin-targeted CAR T-cell therapy in patients with malignant pleural disease, in combination with the anti-PD-1 agent pembrolizumab. Cancer Discov. 2021;11:2748–63.PubMedPubMedCentralCrossRef Adusumilli PS, Zauderer MG, Rivière I, Solomon SB, Rusch VW, O’Cearbhaill RE, et al. A Phase I trial of regional mesothelin-targeted CAR T-cell therapy in patients with malignant pleural disease, in combination with the anti-PD-1 agent pembrolizumab. Cancer Discov. 2021;11:2748–63.PubMedPubMedCentralCrossRef
60.
go back to reference Laurell A, Lönnemark M, Brekkan E, Magnusson A, Tolf A, Wallgren AC, et al. Intratumorally injected pro-inflammatory allogeneic dendritic cells as immune enhancers: a first-in-human study in unfavourable risk patients with metastatic renal cell carcinoma. J Immunother Cancer. 2017;5:52.PubMedPubMedCentralCrossRef Laurell A, Lönnemark M, Brekkan E, Magnusson A, Tolf A, Wallgren AC, et al. Intratumorally injected pro-inflammatory allogeneic dendritic cells as immune enhancers: a first-in-human study in unfavourable risk patients with metastatic renal cell carcinoma. J Immunother Cancer. 2017;5:52.PubMedPubMedCentralCrossRef
61.
go back to reference Lindskog M, Laurell A, Kjellman A, Melichar B, Rey PM, Zieliński H, et al. Ilixadencel, a cell-based immune primer, plus sunitinib versus sunitinib alone in metastatic renal cell carcinoma: a randomized phase 2 study. Eur Urol Open Sci. 2022;40:38–45.PubMedPubMedCentralCrossRef Lindskog M, Laurell A, Kjellman A, Melichar B, Rey PM, Zieliński H, et al. Ilixadencel, a cell-based immune primer, plus sunitinib versus sunitinib alone in metastatic renal cell carcinoma: a randomized phase 2 study. Eur Urol Open Sci. 2022;40:38–45.PubMedPubMedCentralCrossRef
62.
go back to reference Fröbom R, Berglund E, Berglund D, Nilsson I-L, Åhlén J, von Sivers K, et al. Phase I trial evaluating safety and efficacy of intratumorally administered inflammatory allogeneic dendritic cells (ilixadencel) in advanced gastrointestinal stromal tumors. Cancer Immunol Immunother. 2020;69:2393–401.PubMedPubMedCentralCrossRef Fröbom R, Berglund E, Berglund D, Nilsson I-L, Åhlén J, von Sivers K, et al. Phase I trial evaluating safety and efficacy of intratumorally administered inflammatory allogeneic dendritic cells (ilixadencel) in advanced gastrointestinal stromal tumors. Cancer Immunol Immunother. 2020;69:2393–401.PubMedPubMedCentralCrossRef
63.
go back to reference Halwani AS, Panizo C, Isufi I, Herrera AF, Okada CY, Cull EH, et al. Phase 1/2 study of intratumoral G100 (TLR4 agonist) with or without pembrolizumab in follicular lymphoma. Leuk Lymphoma. 2022;63:821–33.PubMedCrossRef Halwani AS, Panizo C, Isufi I, Herrera AF, Okada CY, Cull EH, et al. Phase 1/2 study of intratumoral G100 (TLR4 agonist) with or without pembrolizumab in follicular lymphoma. Leuk Lymphoma. 2022;63:821–33.PubMedCrossRef
64.
go back to reference Hong WX, Haebe S, Lee AS, Westphalen CB, Norton JA, Jiang W, et al. Intratumoral immunotherapy for early-stage solid tumors. Clin Cancer Res. 2020;26:3091–9.PubMedPubMedCentralCrossRef Hong WX, Haebe S, Lee AS, Westphalen CB, Norton JA, Jiang W, et al. Intratumoral immunotherapy for early-stage solid tumors. Clin Cancer Res. 2020;26:3091–9.PubMedPubMedCentralCrossRef
65.
go back to reference O’Donnell JS, Hoefsmit EP, Smyth MJ, Blank CU, Teng MWL. The promise of neoadjuvant immunotherapy and surgery for cancer treatment. Clin Cancer Res. 2019;25:5743–51.PubMedCrossRef O’Donnell JS, Hoefsmit EP, Smyth MJ, Blank CU, Teng MWL. The promise of neoadjuvant immunotherapy and surgery for cancer treatment. Clin Cancer Res. 2019;25:5743–51.PubMedCrossRef
66.
go back to reference Hong WX, Sagiv-Barfi I, Czerwinski DK, Sallets A, Levy R. Neoadjuvant intratumoral immunotherapy with TLR9 activation and anti-OX40 antibody eradicates metastatic cancer. Cancer Res. 2021;2022:Canres.1382. Hong WX, Sagiv-Barfi I, Czerwinski DK, Sallets A, Levy R. Neoadjuvant intratumoral immunotherapy with TLR9 activation and anti-OX40 antibody eradicates metastatic cancer. Cancer Res. 2021;2022:Canres.1382.
67.
go back to reference Salas-Benito D, Pérez-Gracia JL, Ponz-Sarvisé M, Rodriguez-Ruiz ME, Martínez-Forero I, Castañón E, et al. Paradigms on immunotherapy combinations with chemotherapy. Cancer Discov. 2021;11:1353–67.PubMedCrossRef Salas-Benito D, Pérez-Gracia JL, Ponz-Sarvisé M, Rodriguez-Ruiz ME, Martínez-Forero I, Castañón E, et al. Paradigms on immunotherapy combinations with chemotherapy. Cancer Discov. 2021;11:1353–67.PubMedCrossRef
68.
go back to reference Meric-Bernstam F, Larkin J, Tabernero J, Bonini C. Enhancing anti-tumour efficacy with immunotherapy combinations. Lancet. 2021;397:1010–22.PubMedCrossRef Meric-Bernstam F, Larkin J, Tabernero J, Bonini C. Enhancing anti-tumour efficacy with immunotherapy combinations. Lancet. 2021;397:1010–22.PubMedCrossRef
69.
go back to reference Lurje I, Werner W, Mohr R, Roderburg C, Tacke F, Hammerich L. In situ vaccination as a strategy to modulate the immune microenvironment of hepatocellular carcinoma. Front Immunol. 2021;12:650486.PubMedPubMedCentralCrossRef Lurje I, Werner W, Mohr R, Roderburg C, Tacke F, Hammerich L. In situ vaccination as a strategy to modulate the immune microenvironment of hepatocellular carcinoma. Front Immunol. 2021;12:650486.PubMedPubMedCentralCrossRef
70.
go back to reference Sangro B, Sarobe P, Hervás-Stubbs S, Melero I. Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2021;18:525–43.PubMedPubMedCentralCrossRef Sangro B, Sarobe P, Hervás-Stubbs S, Melero I. Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2021;18:525–43.PubMedPubMedCentralCrossRef
71.
go back to reference Márquez-Rodas I, Longo F, Rodriguez-Ruiz ME, Calles A, Ponce S, Jove M, et al. Intratumoral nanoplexed poly I: C BO-112 in combination with systemic anti-PD-1 for patients with anti-PD-1-refractory tumors. Sci Transl Med. 2020;12:eabb0391.PubMedCrossRef Márquez-Rodas I, Longo F, Rodriguez-Ruiz ME, Calles A, Ponce S, Jove M, et al. Intratumoral nanoplexed poly I: C BO-112 in combination with systemic anti-PD-1 for patients with anti-PD-1-refractory tumors. Sci Transl Med. 2020;12:eabb0391.PubMedCrossRef
72.
go back to reference Senders ZJ, Martin RCG. Intratumoral immunotherapy and tumor ablation: a local approach with broad potential. Cancers (Basel). 2022;14:1754.PubMedCrossRef Senders ZJ, Martin RCG. Intratumoral immunotherapy and tumor ablation: a local approach with broad potential. Cancers (Basel). 2022;14:1754.PubMedCrossRef
73.
go back to reference Mizukoshi E, Yamashita T, Arai K, Sunagozaka H, Ueda T, Arihara F, et al. Enhancement of tumor-associated antigen-specific T cell responses by radiofrequency ablation of hepatocellular carcinoma. Hepatology. 2013;57:1448–57.PubMedCrossRef Mizukoshi E, Yamashita T, Arai K, Sunagozaka H, Ueda T, Arihara F, et al. Enhancement of tumor-associated antigen-specific T cell responses by radiofrequency ablation of hepatocellular carcinoma. Hepatology. 2013;57:1448–57.PubMedCrossRef
74.
go back to reference Zhang N, Li Z, Han X, Zhu Z, Li Z, Zhao Y, et al. Irreversible electroporation: an emerging immunomodulatory therapy on solid tumors. Front Immunol. 2021;12:811726.PubMedCrossRef Zhang N, Li Z, Han X, Zhu Z, Li Z, Zhao Y, et al. Irreversible electroporation: an emerging immunomodulatory therapy on solid tumors. Front Immunol. 2021;12:811726.PubMedCrossRef
75.
go back to reference Go E-J, Yang H, Chon HJ, Yang D, Ryu W, Kim D-H, et al. Combination of irreversible electroporation and STING agonist for effective cancer immunotherapy. Cancers (Basel). 2020;12:E3123.CrossRef Go E-J, Yang H, Chon HJ, Yang D, Ryu W, Kim D-H, et al. Combination of irreversible electroporation and STING agonist for effective cancer immunotherapy. Cancers (Basel). 2020;12:E3123.CrossRef
76.
go back to reference Goldmacher GV, Khilnani AD, Andtbacka RHI, Luke JJ, Hodi FS, Marabelle A, et al. Response criteria for intratumoral immunotherapy in solid tumors: itRECIST. J Clin Oncol. 2020;38:2667–76.PubMedPubMedCentralCrossRef Goldmacher GV, Khilnani AD, Andtbacka RHI, Luke JJ, Hodi FS, Marabelle A, et al. Response criteria for intratumoral immunotherapy in solid tumors: itRECIST. J Clin Oncol. 2020;38:2667–76.PubMedPubMedCentralCrossRef
77.
go back to reference Champiat S, Tselikas L, Farhane S, Raoult T, Texier M, Lanoy E, et al. Intratumoral immunotherapy: from trial design to clinical practice. Clin Cancer Res. 2021;27:665–79.PubMedCrossRef Champiat S, Tselikas L, Farhane S, Raoult T, Texier M, Lanoy E, et al. Intratumoral immunotherapy: from trial design to clinical practice. Clin Cancer Res. 2021;27:665–79.PubMedCrossRef
Metadata
Title
Intratumoral Immunotherapy: Is It Ready for Prime Time?
Authors
Mario Ghosn
Lambros Tselikas
Stéphane Champiat
Frederic Deschamps
Baptiste Bonnet
Émilie Carre
Marine Testan
François-Xavier Danlos
Siham Farhane
Sandrine Susini
Steve Suzzoni
Samy Ammari
Aurélien Marabelle
Thierry De Baere
Publication date
02-05-2023
Publisher
Springer US
Keywords
Melanoma
Melanoma
Published in
Current Oncology Reports / Issue 8/2023
Print ISSN: 1523-3790
Electronic ISSN: 1534-6269
DOI
https://doi.org/10.1007/s11912-023-01422-4

Other articles of this Issue 8/2023

Current Oncology Reports 8/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine