Skip to main content
Top
Published in: Current Neurology and Neuroscience Reports 7/2019

01-07-2019 | Behavior (HS Kirshner, Section Editor)

Face Recognition

Author: Steven Z. Rapcsak

Published in: Current Neurology and Neuroscience Reports | Issue 7/2019

Login to get access

Abstract

Purpose of Review

Functional imaging studies, intracranial recordings, and lesion-deficit correlations in neurological patients have produced unique insights into the cognitive mechanisms and neural substrates of face recognition. In this review, we highlight recent advances in the field and integrate data from these complementary lines of research to propose a functional neuroanatomical model of face identity recognition.

Recent Findings

Rather than being localized to a single specialized cortical region, face recognition is supported by a distributed neural network. Core components of the network include face-selective visual areas in the ventral occipito-temporal cortex, whereas the extended network is comprised of anterior temporal lobe structures involved in the retrieval of multimodal identity-specific knowledge about familiar individuals, the amygdala responsible for generating emotional responses to faces, and prefrontal regions that provide top-down executive control of the recognition process. Damage to different network components results in neuropsychological disorders of face identity processing manifested either as impaired recognition of familiar faces (prosopagnosia, person recognition disorders) or as false recognition/misidentification of unfamiliar faces.

Summary

Face identity recognition requires the coordinated activity of a large-scale neural network. Neurological damage can compromise the structural/functional integrity of specific network nodes or their connections and give rise to face recognition disorders with distinct clinical features and underlying cognitive mechanisms determined primarily by the location of the lesion.
Literature
1.
go back to reference Bruce V, Young AW. Understanding face recognition. Br J Psychol. 1986;77:305–27.PubMed Bruce V, Young AW. Understanding face recognition. Br J Psychol. 1986;77:305–27.PubMed
2.
go back to reference Rossion B. Understanding face perception by means of prosopagnosia and neuroimaging. Front Bioscience (Elite Ed). 2014;6:308–17. Rossion B. Understanding face perception by means of prosopagnosia and neuroimaging. Front Bioscience (Elite Ed). 2014;6:308–17.
3.
go back to reference Haxby JV, Hoffman EA, Gobbini MI. The distributed human neural system for face perception. Trends Cogn Sci. 2000;4:223–33.PubMed Haxby JV, Hoffman EA, Gobbini MI. The distributed human neural system for face perception. Trends Cogn Sci. 2000;4:223–33.PubMed
4.
go back to reference Gobbini IM, Haxby JV. Neural systems for recognition of familiar faces. Neuropsychologia. 2007;45:32–41.PubMed Gobbini IM, Haxby JV. Neural systems for recognition of familiar faces. Neuropsychologia. 2007;45:32–41.PubMed
5.
go back to reference Haxby JV, Gobbini IM. Distributed neural systems for face perception. In: Rhodes G, Calder A, Johnson M, Haxby JV, editors. Oxford handbook of face perception. New York: Oxford University Press; 2011. Haxby JV, Gobbini IM. Distributed neural systems for face perception. In: Rhodes G, Calder A, Johnson M, Haxby JV, editors. Oxford handbook of face perception. New York: Oxford University Press; 2011.
7.
go back to reference Rapcsak SZ. Face recognition. In: Chatterjee A, Coslett HB, editors. The roots of cognitive neuroscience: behavioral neurology and neuropsychology. New York: Oxford University Press; 2014. Rapcsak SZ. Face recognition. In: Chatterjee A, Coslett HB, editors. The roots of cognitive neuroscience: behavioral neurology and neuropsychology. New York: Oxford University Press; 2014.
8.
go back to reference Ishai A. Let’s face it: it’s a cortical network. Neuroimage. 2008;40:415–9.PubMed Ishai A. Let’s face it: it’s a cortical network. Neuroimage. 2008;40:415–9.PubMed
9.
go back to reference Kanwisher N, Barton JJS. The functional architecture of the face system: integrating evidence from fMRI and patient studies. In: Rhodes G, Calder A, Johnson M, Haxby JV, editors. Oxford handbook of face perception. New York: Oxford University Press; 2011. Kanwisher N, Barton JJS. The functional architecture of the face system: integrating evidence from fMRI and patient studies. In: Rhodes G, Calder A, Johnson M, Haxby JV, editors. Oxford handbook of face perception. New York: Oxford University Press; 2011.
10.
go back to reference Duchaine B, Yovel G. A revised neural framework for face processing. Ann Rev Vision Sci. 2015;1:393–416. Duchaine B, Yovel G. A revised neural framework for face processing. Ann Rev Vision Sci. 2015;1:393–416.
11.
go back to reference •• Freiwald W, Duchaine B, Yovel G. Face processing systems: from neurons to real-world social perception. Ann Rev Neurosci. 2016;39:325–46 This paper reviews evidence from multiple sources relevant to the functional organization of the face recognition network. PubMed •• Freiwald W, Duchaine B, Yovel G. Face processing systems: from neurons to real-world social perception. Ann Rev Neurosci. 2016;39:325–46 This paper reviews evidence from multiple sources relevant to the functional organization of the face recognition network. PubMed
12.
go back to reference •• Grill-Spector K, Weiner KS, Kay K, Gomez J. The functional neuroanatomy of human face perception. Ann Rev Vision Sci. 2017;3:167–96 An in-depth review of neuroimaging studies of face recognition. •• Grill-Spector K, Weiner KS, Kay K, Gomez J. The functional neuroanatomy of human face perception. Ann Rev Vision Sci. 2017;3:167–96 An in-depth review of neuroimaging studies of face recognition.
13.
go back to reference Elbich DB, Scherf S. Beyond the FFA: brain-behavior correspondences in face recognition abilities. Neuroimage. 2017;147:409–22.PubMed Elbich DB, Scherf S. Beyond the FFA: brain-behavior correspondences in face recognition abilities. Neuroimage. 2017;147:409–22.PubMed
14.
go back to reference • Mueller VI, Hohner Y, Eickhoff SB. Influence of task instructions and stimuli on the neural network for face processing: an ALE meta-analysis. Cortex. 2018;103:2410–255 This paper provides a meta-analysis of brain regions that show reliable activation across different imaging studies of face processing. • Mueller VI, Hohner Y, Eickhoff SB. Influence of task instructions and stimuli on the neural network for face processing: an ALE meta-analysis. Cortex. 2018;103:2410–255 This paper provides a meta-analysis of brain regions that show reliable activation across different imaging studies of face processing.
15.
go back to reference Gschwind M, Pourtois G, Schwartz S, Van De Ville D, Vuilleumier P. White-matter connectivity between face-responsive regions in the human brain. Cereb Cortex. 2012;22:1564–76.PubMed Gschwind M, Pourtois G, Schwartz S, Van De Ville D, Vuilleumier P. White-matter connectivity between face-responsive regions in the human brain. Cereb Cortex. 2012;22:1564–76.PubMed
17.
go back to reference Zhu Q, Zhang J, Luo YLL, Dilks DD, Liu J. Resting-state neural activity across face-selective cortical regions is behaviorally relevant. J Neurosci. 2011;31:10323–103030.PubMed Zhu Q, Zhang J, Luo YLL, Dilks DD, Liu J. Resting-state neural activity across face-selective cortical regions is behaviorally relevant. J Neurosci. 2011;31:10323–103030.PubMed
18.
go back to reference O’Neill EB, Hutchinson RM, McLean DA, Kohler S. Resting-state fMRI reveals functional connectivity between face-selective perirhinal cortex and fusiform face area related to face inversion. Neuroimage. 2014;92:349–55. O’Neill EB, Hutchinson RM, McLean DA, Kohler S. Resting-state fMRI reveals functional connectivity between face-selective perirhinal cortex and fusiform face area related to face inversion. Neuroimage. 2014;92:349–55.
19.
go back to reference Nasr S, Tootell RBH. Role of the fusiform and anterior temporal cortical areas in face recognition. Neuroimage. 2012;63:1743–53.PubMedPubMedCentral Nasr S, Tootell RBH. Role of the fusiform and anterior temporal cortical areas in face recognition. Neuroimage. 2012;63:1743–53.PubMedPubMedCentral
20.
go back to reference Collins JA, Olson IR. Beyond the FFA: the role of the ventral anterior temporal lobes in face processing. Neuropsychologia. 2014;61:65–79.PubMed Collins JA, Olson IR. Beyond the FFA: the role of the ventral anterior temporal lobes in face processing. Neuropsychologia. 2014;61:65–79.PubMed
23.
go back to reference Nestor A, Plaut DC, Behrmann M. Unraveling the distributed neural code of facial identity through spatiotemporal pattern analysis. PNAS. 2011;108:9998–10003.PubMed Nestor A, Plaut DC, Behrmann M. Unraveling the distributed neural code of facial identity through spatiotemporal pattern analysis. PNAS. 2011;108:9998–10003.PubMed
25.
go back to reference Weibert K, Andrews TJ. Activity in the right fusiform face area predicts the behavioral advantage for the perception of familiar faces. Neuropsychologia. 2015;75:588–96.PubMed Weibert K, Andrews TJ. Activity in the right fusiform face area predicts the behavioral advantage for the perception of familiar faces. Neuropsychologia. 2015;75:588–96.PubMed
26.
go back to reference Yang H, Susilo T, Duchaine B. The anterior face area contains invariant representations of face identity that can persist despite the loss of right FFA and OFA. Cereb Cortex. 2014;1–12. Yang H, Susilo T, Duchaine B. The anterior face area contains invariant representations of face identity that can persist despite the loss of right FFA and OFA. Cereb Cortex. 2014;1–12.
27.
go back to reference Perrodin C, Kayser C, Abel TJ, Logothetis NK, Petkov CI. Who is that? Brain networks and mechanisms for identifying individuals. Trends Cogn Sci. 2015;19:783–96.PubMedPubMedCentral Perrodin C, Kayser C, Abel TJ, Logothetis NK, Petkov CI. Who is that? Brain networks and mechanisms for identifying individuals. Trends Cogn Sci. 2015;19:783–96.PubMedPubMedCentral
28.
go back to reference Maguinness C, Rowandowitz C, von Kriegstein K. Understanding the mechanisms of familiar voice identity recognition in the human brain. Neuropsychologia. 2018;116:179–93.PubMed Maguinness C, Rowandowitz C, von Kriegstein K. Understanding the mechanisms of familiar voice identity recognition in the human brain. Neuropsychologia. 2018;116:179–93.PubMed
29.
go back to reference • Rice GE, Hoffman P, Binney RJ, Lambon Ralph MA. Concrete versus abstract forms of social concept: and fMRI comparison of knowledge about people vs. social terms. Philos Trans R So B. 2017;373. https://doi.org/10.1098/rstb.2017.0136. Neuroimaging evidence for the central role of the ATL in representing multimodal semantic knowledge about familiar people. • Rice GE, Hoffman P, Binney RJ, Lambon Ralph MA. Concrete versus abstract forms of social concept: and fMRI comparison of knowledge about people vs. social terms. Philos Trans R So B. 2017;373. https://​doi.​org/​10.​1098/​rstb.​2017.​0136. Neuroimaging evidence for the central role of the ATL in representing multimodal semantic knowledge about familiar people.
30.
go back to reference Nielson KA, Seidenberg M, Woodard JL, Durgerian S, Zhang Q, Gross WL, et al. Common neural systems associated with the recognition of famous faces and names: an event-related fMRI study. Brain Cogn. 2010;72:491–8.PubMedPubMedCentral Nielson KA, Seidenberg M, Woodard JL, Durgerian S, Zhang Q, Gross WL, et al. Common neural systems associated with the recognition of famous faces and names: an event-related fMRI study. Brain Cogn. 2010;72:491–8.PubMedPubMedCentral
32.
go back to reference Blank H, Kiebel SJ, von Kriegstein K. How the human brain exchanges information across sensory modalities to recognize other people. Hum Brain Mapp. 2015;36:324–39.PubMed Blank H, Kiebel SJ, von Kriegstein K. How the human brain exchanges information across sensory modalities to recognize other people. Hum Brain Mapp. 2015;36:324–39.PubMed
33.
go back to reference Hasan BAS, Valdes-Sosa M, Gross J, Belin P. “Hearing faces and seeing voices”: amodal coding of person identity in the human brain. Nat Sci Rep. 2016;6:37494. Hasan BAS, Valdes-Sosa M, Gross J, Belin P. “Hearing faces and seeing voices”: amodal coding of person identity in the human brain. Nat Sci Rep. 2016;6:37494.
34.
go back to reference Tsukiura T, Suzuki C, Shigemune Y, Mokizuki-Kawai H. Differential contributions of the anterior temporal and medial temporal lobe to the retrieval of memory for person identity information. Hum Brain Mapp. 2008;29:1343–54.PubMed Tsukiura T, Suzuki C, Shigemune Y, Mokizuki-Kawai H. Differential contributions of the anterior temporal and medial temporal lobe to the retrieval of memory for person identity information. Hum Brain Mapp. 2008;29:1343–54.PubMed
35.
go back to reference Tsukiura T, Mokizuki-Kawai H, Fujii T. Dissociable roles of the bilateral anterior lobe in face-name associations: an event-related fMRI study. Neuroimage. 2006;30:617–26.PubMed Tsukiura T, Mokizuki-Kawai H, Fujii T. Dissociable roles of the bilateral anterior lobe in face-name associations: an event-related fMRI study. Neuroimage. 2006;30:617–26.PubMed
36.
go back to reference Tsukiura T, Mano Y, Sekiguchi A, Yomogida Y, Hoshi K, Kambara T, et al. Dissociable roles of the anterior temporal regions in successful encoding of memory for person identity information. J Cogn Neurosci. 2009;22:2226–37. Tsukiura T, Mano Y, Sekiguchi A, Yomogida Y, Hoshi K, Kambara T, et al. Dissociable roles of the anterior temporal regions in successful encoding of memory for person identity information. J Cogn Neurosci. 2009;22:2226–37.
37.
go back to reference • Wang Y, Collins JA, Koski J, Nugiel T, Metoki A, Olson, IR. Dynamic neural architecture for social knowledge retrieval. PNAS. 2017;E3305–E3314.https://doi.org/10.1073/pnas.1621234114. Neuroimaging evidence for the critical contribution of the ATL to the encoding and retrieval of novel multimodal person-specific information. • Wang Y, Collins JA, Koski J, Nugiel T, Metoki A, Olson, IR. Dynamic neural architecture for social knowledge retrieval. PNAS. 2017;E3305–E3314.https://​doi.​org/​10.​1073/​pnas.​1621234114. Neuroimaging evidence for the critical contribution of the ATL to the encoding and retrieval of novel multimodal person-specific information.
38.
go back to reference Blank H, Wieland N, von Kriegstein K. Person recognition and the brain: merging evidence from patients and healthy individuals. Neurosci Biobehav Rev. 2014;47:717–34.PubMed Blank H, Wieland N, von Kriegstein K. Person recognition and the brain: merging evidence from patients and healthy individuals. Neurosci Biobehav Rev. 2014;47:717–34.PubMed
39.
go back to reference Barton JJS, Corrow SL. Recognizing and identifying people: a neuropsychological review. Cortex. 2016;75:132–50.PubMed Barton JJS, Corrow SL. Recognizing and identifying people: a neuropsychological review. Cortex. 2016;75:132–50.PubMed
40.
go back to reference Gazzaley A, Cooney JW, McEvoy K, Knight RT, D’Esposito M. Top-down enhancement and suppression of the magnitude and speed of neural activity. J Cogn Neurosci. 2005;17:507–17.PubMed Gazzaley A, Cooney JW, McEvoy K, Knight RT, D’Esposito M. Top-down enhancement and suppression of the magnitude and speed of neural activity. J Cogn Neurosci. 2005;17:507–17.PubMed
41.
go back to reference Chadick JZ, Gazzaley A. Differential coupling of visual cortex with default or frontoparietal network based on goals. Nat Neurosci. 2011;14:830–2.PubMedPubMedCentral Chadick JZ, Gazzaley A. Differential coupling of visual cortex with default or frontoparietal network based on goals. Nat Neurosci. 2011;14:830–2.PubMedPubMedCentral
42.
go back to reference •• Rossion B, Jacques C, Jonas J. Mapping face categorization in the human ventral occipitotemporal cortex with direct neural intracranial recordings. Ann N Y Acad Sci. 2018;1426:5–24 A comprehensive review of intracranial recording studies of face processing. •• Rossion B, Jacques C, Jonas J. Mapping face categorization in the human ventral occipitotemporal cortex with direct neural intracranial recordings. Ann N Y Acad Sci. 2018;1426:5–24 A comprehensive review of intracranial recording studies of face processing.
44.
go back to reference Quiroga RQ. Concept cells: the building blocks of declarative memory functions. Nat Rev Neurosci. 2012;13:587–97.PubMed Quiroga RQ. Concept cells: the building blocks of declarative memory functions. Nat Rev Neurosci. 2012;13:587–97.PubMed
45.
go back to reference Quiroga RQ. Neural codes for visual perception and memory. Neuropsychologia. 2016;83:227–41. Quiroga RQ. Neural codes for visual perception and memory. Neuropsychologia. 2016;83:227–41.
46.
go back to reference Abel TJ, Rhone AE, Nourski Kirill V, Kawasaki H, Oya H, Griffiths TD, et al. Direct physiologic evidence of a heteromodal convergence region for proper naming in human left anterior temporal lobe. J Neurosci. 2015;35:1513–20.PubMedPubMedCentral Abel TJ, Rhone AE, Nourski Kirill V, Kawasaki H, Oya H, Griffiths TD, et al. Direct physiologic evidence of a heteromodal convergence region for proper naming in human left anterior temporal lobe. J Neurosci. 2015;35:1513–20.PubMedPubMedCentral
47.
go back to reference Viskontas IV, Quiroga RQ, Fried I. Human medial temporal lobe neurons respond preferentially to personally relevant images. PNAS. 2009;106:21329–34.PubMed Viskontas IV, Quiroga RQ, Fried I. Human medial temporal lobe neurons respond preferentially to personally relevant images. PNAS. 2009;106:21329–34.PubMed
48.
go back to reference Mormann F, Niediek J, Tudusciuc O, Quesda CM, Coenen V, Elger C, et al. Neurons in human amygdala encode face identity but not gaze direction. Nat Neurosci. 2015;18:1568–70.PubMedPubMedCentral Mormann F, Niediek J, Tudusciuc O, Quesda CM, Coenen V, Elger C, et al. Neurons in human amygdala encode face identity but not gaze direction. Nat Neurosci. 2015;18:1568–70.PubMedPubMedCentral
49.
go back to reference Vignal JP, Chauvel P, Halgren E. Localized face processing by the human prefrontal cortex: stimulation-evoked hallucinations of faces. Cogn Neuropsychol. 2000;17:281–91.PubMed Vignal JP, Chauvel P, Halgren E. Localized face processing by the human prefrontal cortex: stimulation-evoked hallucinations of faces. Cogn Neuropsychol. 2000;17:281–91.PubMed
50.
go back to reference Barbeau JE, Taylor MJ, Regis J, Marquis P, Chauvel P, Liegeois-Chauvel C. Spatio temporal dynamics of face recognition. Cereb Cortex. 2008;18:997–1009.PubMed Barbeau JE, Taylor MJ, Regis J, Marquis P, Chauvel P, Liegeois-Chauvel C. Spatio temporal dynamics of face recognition. Cereb Cortex. 2008;18:997–1009.PubMed
51.
go back to reference Rangarajan V, Hermes D, Foster BL, Weiner KS, Jacques C, Grill-Spector K, et al. Electrical stimulation of the left and right human fusiform gyrus causes different effects in conscious face perception. J Neurosci. 2014;34:12828–36.PubMedPubMedCentral Rangarajan V, Hermes D, Foster BL, Weiner KS, Jacques C, Grill-Spector K, et al. Electrical stimulation of the left and right human fusiform gyrus causes different effects in conscious face perception. J Neurosci. 2014;34:12828–36.PubMedPubMedCentral
52.
go back to reference Jonas J, Rossion B, Brissart H, Frismand S, Jacques C, Hossu G, et al. Beyond the core face processing network: intracerebral stimulation of a face-selective area in the right anterior fusiform gyrus elicits transient prosopagnosia. Cortex. 2015;72:140–55.PubMed Jonas J, Rossion B, Brissart H, Frismand S, Jacques C, Hossu G, et al. Beyond the core face processing network: intracerebral stimulation of a face-selective area in the right anterior fusiform gyrus elicits transient prosopagnosia. Cortex. 2015;72:140–55.PubMed
53.
go back to reference Jonas J, Descoins M, Koessler L, Colnat-Coulbois S, Sauvee M, Guye M, et al. Focal electrical intracranial stimulation of the face sensitive area causes transient prosopagnosia. Neuroscience. 2012;22:281–8. Jonas J, Descoins M, Koessler L, Colnat-Coulbois S, Sauvee M, Guye M, et al. Focal electrical intracranial stimulation of the face sensitive area causes transient prosopagnosia. Neuroscience. 2012;22:281–8.
54.
go back to reference Pitcher D, Walsh V, Duchaine B. Transcranial magnetic stimulation studies of face processing. In: Rhodes G, Calder A, Johnson M, Haxby JV, editors. Oxford handbook of face perception. New York: Oxford University Press; 2011. Pitcher D, Walsh V, Duchaine B. Transcranial magnetic stimulation studies of face processing. In: Rhodes G, Calder A, Johnson M, Haxby JV, editors. Oxford handbook of face perception. New York: Oxford University Press; 2011.
55.
go back to reference Rapcsak SZ. Face memory and its disorders. Curr Neurol Neurosci Rep. 2003;3:494–501.PubMed Rapcsak SZ. Face memory and its disorders. Curr Neurol Neurosci Rep. 2003;3:494–501.PubMed
56.
go back to reference Rapcsak SZ. Prosopagnosia. In: Wenzel AE, editor. The SAGE Encyclopedia of Abnormal and Clinical Psychology. SAGE Publications; 2017. Rapcsak SZ. Prosopagnosia. In: Wenzel AE, editor. The SAGE Encyclopedia of Abnormal and Clinical Psychology. SAGE Publications; 2017.
57.
go back to reference Davies-Thompson J, Pancaroglu R, Barton J. Acquired prosopagnosia: structural basis and processing impairments. Front Biosci (Elite Ed). 2014;6:159–74. Davies-Thompson J, Pancaroglu R, Barton J. Acquired prosopagnosia: structural basis and processing impairments. Front Biosci (Elite Ed). 2014;6:159–74.
58.
go back to reference Barton JS. Structure and function in acquired prosopagnosia: lessons from a series of 10 patients with brain damage. J Neuropsychol. 2008;2:197–225.PubMed Barton JS. Structure and function in acquired prosopagnosia: lessons from a series of 10 patients with brain damage. J Neuropsychol. 2008;2:197–225.PubMed
59.
go back to reference Busigny T, Joubert S, Felician O, Ceccaldi M, Rossion B. Holistic perception of the individual face is specific and necessary: evidence from an extensive case study of acquired prosopagnosia. Neuropsychologia. 2010;48:4057–92.PubMed Busigny T, Joubert S, Felician O, Ceccaldi M, Rossion B. Holistic perception of the individual face is specific and necessary: evidence from an extensive case study of acquired prosopagnosia. Neuropsychologia. 2010;48:4057–92.PubMed
60.
go back to reference Busigny T, Van Belle G, Jemel B, Hosein A, Joubert S, Rossion B. Face-specific impairment in holistic perception following focal lesion of he right anterior temporal lobe. Neuropsychologia. 2014;56:312–33.PubMed Busigny T, Van Belle G, Jemel B, Hosein A, Joubert S, Rossion B. Face-specific impairment in holistic perception following focal lesion of he right anterior temporal lobe. Neuropsychologia. 2014;56:312–33.PubMed
61.
go back to reference Barton JJS, Press DZ, Keenan JP, O’Connor M. Lesions of the fusiform area impair perception of facial configuration in prosopagnosia. Neurology. 2002;58:71–8.PubMed Barton JJS, Press DZ, Keenan JP, O’Connor M. Lesions of the fusiform area impair perception of facial configuration in prosopagnosia. Neurology. 2002;58:71–8.PubMed
62.
go back to reference Barton JJS, Cherkasova M. Face imagery and its relation to perception and covert recognition in prosopagnosia. Neurology. 2003;61:220–5.PubMed Barton JJS, Cherkasova M. Face imagery and its relation to perception and covert recognition in prosopagnosia. Neurology. 2003;61:220–5.PubMed
63.
go back to reference Barton JSS, Cherkasova M, O’Connor M. Covert recognition in acquired and developmental prosopagnosia. Neurology. 2001;57:1161–8.PubMed Barton JSS, Cherkasova M, O’Connor M. Covert recognition in acquired and developmental prosopagnosia. Neurology. 2001;57:1161–8.PubMed
64.
go back to reference Barton JSS, Cherkasova M, Hefter R. The covert priming effect of faces in prosopagnosia. Neurology. 2004;63:2062–8.PubMed Barton JSS, Cherkasova M, Hefter R. The covert priming effect of faces in prosopagnosia. Neurology. 2004;63:2062–8.PubMed
65.
go back to reference Tranel D, Damasio AR. Knowledge without awareness: an autonomic index of facial recognition by prosopagnosics. Science. 1985;228:1453–4.PubMed Tranel D, Damasio AR. Knowledge without awareness: an autonomic index of facial recognition by prosopagnosics. Science. 1985;228:1453–4.PubMed
66.
go back to reference Fox JC, Iaria G, Barton JJS. Disconnection in prosopagnosia and face processing. Cortex. 2008;44:996–1009.PubMed Fox JC, Iaria G, Barton JJS. Disconnection in prosopagnosia and face processing. Cortex. 2008;44:996–1009.PubMed
67.
go back to reference Grossi D, Soricelli A, Ponari M, Salvatore E, Quarantelli M, Prinster A, et al. Structural connectivity in a single case of progressive prosopagnosia: the role of the right inferior longitudinal fasciculus. Cortex. 2104, 56:111–20.PubMed Grossi D, Soricelli A, Ponari M, Salvatore E, Quarantelli M, Prinster A, et al. Structural connectivity in a single case of progressive prosopagnosia: the role of the right inferior longitudinal fasciculus. Cortex. 2104, 56:111–20.PubMed
68.
go back to reference Bouvier SE, Engel SA. Behavioral deficits and cortical damage loci in cerebral achromatopsia. Cereb Cortex. 2006;16:183–91.PubMed Bouvier SE, Engel SA. Behavioral deficits and cortical damage loci in cerebral achromatopsia. Cereb Cortex. 2006;16:183–91.PubMed
69.
go back to reference Omar R, Rohrer JD, Hailstone JC, Warren JD. Structural neuroanatomy of face processing in frontotemporal lobar degeneration. J Neurol Neurosurg Psychiatry. 2011;82:1341–3.PubMed Omar R, Rohrer JD, Hailstone JC, Warren JD. Structural neuroanatomy of face processing in frontotemporal lobar degeneration. J Neurol Neurosurg Psychiatry. 2011;82:1341–3.PubMed
70.
go back to reference Josephs KA, Whitwell JL, Vemuri P, Senjem ML, Boeve BF, Knopman DS, et al. The anatomic correlate of prosopagnosia in semantic dementia. Neurology. 2008;71:1628–33.PubMedPubMedCentral Josephs KA, Whitwell JL, Vemuri P, Senjem ML, Boeve BF, Knopman DS, et al. The anatomic correlate of prosopagnosia in semantic dementia. Neurology. 2008;71:1628–33.PubMedPubMedCentral
71.
go back to reference Rossion B. Constraining the cortical face network by neuroimaging studies of acquired prosopagnosia. Neuroimage. 2008;40:423–6.PubMed Rossion B. Constraining the cortical face network by neuroimaging studies of acquired prosopagnosia. Neuroimage. 2008;40:423–6.PubMed
74.
go back to reference Bernstein M, Yovel G. Two neural pathways of face processing: a critical evaluation of current models. Neurosci Behav Rev. 2015;55:536–46. Bernstein M, Yovel G. Two neural pathways of face processing: a critical evaluation of current models. Neurosci Behav Rev. 2015;55:536–46.
75.
go back to reference Liu J, Wang M, Shi X, Feng L, Li L, Thacker JM, et al. Neural correlates of covert face processing: fMRI evidence from a prosopagnosic patient. Cereb Cortex. 2014;24:2081–92.PubMed Liu J, Wang M, Shi X, Feng L, Li L, Thacker JM, et al. Neural correlates of covert face processing: fMRI evidence from a prosopagnosic patient. Cereb Cortex. 2014;24:2081–92.PubMed
76.
go back to reference Valdes-Sosa M, Bobes MA, Quinones I, Garcia L, Valdes-Henrandez PA, Iturria Y, et al. Covert face recognition without the fusiform-temporal pathways. Neuroimage. 2011;57:1162–76.PubMed Valdes-Sosa M, Bobes MA, Quinones I, Garcia L, Valdes-Henrandez PA, Iturria Y, et al. Covert face recognition without the fusiform-temporal pathways. Neuroimage. 2011;57:1162–76.PubMed
77.
go back to reference Gainotti G. Different patterns of famous person recognition disorders in patients with right and left anterior temporal lesions: a systematic review. Neuropsychologia. 2007;45:1591–607.PubMed Gainotti G. Different patterns of famous person recognition disorders in patients with right and left anterior temporal lesions: a systematic review. Neuropsychologia. 2007;45:1591–607.PubMed
78.
go back to reference Gainotti G. Is the right anterior temporal variant of prosopagnosia a form of ‘associative prosopagnosia’ of a form of ‘multimodal person recognition disorder’? Neuropsychol Rev. 2013;23:99–110.PubMed Gainotti G. Is the right anterior temporal variant of prosopagnosia a form of ‘associative prosopagnosia’ of a form of ‘multimodal person recognition disorder’? Neuropsychol Rev. 2013;23:99–110.PubMed
79.
go back to reference Gainotti G. Implications of recent findings for current cognitive models of familiar people recognition. Neuropsychologia. 2015;77:279–87.PubMed Gainotti G. Implications of recent findings for current cognitive models of familiar people recognition. Neuropsychologia. 2015;77:279–87.PubMed
80.
go back to reference • Gainotti G. The differential contributions of conceptual representation format and language structure to levels of semantic abstraction capacity. Neuropsychol Rev. 2017;27:134–45 A review of different patterns of person recognition impairment following left vs. right ATL damage and their implications for the representation of person semantic knowledge. PubMed • Gainotti G. The differential contributions of conceptual representation format and language structure to levels of semantic abstraction capacity. Neuropsychol Rev. 2017;27:134–45 A review of different patterns of person recognition impairment following left vs. right ATL damage and their implications for the representation of person semantic knowledge. PubMed
81.
go back to reference Busigny T, Robaye L, Dricot L, Rossion B. Right anterior temporal lobe atrophy and person-based semantic defect: a detailed case study. Neurocase. 2009;15:485–508.PubMed Busigny T, Robaye L, Dricot L, Rossion B. Right anterior temporal lobe atrophy and person-based semantic defect: a detailed case study. Neurocase. 2009;15:485–508.PubMed
82.
go back to reference Snowden JS, Thompson JC, Neary D. Knowledge of famous faces and names in semantic dementia. Brain. 2004;127:1–13. Snowden JS, Thompson JC, Neary D. Knowledge of famous faces and names in semantic dementia. Brain. 2004;127:1–13.
83.
go back to reference Snowden JS, Thompson JC, Neary D. Famous people knowledge and the right and left temporal lobes. Behav Neurol. 2012;25:35–44.PubMed Snowden JS, Thompson JC, Neary D. Famous people knowledge and the right and left temporal lobes. Behav Neurol. 2012;25:35–44.PubMed
84.
go back to reference •• Borghesani V, Narvid J, Battistella G, Shwe W, Watson C, Binney JR, et al. “Looks familiar, but I don’t know who she is”: the role of the right anterior temporal lobe in famous face recognition. Cortex. 2019;115:72–85 A large-scale investigation of the neuroanatomical substrates of face recognition impairment in patients with neurodegenerative disease. PubMed •• Borghesani V, Narvid J, Battistella G, Shwe W, Watson C, Binney JR, et al. “Looks familiar, but I don’t know who she is”: the role of the right anterior temporal lobe in famous face recognition. Cortex. 2019;115:72–85 A large-scale investigation of the neuroanatomical substrates of face recognition impairment in patients with neurodegenerative disease. PubMed
85.
go back to reference Gefen T, Wieneke C, Martersteck A, Whitney K, Weintraub S, Mesulam M-M, et al. Naming and knowing faces in primary progressive aphasia: a tale of 2 hemispheres. Neurology. 2013;81:658–64.PubMedPubMedCentral Gefen T, Wieneke C, Martersteck A, Whitney K, Weintraub S, Mesulam M-M, et al. Naming and knowing faces in primary progressive aphasia: a tale of 2 hemispheres. Neurology. 2013;81:658–64.PubMedPubMedCentral
86.
go back to reference Cosseddu M, Gazzina S, Borroni B, Padovani A, Gainotti G. Multimodal face and voice recognition disorders in a case with unilateral right anterior temporal lobe atrophy. Neuropsychology. 2018;32:920–30.PubMed Cosseddu M, Gazzina S, Borroni B, Padovani A, Gainotti G. Multimodal face and voice recognition disorders in a case with unilateral right anterior temporal lobe atrophy. Neuropsychology. 2018;32:920–30.PubMed
87.
go back to reference • Luzzi S, Baldinelli S, Ranaldi V, Fabi K, Cafazzo V, Fringuelli F, et al. Famous faces and voices: differential profiles in early right and left semantic dementia and in Alzheimer’s disease. Neuropsychologia. 2017;94:118–28 A comparison of the cognitive mechanisms and neural substrates of multimodal person recognition impairment in FTD vs. AD. PubMed • Luzzi S, Baldinelli S, Ranaldi V, Fabi K, Cafazzo V, Fringuelli F, et al. Famous faces and voices: differential profiles in early right and left semantic dementia and in Alzheimer’s disease. Neuropsychologia. 2017;94:118–28 A comparison of the cognitive mechanisms and neural substrates of multimodal person recognition impairment in FTD vs. AD. PubMed
88.
go back to reference Montembeault M, Brambati SM, Joubert S, Boukadi M, Chapleau M, RJr L, et al. Naming unique entities in the semantic variant of primary progressive aphasia and Alzheimer’s disease: towards a better understanding of the semantic impairment. Neuropsychologia. 2017;95:11–20.PubMed Montembeault M, Brambati SM, Joubert S, Boukadi M, Chapleau M, RJr L, et al. Naming unique entities in the semantic variant of primary progressive aphasia and Alzheimer’s disease: towards a better understanding of the semantic impairment. Neuropsychologia. 2017;95:11–20.PubMed
89.
go back to reference Werheid K, Clare L. Are faces special in Alzheimer’s disease? Cognitive conceptualization, neural correlates and diagnostic relevance of impaired memory for faces and names. Cortex. 2007;43:898–906.PubMed Werheid K, Clare L. Are faces special in Alzheimer’s disease? Cognitive conceptualization, neural correlates and diagnostic relevance of impaired memory for faces and names. Cortex. 2007;43:898–906.PubMed
90.
go back to reference Grilli MD, Bercel JJ, Wank AA, Rapcsak SZ. The contribution of left anterior ventrolateral temporal lobe to the retrieval of personal semantics. Neuropsychologia. 2018;117:178–87.PubMed Grilli MD, Bercel JJ, Wank AA, Rapcsak SZ. The contribution of left anterior ventrolateral temporal lobe to the retrieval of personal semantics. Neuropsychologia. 2018;117:178–87.PubMed
91.
go back to reference Drane DL, Ojemann JG, Phatak V, Loring DW, Gross RE, Hebb AO, et al. Famous face identification in temporal lobe epilepsy: support for a multimodal integration model of semantic memory. Cortex. 2013;49:1648–67.PubMed Drane DL, Ojemann JG, Phatak V, Loring DW, Gross RE, Hebb AO, et al. Famous face identification in temporal lobe epilepsy: support for a multimodal integration model of semantic memory. Cortex. 2013;49:1648–67.PubMed
92.
go back to reference Benke T, Kuen E, Schwarz M, Walser G. Proper name retrieval in temporal lobe epilepsy: naming of famous faces and landmarks. Epilepsy Behav. 2013;27:371–7.PubMed Benke T, Kuen E, Schwarz M, Walser G. Proper name retrieval in temporal lobe epilepsy: naming of famous faces and landmarks. Epilepsy Behav. 2013;27:371–7.PubMed
93.
go back to reference Gainotti G. Face familiarity feelings, the right temporal lobe and the possible underlying neural mechanisms. Brain Res Rev. 2007;56:214–35.PubMed Gainotti G. Face familiarity feelings, the right temporal lobe and the possible underlying neural mechanisms. Brain Res Rev. 2007;56:214–35.PubMed
94.
go back to reference Rapcsak SZ, Nielsen MA, Littrell LD, Glisky EL, Kaszniak AW, Laguna JF. Face memory impairments in patients with frontal lobe damage. Neurology. 2001;57:1168–75.PubMed Rapcsak SZ, Nielsen MA, Littrell LD, Glisky EL, Kaszniak AW, Laguna JF. Face memory impairments in patients with frontal lobe damage. Neurology. 2001;57:1168–75.PubMed
95.
go back to reference Rapcsak SZ, Reminger SL, Glisky EL, Kaszniak AW, Comer JF. Neuropsychological mechanisms of false facial recognition following frontal lobe damage. Cogn Neuropsychol. 1999;16:267–92. Rapcsak SZ, Reminger SL, Glisky EL, Kaszniak AW, Comer JF. Neuropsychological mechanisms of false facial recognition following frontal lobe damage. Cogn Neuropsychol. 1999;16:267–92.
Metadata
Title
Face Recognition
Author
Steven Z. Rapcsak
Publication date
01-07-2019
Publisher
Springer US
Published in
Current Neurology and Neuroscience Reports / Issue 7/2019
Print ISSN: 1528-4042
Electronic ISSN: 1534-6293
DOI
https://doi.org/10.1007/s11910-019-0960-9

Other articles of this Issue 7/2019

Current Neurology and Neuroscience Reports 7/2019 Go to the issue

Movement Disorders (T. Simuni, Section Editor)

Paroxysmal Movement Disorders: Recent Advances

Headache (R.B. Halker Singh, Section Editor)

Cold Stimulus Headache

Stroke (H.C. Diener, Section Editor)

Patients on NOACs in the Emergency Room

Headache (R.B. Halker Singh, Section Editor)

Primary Stabbing Headache

Sleep (M. Thorpy and M. Billiard, Section Editors)

Sleep and Tension-Type Headache