Skip to main content
Top
Published in: Current Neurology and Neuroscience Reports 5/2015

01-05-2015 | Pediatric Neurology (P Pearl, Section Editor)

Glutamate and GABA Imbalance Following Traumatic Brain Injury

Authors: Réjean M. Guerriero, Christopher C. Giza, Alexander Rotenberg

Published in: Current Neurology and Neuroscience Reports | Issue 5/2015

Login to get access

Abstract

Traumatic brain injury (TBI) leads to multiple short- and long-term changes in neuronal circuits that ultimately conclude with an imbalance of cortical excitation and inhibition. Changes in neurotransmitter concentrations, receptor populations, and specific cell survival are important contributing factors. Many of these changes occur gradually, which may explain the vulnerability of the brain to multiple mild impacts, alterations in neuroplasticity, and delays in the presentation of posttraumatic epilepsy. In this review, we provide an overview of normal glutamate and GABA homeostasis and describe acute, subacute, and chronic changes that follow injury. We conclude by highlighting opportunities for therapeutic interventions in this paradigm.
Literature
1.
go back to reference Spruston N. Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci. 2008;9(3):206–21.CrossRefPubMed Spruston N. Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci. 2008;9(3):206–21.CrossRefPubMed
2.
go back to reference Kandel E. Principles of neural science, fifth edition. Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ, editors. McGraw Hill Professional; 2013. p210-306. Kandel E. Principles of neural science, fifth edition. Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ, editors. McGraw Hill Professional; 2013. p210-306.
3.
4.
5.
go back to reference Arundine M, Tymianski M. Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci (CMLS). 2004;61(6):657–68.CrossRef Arundine M, Tymianski M. Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci (CMLS). 2004;61(6):657–68.CrossRef
7.
go back to reference Weiss GH MSA, Vance SC, Grafman JH, Jabbari B. Predicting Posttraumatic Epilepsy in Penetrating Head Injury. Arch Neurol Am Med Assoc. 1986;43(8):771–3.CrossRef Weiss GH MSA, Vance SC, Grafman JH, Jabbari B. Predicting Posttraumatic Epilepsy in Penetrating Head Injury. Arch Neurol Am Med Assoc. 1986;43(8):771–3.CrossRef
8.
go back to reference Salazar A, Jabbari B, Vance SC, Grafman J, Amin D, Dillon JD. Epilepsy after penetrating head injury. I. Clinical correlates: a report of the Vietnam Head Injury Study. Neurology. 1985. pp. 1406–14. Salazar A, Jabbari B, Vance SC, Grafman J, Amin D, Dillon JD. Epilepsy after penetrating head injury. I. Clinical correlates: a report of the Vietnam Head Injury Study. Neurology. 1985. pp. 1406–14.
9.
go back to reference Annegers JF, Rocca WA, Hauser WA. Causes of epilepsy: contributions of the Rochester Epidemiology Project. Mayo Clin Proc. 1996;71(6):570–5.CrossRefPubMed Annegers JF, Rocca WA, Hauser WA. Causes of epilepsy: contributions of the Rochester Epidemiology Project. Mayo Clin Proc. 1996;71(6):570–5.CrossRefPubMed
10.
go back to reference Pitkänen A, Kharatishvili I, Karhunen H, Lukasiuk K, Immonen R, Nairismägi J, et al. Epileptogenesis in experimental models. Epilepsia. 2007;48(s2):13–20.CrossRefPubMed Pitkänen A, Kharatishvili I, Karhunen H, Lukasiuk K, Immonen R, Nairismägi J, et al. Epileptogenesis in experimental models. Epilepsia. 2007;48(s2):13–20.CrossRefPubMed
11.
go back to reference Castile L, Collins CL, McIlvain NM, Comstock RD. The epidemiology of new versus recurrent sports concussions among high school athletes, 2005–2010. Br J Sports Med. 2012;46(8):603–10.CrossRefPubMed Castile L, Collins CL, McIlvain NM, Comstock RD. The epidemiology of new versus recurrent sports concussions among high school athletes, 2005–2010. Br J Sports Med. 2012;46(8):603–10.CrossRefPubMed
12.
go back to reference Chamoun R, Suki D, Gopinath SP, Goodman JC, Robertson C. Role of extracellular glutamate measured by cerebral microdialysis in severe traumatic brain injury. J Neurosurg. 2010;113(3):564–70.CrossRefPubMedCentralPubMed Chamoun R, Suki D, Gopinath SP, Goodman JC, Robertson C. Role of extracellular glutamate measured by cerebral microdialysis in severe traumatic brain injury. J Neurosurg. 2010;113(3):564–70.CrossRefPubMedCentralPubMed
13.••
go back to reference Goodrich GS, Kabakov AY, Hameed MQ, Dhamne SC, Rosenberg PA, Rotenberg A. Ceftriaxone treatment after traumatic brain injury restores expression of the glutamate transporter, GLT-1, reduces regional gliosis, and reduces post-traumatic seizures in the rat. J Neurotrauma. 2013;30(16):1434–41. This work highlights a potential neuroprotective mechanism by restoring the glutamate transporter with ceftriaxone.CrossRefPubMedCentralPubMed Goodrich GS, Kabakov AY, Hameed MQ, Dhamne SC, Rosenberg PA, Rotenberg A. Ceftriaxone treatment after traumatic brain injury restores expression of the glutamate transporter, GLT-1, reduces regional gliosis, and reduces post-traumatic seizures in the rat. J Neurotrauma. 2013;30(16):1434–41. This work highlights a potential neuroprotective mechanism by restoring the glutamate transporter with ceftriaxone.CrossRefPubMedCentralPubMed
14.
go back to reference Folkersma H, Dingley JCF, van Berckel BN, Rozemuller A, Boellaard R, Huisman MC, et al. Increased cerebral (R)-[11C]PK11195 uptake and glutamate release in a rat model of traumatic brain injury: a longitudinal pilot study. J Neuroinflammation. BioMed Central Ltd; 2011;8(1):67. Folkersma H, Dingley JCF, van Berckel BN, Rozemuller A, Boellaard R, Huisman MC, et al. Increased cerebral (R)-[11C]PK11195 uptake and glutamate release in a rat model of traumatic brain injury: a longitudinal pilot study. J Neuroinflammation. BioMed Central Ltd; 2011;8(1):67.
15.
go back to reference Goforth PB, Ren J, Schwartz BS, Satin LS. Excitatory synaptic transmission and network activity are depressed following mechanical injury in cortical neurons. J Neurophysiol. 2011;105(5):2350–63.CrossRefPubMedCentralPubMed Goforth PB, Ren J, Schwartz BS, Satin LS. Excitatory synaptic transmission and network activity are depressed following mechanical injury in cortical neurons. J Neurophysiol. 2011;105(5):2350–63.CrossRefPubMedCentralPubMed
16.
go back to reference Luo P, Fei F, Zhang L, Qu Y, Fei Z. The role of glutamate receptors in traumatic brain injury: implications for postsynaptic density in pathophysiology. Brain Res Bull. 2011;85(6):313–20.CrossRefPubMed Luo P, Fei F, Zhang L, Qu Y, Fei Z. The role of glutamate receptors in traumatic brain injury: implications for postsynaptic density in pathophysiology. Brain Res Bull. 2011;85(6):313–20.CrossRefPubMed
17.
go back to reference Krebs AH. Metabolism of amino-acids: the synthesis of glutamine from glutamic acid and ammonia, and the enzymatic hydrolysis of glutamine in animal tissues. Biochem J. 1953;29(8):1951–69. Krebs AH. Metabolism of amino-acids: the synthesis of glutamine from glutamic acid and ammonia, and the enzymatic hydrolysis of glutamine in animal tissues. Biochem J. 1953;29(8):1951–69.
18.
go back to reference Neher E, Sakaba T. Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron. 2008;59(6):861–72.CrossRefPubMed Neher E, Sakaba T. Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron. 2008;59(6):861–72.CrossRefPubMed
19.
go back to reference Furness DN, Dehnes Y, Akhtar AQ, Rossi DJ, Hamann M, Grutle NJ, et al. A quantitative assessment of glutamate uptake into hippocampal synaptic terminals and astrocytes: new insights into a neuronal role for excitatory amino acid transporter 2 (EAAT2). Neuroscience. 2008;157(1):80–94.CrossRefPubMedCentralPubMed Furness DN, Dehnes Y, Akhtar AQ, Rossi DJ, Hamann M, Grutle NJ, et al. A quantitative assessment of glutamate uptake into hippocampal synaptic terminals and astrocytes: new insights into a neuronal role for excitatory amino acid transporter 2 (EAAT2). Neuroscience. 2008;157(1):80–94.CrossRefPubMedCentralPubMed
20.
go back to reference Melone M, Bellesi M, Conti F. Synaptic localization of GLT-1a in the rat somatic sensory cortex. Glia. 2009;57(1):108–17.CrossRefPubMed Melone M, Bellesi M, Conti F. Synaptic localization of GLT-1a in the rat somatic sensory cortex. Glia. 2009;57(1):108–17.CrossRefPubMed
21.
go back to reference Walls AB, Waagepetersen HS, Bak LK, Schousboe A, Sonnewald U. The glutamine-glutamate/GABA cycle: function, regional differences in glutamate and GABA production and effects of interference with GABA metabolism. Neurochem Res. 2014. Walls AB, Waagepetersen HS, Bak LK, Schousboe A, Sonnewald U. The glutamine-glutamate/GABA cycle: function, regional differences in glutamate and GABA production and effects of interference with GABA metabolism. Neurochem Res. 2014.
22.
go back to reference Collingridge GL, Kehl SJ, McLennan H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol Lond. 1983;334:33–46.CrossRefPubMedCentralPubMed Collingridge GL, Kehl SJ, McLennan H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol Lond. 1983;334:33–46.CrossRefPubMedCentralPubMed
23.
go back to reference Paula-Lima AC, Brito-Moreira J, Ferreira ST. Deregulation of excitatory neurotransmission underlying synapse failure in Alzheimer’s disease. J Neurochem. 2013;126(2):191–202.CrossRefPubMed Paula-Lima AC, Brito-Moreira J, Ferreira ST. Deregulation of excitatory neurotransmission underlying synapse failure in Alzheimer’s disease. J Neurochem. 2013;126(2):191–202.CrossRefPubMed
24.
go back to reference Featherstone RE, Shin R, Kogan JH, Liang Y, Matsumoto M, Siegel SJ. Mice with subtle reduction of NMDA NR1 receptor subunit expression have a selective decrease in mismatch negativity: implications for schizophrenia prodromal population. Neurobiol Dis. Elsevier B.V; 2015; 73(C):289–95. Featherstone RE, Shin R, Kogan JH, Liang Y, Matsumoto M, Siegel SJ. Mice with subtle reduction of NMDA NR1 receptor subunit expression have a selective decrease in mismatch negativity: implications for schizophrenia prodromal population. Neurobiol Dis. Elsevier B.V; 2015; 73(C):289–95.
25.
go back to reference Furukawa H, Singh SK, Mancusso R, Gouaux E. Subunit arrangement and function in NMDA receptors. Nature. 2005;438(7065):185–92.CrossRefPubMed Furukawa H, Singh SK, Mancusso R, Gouaux E. Subunit arrangement and function in NMDA receptors. Nature. 2005;438(7065):185–92.CrossRefPubMed
26.
go back to reference Chen Q, He S, Hu XL, Yu J, Zhou Y, Zheng J, et al. Differential roles of NR2A- and NR2B-containing NMDA receptors in activity-dependent brain-derived neurotrophic factor gene regulation and limbic epileptogenesis. J Neurosci. 2007;27(3):542–52.CrossRefPubMed Chen Q, He S, Hu XL, Yu J, Zhou Y, Zheng J, et al. Differential roles of NR2A- and NR2B-containing NMDA receptors in activity-dependent brain-derived neurotrophic factor gene regulation and limbic epileptogenesis. J Neurosci. 2007;27(3):542–52.CrossRefPubMed
27.
go back to reference Zhou X, Moon C, Zheng F, Luo Y, Soellner D, Nuñez JL, et al. N-methyl-D-aspartate-stimulated ERK1/2 signaling and the transcriptional up-regulation of plasticity-related genes are developmentally regulated following in vitro neuronal maturation. J Neurosci Res. 2009;87(12):2632–44.CrossRefPubMedCentralPubMed Zhou X, Moon C, Zheng F, Luo Y, Soellner D, Nuñez JL, et al. N-methyl-D-aspartate-stimulated ERK1/2 signaling and the transcriptional up-regulation of plasticity-related genes are developmentally regulated following in vitro neuronal maturation. J Neurosci Res. 2009;87(12):2632–44.CrossRefPubMedCentralPubMed
28.
go back to reference Choo AM, Geddes-Klein DM, Hockenberry A, Scarsella D, Mesfin MN, Singh P, et al. NR2A and NR2B subunits differentially mediate MAP kinase signaling and mitochondrial morphology following excitotoxic insult. Neurochem Int. Elsevier Ltd; 2012;60(5):506–16. Choo AM, Geddes-Klein DM, Hockenberry A, Scarsella D, Mesfin MN, Singh P, et al. NR2A and NR2B subunits differentially mediate MAP kinase signaling and mitochondrial morphology following excitotoxic insult. Neurochem Int. Elsevier Ltd; 2012;60(5):506–16.
29.
go back to reference Li B, Chen N, Luo T, Otsu Y, Murphy TH, Raymond LA. Differential regulation of synaptic and extra-synaptic NMDA receptors. Nat Neurosci. 2002;5(9):833–4.CrossRefPubMed Li B, Chen N, Luo T, Otsu Y, Murphy TH, Raymond LA. Differential regulation of synaptic and extra-synaptic NMDA receptors. Nat Neurosci. 2002;5(9):833–4.CrossRefPubMed
30.
go back to reference Hardingham GE, Bading H. The yin and yang of NMDA receptor signalling. Trends Neurosci. 2003;26(2):81–9.CrossRefPubMed Hardingham GE, Bading H. The yin and yang of NMDA receptor signalling. Trends Neurosci. 2003;26(2):81–9.CrossRefPubMed
31.••
go back to reference Patel TP, Ventre SC, Geddes-Klein D, Singh PK, Meaney DF. Single-neuron NMDA receptor phenotype influences neuronal rewiring and reintegration following traumatic injury. J Neurosci. 2014;34(12):4200–13. This elegant study begins to examine the underlying mechanism for changes in connectivity following TBI.CrossRefPubMedCentralPubMed Patel TP, Ventre SC, Geddes-Klein D, Singh PK, Meaney DF. Single-neuron NMDA receptor phenotype influences neuronal rewiring and reintegration following traumatic injury. J Neurosci. 2014;34(12):4200–13. This elegant study begins to examine the underlying mechanism for changes in connectivity following TBI.CrossRefPubMedCentralPubMed
32.
go back to reference Liu L, Wong TP, Pozza MF, Lingenhoehl K, Wang Y, Sheng M, et al. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science. 2004;304(5673):1021–4.CrossRefPubMed Liu L, Wong TP, Pozza MF, Lingenhoehl K, Wang Y, Sheng M, et al. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science. 2004;304(5673):1021–4.CrossRefPubMed
33.
go back to reference Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron. 1994;12(3):529–40.CrossRefPubMed Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron. 1994;12(3):529–40.CrossRefPubMed
34.
go back to reference Chater TE. The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity. 2014 24:1–14. Chater TE. The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity. 2014 24:1–14.
35.
go back to reference Sanderson DJ, Good MA, Seeburg PH, Sprengel R, Rawlins JNP, Bannerman DM. The role of the GluR-A (GluR1) AMPA receptor subunit in learning and memory. Progress in Brain Research. 2008. 20 p. Sanderson DJ, Good MA, Seeburg PH, Sprengel R, Rawlins JNP, Bannerman DM. The role of the GluR-A (GluR1) AMPA receptor subunit in learning and memory. Progress in Brain Research. 2008. 20 p.
36.
go back to reference Wang JQ, Arora A, Yang L, Parelkar NK, Zhang G, Liu X, et al. Phosphorylation of AMPA receptors: mechanisms and synaptic plasticity. Mol Neurobiol. Humana Press; 2005;32(3):237–49. Wang JQ, Arora A, Yang L, Parelkar NK, Zhang G, Liu X, et al. Phosphorylation of AMPA receptors: mechanisms and synaptic plasticity. Mol Neurobiol. Humana Press; 2005;32(3):237–49.
37.
go back to reference Isaac JTR, Ashby MC, McBain CJ. The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron. 2007;54(6):859–71.CrossRefPubMed Isaac JTR, Ashby MC, McBain CJ. The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron. 2007;54(6):859–71.CrossRefPubMed
38.
go back to reference Seidenman KJ, Steinberg JP, Huganir R, Malinow R. Glutamate receptor subunit 2 Serine 880 phosphorylation modulates synaptic transmission and mediates plasticity in CA1 pyramidal cells. J Neurosci. 2003;23(27):9220–8.PubMed Seidenman KJ, Steinberg JP, Huganir R, Malinow R. Glutamate receptor subunit 2 Serine 880 phosphorylation modulates synaptic transmission and mediates plasticity in CA1 pyramidal cells. J Neurosci. 2003;23(27):9220–8.PubMed
39.
go back to reference Cooper JR, Bloom FE, Roth RH. The biochemical basis of neuropharmacology. 8th ed. New York: University Press; 2002. Cooper JR, Bloom FE, Roth RH. The biochemical basis of neuropharmacology. 8th ed. New York: University Press; 2002.
41.
go back to reference Farrant M, Nusser Z. Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors. Nat Rev Neurosci. 2005;6(3):215–29.CrossRefPubMed Farrant M, Nusser Z. Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors. Nat Rev Neurosci. 2005;6(3):215–29.CrossRefPubMed
42.
go back to reference Bartos M, Vida I, Jonas P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci. 2007;8(1):45–56.CrossRefPubMed Bartos M, Vida I, Jonas P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci. 2007;8(1):45–56.CrossRefPubMed
43.
go back to reference Kharlamov EA, Lepsveridze E, Meparishvili M, Solomonia RO, Lu B, Miller ER, et al. Alterations of GABAA and glutamate receptor subunits and heat shock protein in rat hippocampus following traumatic brain injury and in posttraumatic epilepsy. Epilepsy Res. Elsevier B.V; 2011; 95(1–2):20–34. Kharlamov EA, Lepsveridze E, Meparishvili M, Solomonia RO, Lu B, Miller ER, et al. Alterations of GABAA and glutamate receptor subunits and heat shock protein in rat hippocampus following traumatic brain injury and in posttraumatic epilepsy. Epilepsy Res. Elsevier B.V; 2011; 95(1–2):20–34.
44.
go back to reference Gonchar Y, Wang Q, Burkhalter A. Multiple distinct subtypes of GABAergic neurons in mouse visual cortex identified by triple immunostaining. Front Neuroanat. 2007;1:3.PubMedCentralPubMed Gonchar Y, Wang Q, Burkhalter A. Multiple distinct subtypes of GABAergic neurons in mouse visual cortex identified by triple immunostaining. Front Neuroanat. 2007;1:3.PubMedCentralPubMed
45.
go back to reference Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature. 2009;459(7247):698–702.CrossRefPubMedCentralPubMed Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature. 2009;459(7247):698–702.CrossRefPubMedCentralPubMed
46.
go back to reference Chagnac-Amitai Y, Connors BW. Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition. J Neurophysiol. 1989;61(4):747–58.PubMed Chagnac-Amitai Y, Connors BW. Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition. J Neurophysiol. 1989;61(4):747–58.PubMed
47.
go back to reference Bramlett H, Dietrich WD. Long-term consequences of traumatic brain injury: current status of potential mechanisms of injury and neurologic outcomes. J Neurotrauma. 2014 26:140826105716007. Bramlett H, Dietrich WD. Long-term consequences of traumatic brain injury: current status of potential mechanisms of injury and neurologic outcomes. J Neurotrauma. 2014 26:140826105716007.
48.
go back to reference Bullock R, Zauner A, Woodward JJ, Myseros J, Choi SC, Ward JD, et al. Factors affecting excitatory amino acid release following severe human head injury. J Neurosurg. 1998;89(4):507–18.CrossRefPubMed Bullock R, Zauner A, Woodward JJ, Myseros J, Choi SC, Ward JD, et al. Factors affecting excitatory amino acid release following severe human head injury. J Neurosurg. 1998;89(4):507–18.CrossRefPubMed
49.
go back to reference Yokobori, S & Bullock, MR. Pathobiology of traumatic brain injury. In: Zasler ND, Katz DI & Zafonte RD (Eds) Brain Injury Medicine, 2nd Edition. Demos Medical Publishing; 2012. p137-147 Yokobori, S & Bullock, MR. Pathobiology of traumatic brain injury. In: Zasler ND, Katz DI & Zafonte RD (Eds) Brain Injury Medicine, 2nd Edition. Demos Medical Publishing; 2012. p137-147
50.
go back to reference Vespa P, Prins M, Ronne-Engstrom E, Caron M, Shalmon E, Hovda DA, et al. Increase in extracellular glutamate caused by reduced cerebral perfusion pressure and seizures after human traumatic brain injury: a microdialysis study. J Neurosurg. 1998;89(6):971–82.CrossRefPubMed Vespa P, Prins M, Ronne-Engstrom E, Caron M, Shalmon E, Hovda DA, et al. Increase in extracellular glutamate caused by reduced cerebral perfusion pressure and seizures after human traumatic brain injury: a microdialysis study. J Neurosurg. 1998;89(6):971–82.CrossRefPubMed
51.
go back to reference Katayama Y, Becker DP, Tamura T, Hovda DA. Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J Neurosurg. 1990;73(6):889–900.CrossRefPubMed Katayama Y, Becker DP, Tamura T, Hovda DA. Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J Neurosurg. 1990;73(6):889–900.CrossRefPubMed
52.
go back to reference Xu S, Zhuo J, Racz J, Shi D, Roys S, Fiskum G, et al. Early microstructural and metabolic changes following controlled cortical impact injury in rat: a magnetic resonance imaging and spectroscopy study. J Neurotrauma. 2011;28(10):2091–102.CrossRefPubMedCentralPubMed Xu S, Zhuo J, Racz J, Shi D, Roys S, Fiskum G, et al. Early microstructural and metabolic changes following controlled cortical impact injury in rat: a magnetic resonance imaging and spectroscopy study. J Neurotrauma. 2011;28(10):2091–102.CrossRefPubMedCentralPubMed
53.
go back to reference Harris JL, Yeh H-W, Choi I-Y, Lee P, Berman NE, Swerdlow RH, et al. Altered neurochemical profile after traumatic brain injury:. Nature Publishing Group; 2012; 32(12):2122–34. Harris JL, Yeh H-W, Choi I-Y, Lee P, Berman NE, Swerdlow RH, et al. Altered neurochemical profile after traumatic brain injury:. Nature Publishing Group; 2012; 32(12):2122–34.
54.
go back to reference Henry LC, Tremblay S, Boulanger Y, Ellemberg D, Lassonde M. Neurometabolic changes in the acute phase after sports concussions correlate with symptom severity. J Neurotrauma. 2010;27(1):65–76.CrossRefPubMed Henry LC, Tremblay S, Boulanger Y, Ellemberg D, Lassonde M. Neurometabolic changes in the acute phase after sports concussions correlate with symptom severity. J Neurotrauma. 2010;27(1):65–76.CrossRefPubMed
55.
go back to reference Saatman KE, Duhaime A-C, Bullock R, Maas AIR, Valadka A, Manley GT. Classification of traumatic brain injury for targeted therapies. J Neurotrauma. 2008;25(7):719–38.CrossRefPubMedCentralPubMed Saatman KE, Duhaime A-C, Bullock R, Maas AIR, Valadka A, Manley GT. Classification of traumatic brain injury for targeted therapies. J Neurotrauma. 2008;25(7):719–38.CrossRefPubMedCentralPubMed
56.
go back to reference Lai PC, Huang YT, Wu CC, Lai C-J, Wang PJ, Chiu TH. Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats. J Biomed Sci. BioMed Central Ltd; 2011; 18(1):69. Lai PC, Huang YT, Wu CC, Lai C-J, Wang PJ, Chiu TH. Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats. J Biomed Sci. BioMed Central Ltd; 2011; 18(1):69.
57.
go back to reference Chu K, Lee ST, Sinn DI, Ko SY, Kim EH, Kim JM, et al. Pharmacological induction of ischemic tolerance by glutamate transporter-1 (EAAT2) upregulation. Stroke. 2006;38(1):177–82.CrossRefPubMed Chu K, Lee ST, Sinn DI, Ko SY, Kim EH, Kim JM, et al. Pharmacological induction of ischemic tolerance by glutamate transporter-1 (EAAT2) upregulation. Stroke. 2006;38(1):177–82.CrossRefPubMed
58.
go back to reference Miller BR, Dorner JL, Shou M, Sari Y, Barton SJ, Sengelaub DR, et al. Up-regulation of GLT1 expression increases glutamate uptake and attenuates the Huntington’s disease phenotype in the R6/2 mouse. Neuroscience. 2008;153(1):329–37.CrossRefPubMedCentralPubMed Miller BR, Dorner JL, Shou M, Sari Y, Barton SJ, Sengelaub DR, et al. Up-regulation of GLT1 expression increases glutamate uptake and attenuates the Huntington’s disease phenotype in the R6/2 mouse. Neuroscience. 2008;153(1):329–37.CrossRefPubMedCentralPubMed
59.
go back to reference Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature. 2005;433(7021):73–7.CrossRefPubMed Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature. 2005;433(7021):73–7.CrossRefPubMed
60.••
go back to reference Cantu D, Walker K, Andresen L, Taylor-Weiner A, Hampton D, Tesco G, et al. Traumatic brain injury increases cortical glutamate network activity by compromising GABAergic control. Cereb Cortex. 2014. This study looks at the relationship of glutamate and GABA changes in cell physiology and populations of GABA interneurons. Cantu D, Walker K, Andresen L, Taylor-Weiner A, Hampton D, Tesco G, et al. Traumatic brain injury increases cortical glutamate network activity by compromising GABAergic control. Cereb Cortex. 2014. This study looks at the relationship of glutamate and GABA changes in cell physiology and populations of GABA interneurons.
61.
go back to reference Kumar A, Zou L, Yuan X, Long Y, Yang K. N-methyl-D-aspartate receptors: transient loss of NR1/NR2A/NR2B subunits after traumatic brain injury in a rodent model. J Neurosci Res. 2002;67(6):781–6.CrossRefPubMed Kumar A, Zou L, Yuan X, Long Y, Yang K. N-methyl-D-aspartate receptors: transient loss of NR1/NR2A/NR2B subunits after traumatic brain injury in a rodent model. J Neurosci Res. 2002;67(6):781–6.CrossRefPubMed
62.•
go back to reference Park Y, Luo T, Zhang F, Liu C, Bramlett HM, Dietrich WD, et al. Downregulation of Src-kinase and glutamate-receptor phosphorylation after traumatic brain injury. J Cereb Blood Flow Metab. 2013;33(10):1642–9. This study examines potential mechanisms of NMDA receptor changes following TBI.CrossRefPubMedCentralPubMed Park Y, Luo T, Zhang F, Liu C, Bramlett HM, Dietrich WD, et al. Downregulation of Src-kinase and glutamate-receptor phosphorylation after traumatic brain injury. J Cereb Blood Flow Metab. 2013;33(10):1642–9. This study examines potential mechanisms of NMDA receptor changes following TBI.CrossRefPubMedCentralPubMed
63.
go back to reference Giza CC, SantaMaria NS, Hovda DA. N-methyl-D-aspartate receptor subunit changes after traumatic injury to the developing brain. J Neurotrauma. 2006;23(6):950–61.CrossRefPubMedCentralPubMed Giza CC, SantaMaria NS, Hovda DA. N-methyl-D-aspartate receptor subunit changes after traumatic injury to the developing brain. J Neurotrauma. 2006;23(6):950–61.CrossRefPubMedCentralPubMed
64.
go back to reference Fineman I, Giza CC, Nahed BV, Lee SM, Hovda DA. Inhibition of neocortical plasticity during development by a moderate concussive brain injury. J Neurotrauma. 2000;17(9):739–49.CrossRefPubMed Fineman I, Giza CC, Nahed BV, Lee SM, Hovda DA. Inhibition of neocortical plasticity during development by a moderate concussive brain injury. J Neurotrauma. 2000;17(9):739–49.CrossRefPubMed
65.
go back to reference Ip EY-Y, Giza CC, Griesbach GS, Hovda DA. Effects of enriched environment and fluid percussion injury on dendritic arborization within the cerebral cortex of the developing rat. J Neurotrauma. 2002;19(5):573–85.CrossRefPubMed Ip EY-Y, Giza CC, Griesbach GS, Hovda DA. Effects of enriched environment and fluid percussion injury on dendritic arborization within the cerebral cortex of the developing rat. J Neurotrauma. 2002;19(5):573–85.CrossRefPubMed
66.
go back to reference Giza CC, Griesbach GS, Hovda DA. Experience-dependent behavioral plasticity is disturbed following traumatic injury to the immature brain. Behav Brain Res. 2005;157(1):11–22.CrossRefPubMed Giza CC, Griesbach GS, Hovda DA. Experience-dependent behavioral plasticity is disturbed following traumatic injury to the immature brain. Behav Brain Res. 2005;157(1):11–22.CrossRefPubMed
67.•
go back to reference Wang Y, Hameed MQ, Rakhade SN, Iglesias AH, Muller PA, Mou D-L, et al. Hippocampal immediate early gene transcription in the rat fluid percussion traumatic brain injury model. NeuroReport. 2014;25(12):954–9. This study examines down-stream changes in immediate early genes that follow TBI and highlights the NMDA receptor as a potential mediator of these changes.CrossRefPubMed Wang Y, Hameed MQ, Rakhade SN, Iglesias AH, Muller PA, Mou D-L, et al. Hippocampal immediate early gene transcription in the rat fluid percussion traumatic brain injury model. NeuroReport. 2014;25(12):954–9. This study examines down-stream changes in immediate early genes that follow TBI and highlights the NMDA receptor as a potential mediator of these changes.CrossRefPubMed
68.
go back to reference Atkins CM, Chen S, Alonso OF, Dietrich WD, Hu B-R. Activation of calcium/calmodulin-dependent protein kinases after traumatic brain injury. J Cereb Blood Flow Metab. 2006;26(12):1507–18.CrossRefPubMed Atkins CM, Chen S, Alonso OF, Dietrich WD, Hu B-R. Activation of calcium/calmodulin-dependent protein kinases after traumatic brain injury. J Cereb Blood Flow Metab. 2006;26(12):1507–18.CrossRefPubMed
69.
go back to reference Bell JD, Park E, Ai J, Baker AJ. PICK1-mediated GluR2 endocytosis contributes to cellular injury after neuronal trauma. Cell Death Differ. 2009;16(12):1665–80.CrossRefPubMed Bell JD, Park E, Ai J, Baker AJ. PICK1-mediated GluR2 endocytosis contributes to cellular injury after neuronal trauma. Cell Death Differ. 2009;16(12):1665–80.CrossRefPubMed
70.
go back to reference Bao Y-H, Bramlett HM, Atkins CM, Truettner JS, Lotocki G, Alonso OF, et al. Post-traumatic seizures exacerbate histopathological damage after fluid-percussion brain injury. J Neurotrauma. 2011;28(1):35–42.CrossRefPubMedCentralPubMed Bao Y-H, Bramlett HM, Atkins CM, Truettner JS, Lotocki G, Alonso OF, et al. Post-traumatic seizures exacerbate histopathological damage after fluid-percussion brain injury. J Neurotrauma. 2011;28(1):35–42.CrossRefPubMedCentralPubMed
71.•
go back to reference Raible DJ, Frey LC, Cruz Del Angel Y, Russek SJ, Brooks-Kayal AR. GABA A receptor regulation after experimental traumatic brain injury. J Neurotrauma. 2012;29(16):2548–54. This study examines potential mechanisms of GABA-A receptor changes following TBI.CrossRefPubMedCentralPubMed Raible DJ, Frey LC, Cruz Del Angel Y, Russek SJ, Brooks-Kayal AR. GABA A receptor regulation after experimental traumatic brain injury. J Neurotrauma. 2012;29(16):2548–54. This study examines potential mechanisms of GABA-A receptor changes following TBI.CrossRefPubMedCentralPubMed
72.
go back to reference Gibson CJ, Meyer RC, Hamm RJ. Traumatic brain injury and the effects of diazepam, diltiazem, and MK-801 on GABA-A receptor subunit expression in rat hippocampus. J Biomed Sci. 2010;17(1):38.CrossRefPubMedCentralPubMed Gibson CJ, Meyer RC, Hamm RJ. Traumatic brain injury and the effects of diazepam, diltiazem, and MK-801 on GABA-A receptor subunit expression in rat hippocampus. J Biomed Sci. 2010;17(1):38.CrossRefPubMedCentralPubMed
73.
go back to reference Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci. 1997;17(10):3727–38.PubMed Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci. 1997;17(10):3727–38.PubMed
74.
go back to reference Lowenstein DH, Thomas MJ, Smith DH, McIntosh TK. Selective vulnerability of dentate hilar neurons following traumatic brain injury: a potential mechanistic link between head trauma and disorders of the hippocampus. J Neurosci. 1992;12(12):4846–53.PubMed Lowenstein DH, Thomas MJ, Smith DH, McIntosh TK. Selective vulnerability of dentate hilar neurons following traumatic brain injury: a potential mechanistic link between head trauma and disorders of the hippocampus. J Neurosci. 1992;12(12):4846–53.PubMed
75.•
go back to reference Reger ML, Poulos AM, Buen F, Giza CC, Hovda DA, Fanselow MS. Concussive brain injury enhances fear learning and excitatory processes in the amygdala. Biol Psychiatry. 2012;71(4):335–43. This paper provides molecular underpinings of enhanced fear-learning following traumatic brain injury in an animal model. This may have applications to understanding post-traumatic disorder in the setting of TBI. Reger ML, Poulos AM, Buen F, Giza CC, Hovda DA, Fanselow MS. Concussive brain injury enhances fear learning and excitatory processes in the amygdala. Biol Psychiatry. 2012;71(4):335–43. This paper provides molecular underpinings of enhanced fear-learning following traumatic brain injury in an animal model. This may have applications to understanding post-traumatic disorder in the setting of TBI.
76.
go back to reference Elder GA, Dorr NP, De Gasperi R, Gama Sosa MA, Shaughness MC, Maudlin-Jeronimo E, et al. Blast exposure induces post-traumatic stress disorder-related traits in a rat model of mild traumatic brain injury. J Neurotrauma. 2012;29(16):2564–75.CrossRefPubMedCentralPubMed Elder GA, Dorr NP, De Gasperi R, Gama Sosa MA, Shaughness MC, Maudlin-Jeronimo E, et al. Blast exposure induces post-traumatic stress disorder-related traits in a rat model of mild traumatic brain injury. J Neurotrauma. 2012;29(16):2564–75.CrossRefPubMedCentralPubMed
77.
go back to reference Meyer DL, Davies DR, Barr JL, Manzerra P, Forster GL. Mild traumatic brain injury in the rat alters neuronal number in the limbic system and increases conditioned fear and anxiety-like behaviors. Exp Neurol. 2012;235(2):574–87. Elsevier Inc.CrossRefPubMed Meyer DL, Davies DR, Barr JL, Manzerra P, Forster GL. Mild traumatic brain injury in the rat alters neuronal number in the limbic system and increases conditioned fear and anxiety-like behaviors. Exp Neurol. 2012;235(2):574–87. Elsevier Inc.CrossRefPubMed
78.
go back to reference Villamar MF, Santos Portilla A, Fregni F, Zafonte R. Noninvasive brain stimulation to modulate neuroplasticity in traumatic brain injury. Neuromodulation: Technology at the Neural Interface. Blackwell Publishing Inc; 2012; 15(4):326–38 Villamar MF, Santos Portilla A, Fregni F, Zafonte R. Noninvasive brain stimulation to modulate neuroplasticity in traumatic brain injury. Neuromodulation: Technology at the Neural Interface. Blackwell Publishing Inc; 2012; 15(4):326–38
79.
go back to reference Demirtas-Tatlidede A, Vahabzadeh-Hagh AM, Bernabeu M, Tormos JM, Pascual-Leone A. Noninvasive brain stimulation in traumatic brain injury. J Head Trauma Rehabil. 2012;27(4):274–92.CrossRefPubMedCentralPubMed Demirtas-Tatlidede A, Vahabzadeh-Hagh AM, Bernabeu M, Tormos JM, Pascual-Leone A. Noninvasive brain stimulation in traumatic brain injury. J Head Trauma Rehabil. 2012;27(4):274–92.CrossRefPubMedCentralPubMed
81.
go back to reference Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol. 2003;2(3):145–56.CrossRefPubMed Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol. 2003;2(3):145–56.CrossRefPubMed
82.•
go back to reference De Beaumont L, Tremblay S, Poirier J, Lassonde M, Théoret H. Altered bidirectional plasticity and reduced implicit motor learning in concussed athletes. Cereb Cortex. 2012;22(1):112–21. This paper identifies abnormal GABA mediated inhibition following repeated concussions in humans. The authors suggest this may be a mechanism of impaired learning following multiple concussions. De Beaumont L, Tremblay S, Poirier J, Lassonde M, Théoret H. Altered bidirectional plasticity and reduced implicit motor learning in concussed athletes. Cereb Cortex. 2012;22(1):112–21. This paper identifies abnormal GABA mediated inhibition following repeated concussions in humans. The authors suggest this may be a mechanism of impaired learning following multiple concussions.
83.
go back to reference Tremblay S, Beaulé V, Proulx S, Tremblay S, Marjańska M, Doyon J, et al. Multimodal assessment of primary motor cortex integrity following sport concussion in asymptomatic athletes. Clinical Neurophysiology. Int Fed Clin Neurophysiol. 2014;125(7):1371–9.CrossRef Tremblay S, Beaulé V, Proulx S, Tremblay S, Marjańska M, Doyon J, et al. Multimodal assessment of primary motor cortex integrity following sport concussion in asymptomatic athletes. Clinical Neurophysiology. Int Fed Clin Neurophysiol. 2014;125(7):1371–9.CrossRef
84.
go back to reference Hicks RR, Smith DH, Lowenstein DH, Saint Marie R, McIntosh TK. Mild experimental brain injury in the rat induces cognitive deficits associated with regional neuronal loss in the hippocampus. J Neurotrauma. 1993;10(4):405–14.CrossRefPubMed Hicks RR, Smith DH, Lowenstein DH, Saint Marie R, McIntosh TK. Mild experimental brain injury in the rat induces cognitive deficits associated with regional neuronal loss in the hippocampus. J Neurotrauma. 1993;10(4):405–14.CrossRefPubMed
85.
go back to reference Pavlov I, Huusko N, Drexel M, Kirchmair E, Sperk G, Pitkänen A, et al. Progressive loss of phasic, but not tonic, GABAA receptor-mediated inhibition in dentate granule cells in a model of post-traumatic epilepsy in rats. Neuroscience. 2011;194(C):208–19. Elsevier Inc.CrossRefPubMed Pavlov I, Huusko N, Drexel M, Kirchmair E, Sperk G, Pitkänen A, et al. Progressive loss of phasic, but not tonic, GABAA receptor-mediated inhibition in dentate granule cells in a model of post-traumatic epilepsy in rats. Neuroscience. 2011;194(C):208–19. Elsevier Inc.CrossRefPubMed
86.
go back to reference Hameed MQ, Hseieh TH, Goodrich GS, Morales-Quezada JL, Rosenberg PA, Rotenberg A. Ceftriaxone treatment after traumatic brain injury preserves GAD-1 expression in rat cortex after TBI. Washington, DC; 2014 Hameed MQ, Hseieh TH, Goodrich GS, Morales-Quezada JL, Rosenberg PA, Rotenberg A. Ceftriaxone treatment after traumatic brain injury preserves GAD-1 expression in rat cortex after TBI. Washington, DC; 2014
87.
go back to reference Lee HH, Hsieh T-H, Hameed MQ, Hensch TK, Rotenberg A. Loss of parvalbumin interneurons underlies impaired cortical inhibition in post-traumatic epileptogenesis. San Diego, CA; 2013. Lee HH, Hsieh T-H, Hameed MQ, Hensch TK, Rotenberg A. Loss of parvalbumin interneurons underlies impaired cortical inhibition in post-traumatic epileptogenesis. San Diego, CA; 2013.
88.
go back to reference Prince DA, Parada I, Scalise K, Graber K, Jin X, Shen F. Epilepsy following cortical injury: cellular and molecular mechanisms as targets for potential prophylaxis. Epilepsia. Blackwell Publishing Ltd; 50(s2):30–40. Prince DA, Parada I, Scalise K, Graber K, Jin X, Shen F. Epilepsy following cortical injury: cellular and molecular mechanisms as targets for potential prophylaxis. Epilepsia. Blackwell Publishing Ltd; 50(s2):30–40.
89.
go back to reference Darrah SD, Miller MA, Ren D, Hoh NZ, Scanlon JM, Conley YP, et al. Genetic variability in glutamic acid decarboxylase genes: associations with post-traumatic seizures after severe TBI. Epilepsy Res. 2013;103(2–3):180–94. Elsevier B.V.CrossRefPubMedCentralPubMed Darrah SD, Miller MA, Ren D, Hoh NZ, Scanlon JM, Conley YP, et al. Genetic variability in glutamic acid decarboxylase genes: associations with post-traumatic seizures after severe TBI. Epilepsy Res. 2013;103(2–3):180–94. Elsevier B.V.CrossRefPubMedCentralPubMed
90.
go back to reference Hoskison MM, Moore AN, Hu B, Orsi S, Kobori N, Dash PK. Persistent working memory dysfunction following traumatic brain injury: evidence for a time-dependent mechanism. Neuroscience. 2009;159(2):483–91.CrossRefPubMedCentralPubMed Hoskison MM, Moore AN, Hu B, Orsi S, Kobori N, Dash PK. Persistent working memory dysfunction following traumatic brain injury: evidence for a time-dependent mechanism. Neuroscience. 2009;159(2):483–91.CrossRefPubMedCentralPubMed
91.
go back to reference Osteen CL, Giza CC, Hovda DA. Injury-induced alterations in N-methyl-d-aspartate receptor subunit composition contribute to prolonged 45calcium accumulation following lateral fluid percussion. Neuroscience. 2004;128(2):305–22.CrossRefPubMed Osteen CL, Giza CC, Hovda DA. Injury-induced alterations in N-methyl-d-aspartate receptor subunit composition contribute to prolonged 45calcium accumulation following lateral fluid percussion. Neuroscience. 2004;128(2):305–22.CrossRefPubMed
92.
go back to reference Eisenberg MA, Meehan WP, Mannix R. Duration and course of post-concussive symptoms. Pediatrics. Am Acad Pediatr. 2014;133(6):999–1006. Eisenberg MA, Meehan WP, Mannix R. Duration and course of post-concussive symptoms. Pediatrics. Am Acad Pediatr. 2014;133(6):999–1006.
93.
go back to reference Eisenberg MA, Andrea J, Meehan W, Mannix R. Time interval between concussions and symptom duration. Pediatrics. 2013;132(1):8–17.CrossRefPubMed Eisenberg MA, Andrea J, Meehan W, Mannix R. Time interval between concussions and symptom duration. Pediatrics. 2013;132(1):8–17.CrossRefPubMed
94.
go back to reference Collins M, Lovell MR, Iverson GL, Ide T, Maroon J. Examining concussion rates and return to play in high school football players wearing newer helmet technology: a three-year prospective cohort study. Neurosurg. 2006;58(2):275–86. discussion275–86.CrossRef Collins M, Lovell MR, Iverson GL, Ide T, Maroon J. Examining concussion rates and return to play in high school football players wearing newer helmet technology: a three-year prospective cohort study. Neurosurg. 2006;58(2):275–86. discussion275–86.CrossRef
95.
go back to reference Guskiewicz KM, McCrea M, Marshall SW, Cantu RC, Randolph C, Barr W, et al. Cumulative effects associated with recurrent concussion in collegiate football players: the NCAA Concussion Study. JAMA. 2003;290(19):2549–55.CrossRefPubMed Guskiewicz KM, McCrea M, Marshall SW, Cantu RC, Randolph C, Barr W, et al. Cumulative effects associated with recurrent concussion in collegiate football players: the NCAA Concussion Study. JAMA. 2003;290(19):2549–55.CrossRefPubMed
96.
go back to reference Zlotnik A, Sinelnikov I, Gruenbaum BF, Gruenbaum SE, Dubilet M, Dubilet E, et al. Effect of glutamate and blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome and pathohistology of the hippocampus after traumatic brain injury in rats. Anesthesiology. 2012;116(1):73–83.CrossRefPubMed Zlotnik A, Sinelnikov I, Gruenbaum BF, Gruenbaum SE, Dubilet M, Dubilet E, et al. Effect of glutamate and blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome and pathohistology of the hippocampus after traumatic brain injury in rats. Anesthesiology. 2012;116(1):73–83.CrossRefPubMed
97.
go back to reference Mishra M, Singh R, Mukherjee S, Sharma D. Dehydroepiandrosterone’s antiepileptic action in FeCl3-induced epileptogenesis involves upregulation of glutamate transporters. Epilepsy Res. 2013;106(1–2):83–91.CrossRefPubMed Mishra M, Singh R, Mukherjee S, Sharma D. Dehydroepiandrosterone’s antiepileptic action in FeCl3-induced epileptogenesis involves upregulation of glutamate transporters. Epilepsy Res. 2013;106(1–2):83–91.CrossRefPubMed
98.•
go back to reference Kim S, Stephenson MC, Morris PG, Jackson SR. tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7 T magnetic resonance spectroscopy study. NeuroImage. 2014;99:237–43. This study, although not on TBI patients, highlights the ability to directly impact concentrations of neurotransmitters with tDCS and TMS.CrossRefPubMedCentralPubMed Kim S, Stephenson MC, Morris PG, Jackson SR. tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7 T magnetic resonance spectroscopy study. NeuroImage. 2014;99:237–43. This study, although not on TBI patients, highlights the ability to directly impact concentrations of neurotransmitters with tDCS and TMS.CrossRefPubMedCentralPubMed
Metadata
Title
Glutamate and GABA Imbalance Following Traumatic Brain Injury
Authors
Réjean M. Guerriero
Christopher C. Giza
Alexander Rotenberg
Publication date
01-05-2015
Publisher
Springer US
Published in
Current Neurology and Neuroscience Reports / Issue 5/2015
Print ISSN: 1528-4042
Electronic ISSN: 1534-6293
DOI
https://doi.org/10.1007/s11910-015-0545-1

Other articles of this Issue 5/2015

Current Neurology and Neuroscience Reports 5/2015 Go to the issue

Headache (RB Halker, Section Editor)

CGRP Mechanism Antagonists and Migraine Management

Stroke (HP Adams, Section Editor)

Development of Regional Stroke Programs

Sleep (M Thorpy, M Billiard, Section Editors)

Sleep Disorders in Multiple Sclerosis. Review

Movement Disorders (M Okun, Section Editor)

Palliative Care for Parkinson’s Disease: Has the Time Come?