Skip to main content
Top
Published in: Current Neurology and Neuroscience Reports 2/2011

01-04-2011

Molecular Genetics of Neuronal Migration Disorders

Author: Judy S. Liu

Published in: Current Neurology and Neuroscience Reports | Issue 2/2011

Login to get access

Abstract

Cortical malformations associated with defects in neuronal migration result in severe developmental consequences including intractable epilepsy and intellectual disability. Genetic causes of migration defects have been identified with the advent and widespread use of high-resolution MRI and genetic techniques. Thus, the full phenotypic range of these genetic disorders is becoming apparent. Genes that cause lissencephaly, pachygyria, subcortical band heterotopia, and periventricular nodular heterotopias have been defined. Many of these genes are involved in cytoskeletal regulation including the function of microtubules (LIS1, TUBA1A,TUBB3, and DCX) and of actin (FilaminA). Thus, the molecular pathways regulating neuronal migration including the cytoskeletal pathways appear to be defined by human mutation syndromes. Basic science, including cell biology and animal models of these disorders, has informed our understanding of the pathogenesis of neuronal migration disorders and further progress depends on the continued integration of the clinical and basic sciences.
Literature
2.
go back to reference Dobyns WB, Stratton RF, Greenberg F: Syndromes with lissencephaly. I: Miller-Dieker and Norman-Roberts syndromes and isolated lissencephaly. Am J Med Genet 1984;18: 509–26.PubMedCrossRef Dobyns WB, Stratton RF, Greenberg F: Syndromes with lissencephaly. I: Miller-Dieker and Norman-Roberts syndromes and isolated lissencephaly. Am J Med Genet 1984;18: 509–26.PubMedCrossRef
3.
go back to reference Kara S, Jissendi-Tchofo P, Barkovich AJ: Developmental differences of the major forebrain commissures in lissencephalies. AJNR Am J Neuroradiol 2010 Oct;31(9):1602–7.PubMedCrossRef Kara S, Jissendi-Tchofo P, Barkovich AJ: Developmental differences of the major forebrain commissures in lissencephalies. AJNR Am J Neuroradiol 2010 Oct;31(9):1602–7.PubMedCrossRef
4.
go back to reference Clement E, Mercuri E, Godfrey C, et al.: Brain involvement in muscular dystrophies with defective dystroglycan glycosylation. Ann Neurol 2008;64: 573–82.PubMedCrossRef Clement E, Mercuri E, Godfrey C, et al.: Brain involvement in muscular dystrophies with defective dystroglycan glycosylation. Ann Neurol 2008;64: 573–82.PubMedCrossRef
5.
go back to reference Caviness VS, Jr.: Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H]thymidine autoradiography. Brain Res 1982;256: 293–302.PubMed Caviness VS, Jr.: Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H]thymidine autoradiography. Brain Res 1982;256: 293–302.PubMed
6.
go back to reference Gilmore EC, Ohshima T, Goffinet AM, et al.: Cyclin-dependent kinase 5-deficient mice demonstrate novel developmental arrest in cerebral cortex. J Neurosci 1998;18: 6370–7.PubMed Gilmore EC, Ohshima T, Goffinet AM, et al.: Cyclin-dependent kinase 5-deficient mice demonstrate novel developmental arrest in cerebral cortex. J Neurosci 1998;18: 6370–7.PubMed
7.
go back to reference Niethammer M, Smith DS, Ayala R, et al.: NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 2000;28: 697–711.PubMedCrossRef Niethammer M, Smith DS, Ayala R, et al.: NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 2000;28: 697–711.PubMedCrossRef
8.
go back to reference Tanaka T, Serneo FF, Tseng HC, et al.: Cdk5 phosphorylation of doublecortin ser297 regulates its effect on neuronal migration. Neuron 2004;41: 215–27.PubMedCrossRef Tanaka T, Serneo FF, Tseng HC, et al.: Cdk5 phosphorylation of doublecortin ser297 regulates its effect on neuronal migration. Neuron 2004;41: 215–27.PubMedCrossRef
9.
go back to reference Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR: Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 2004;7: 136–44.PubMedCrossRef Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR: Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 2004;7: 136–44.PubMedCrossRef
10.
go back to reference Deuel TA, Liu JS, Corbo JC, et al.: Genetic interactions between doublecortin and doublecortin-like kinase in neuronal migration and axon outgrowth. Neuron 2006;49: 41–53.PubMedCrossRef Deuel TA, Liu JS, Corbo JC, et al.: Genetic interactions between doublecortin and doublecortin-like kinase in neuronal migration and axon outgrowth. Neuron 2006;49: 41–53.PubMedCrossRef
11.
go back to reference • Jaglin XH, Poirier K, Saillour Y, et al.: Mutations in the beta-tubulin gene TUBB2B result in asymmetrical polymicrogyria. Nat Genet 2009, Jun;41(6):746–52. This article discusses a tubulin mutation that causes polymicrogyria.PubMedCrossRef • Jaglin XH, Poirier K, Saillour Y, et al.: Mutations in the beta-tubulin gene TUBB2B result in asymmetrical polymicrogyria. Nat Genet 2009, Jun;41(6):746–52. This article discusses a tubulin mutation that causes polymicrogyria.PubMedCrossRef
12.
go back to reference •• Keays DA, Tian G, Poirier K, et al.: Mutations in alpha-tubulin cause abnormal neuronal migration in mice and lissencephaly in humans. Cell 2007;128: 45–57. This is the first description of a tubulin mutation as a causative gene for lissencephaly.PubMedCrossRef •• Keays DA, Tian G, Poirier K, et al.: Mutations in alpha-tubulin cause abnormal neuronal migration in mice and lissencephaly in humans. Cell 2007;128: 45–57. This is the first description of a tubulin mutation as a causative gene for lissencephaly.PubMedCrossRef
13.
go back to reference Tint I, Jean D, Baas PW, Black MM: Doublecortin associates with microtubules preferentially in regions of the axon displaying actin-rich protrusive structures. J Neurosci 2009;29: 10995–1010.PubMedCrossRef Tint I, Jean D, Baas PW, Black MM: Doublecortin associates with microtubules preferentially in regions of the axon displaying actin-rich protrusive structures. J Neurosci 2009;29: 10995–1010.PubMedCrossRef
14.
go back to reference Moores CA, Perderiset M, Kappeler C, et al.: Distinct roles of doublecortin modulating the microtubule cytoskeleton. EMBO J 2006;25: 4448–57.PubMedCrossRef Moores CA, Perderiset M, Kappeler C, et al.: Distinct roles of doublecortin modulating the microtubule cytoskeleton. EMBO J 2006;25: 4448–57.PubMedCrossRef
15.
go back to reference Moores CA, Perderiset M, Francis F, et al.: Mechanism of microtubule stabilization by doublecortin. Mol Cell 2004;14: 833–9.PubMedCrossRef Moores CA, Perderiset M, Francis F, et al.: Mechanism of microtubule stabilization by doublecortin. Mol Cell 2004;14: 833–9.PubMedCrossRef
16.
go back to reference • Ikegami K, Heier RL, Taruishi M, et al.: Loss of alpha-tubulin polyglutamylation in ROSA22 mice is associated with abnormal targeting of KIF1A and modulated synaptic function. Proc Natl Acad Sci U S A 2007;104: 3213–8. This study describes the effect of post-translational modifications on transport functions.PubMedCrossRef • Ikegami K, Heier RL, Taruishi M, et al.: Loss of alpha-tubulin polyglutamylation in ROSA22 mice is associated with abnormal targeting of KIF1A and modulated synaptic function. Proc Natl Acad Sci U S A 2007;104: 3213–8. This study describes the effect of post-translational modifications on transport functions.PubMedCrossRef
17.
go back to reference • Konishi Y, Setou M: Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nat Neurosci 2009;12: 559–67. This study describes the effect of post-translational modifications on transport functions.PubMedCrossRef • Konishi Y, Setou M: Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nat Neurosci 2009;12: 559–67. This study describes the effect of post-translational modifications on transport functions.PubMedCrossRef
18.
go back to reference Nakata T, Hirokawa N: Neuronal polarity and the kinesin superfamily proteins. Sci STKE 2007;2007: pe6PubMedCrossRef Nakata T, Hirokawa N: Neuronal polarity and the kinesin superfamily proteins. Sci STKE 2007;2007: pe6PubMedCrossRef
19.
go back to reference • McKenney RJ, Vershinin M, Kunwar A, et al.: LIS1 and NudE induce a persistent dynein force-producing state. Cell. 2010 Apr 16; 141(2): 304–14. This study describes the molecular role of LIS1, the first causative gene identified for lissencephaly.PubMedCrossRef • McKenney RJ, Vershinin M, Kunwar A, et al.: LIS1 and NudE induce a persistent dynein force-producing state. Cell. 2010 Apr 16; 141(2): 304–14. This study describes the molecular role of LIS1, the first causative gene identified for lissencephaly.PubMedCrossRef
20.
go back to reference Reiner O, Carrozzo R, Shen Y, et al.: Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 1993;364: 717–21.PubMedCrossRef Reiner O, Carrozzo R, Shen Y, et al.: Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 1993;364: 717–21.PubMedCrossRef
21.
go back to reference Lo Nigro C, Chong CS, Smith AC, et al.: Point mutations and an intragenic deletion in LIS1, the lissencephaly causative gene in isolated lissencephaly sequence and Miller-Dieker syndrome. Hum Mol Genet 1997;6: 157–64.PubMedCrossRef Lo Nigro C, Chong CS, Smith AC, et al.: Point mutations and an intragenic deletion in LIS1, the lissencephaly causative gene in isolated lissencephaly sequence and Miller-Dieker syndrome. Hum Mol Genet 1997;6: 157–64.PubMedCrossRef
22.
go back to reference Chong SS, Pack SD, Roschke AV, et al.: A revision of the lissencephaly and Miller-Dieker syndrome critical regions in chromosome 17p13.3. Hum Mol Genet 1997;6: 147–55.PubMedCrossRef Chong SS, Pack SD, Roschke AV, et al.: A revision of the lissencephaly and Miller-Dieker syndrome critical regions in chromosome 17p13.3. Hum Mol Genet 1997;6: 147–55.PubMedCrossRef
23.
go back to reference Saillour Y, Carion N, Quelin C, et al.: LIS1-related isolated lissencephaly: spectrum of mutations and relationships with malformation severity. Arch Neurol 2009;66: 1007–15.PubMedCrossRef Saillour Y, Carion N, Quelin C, et al.: LIS1-related isolated lissencephaly: spectrum of mutations and relationships with malformation severity. Arch Neurol 2009;66: 1007–15.PubMedCrossRef
24.
go back to reference Pilz DT, Matsumoto N, Minnerath S, et al.: LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation. Hum Mol Genet 1998;7: 2029–37.PubMedCrossRef Pilz DT, Matsumoto N, Minnerath S, et al.: LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation. Hum Mol Genet 1998;7: 2029–37.PubMedCrossRef
25.
go back to reference Gleeson JG, Allen KM, Fox JW, et al.: Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 1998;92: 63–72.PubMedCrossRef Gleeson JG, Allen KM, Fox JW, et al.: Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 1998;92: 63–72.PubMedCrossRef
26.
go back to reference des Portes V, Pinard JM, Billuart P, et al.: A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell 1998;92: 51–61.PubMedCrossRef des Portes V, Pinard JM, Billuart P, et al.: A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell 1998;92: 51–61.PubMedCrossRef
27.
go back to reference Gleeson JG, Minnerath SR, Fox JW, et al.: Characterization of mutations in the gene doublecortin in patients with double cortex syndrome. Ann Neurol 1999;45: 146–53.PubMedCrossRef Gleeson JG, Minnerath SR, Fox JW, et al.: Characterization of mutations in the gene doublecortin in patients with double cortex syndrome. Ann Neurol 1999;45: 146–53.PubMedCrossRef
28.
go back to reference Guerrini R, Moro F, Andermann E, et al.: Nonsyndromic mental retardation and cryptogenic epilepsy in women with doublecortin gene mutations. Ann Neurol 2003;54: 30–7.PubMedCrossRef Guerrini R, Moro F, Andermann E, et al.: Nonsyndromic mental retardation and cryptogenic epilepsy in women with doublecortin gene mutations. Ann Neurol 2003;54: 30–7.PubMedCrossRef
29.
go back to reference • Bahi-Buisson N, Poirier K, Boddaert N,et al.: Refinement of cortical dysgeneses spectrum associated with TUBA1A mutations. J Med Genet 2008;45: 647–53. This study expands the phenotype of the new tubulin isoform mutations causing lissencephaly.PubMedCrossRef • Bahi-Buisson N, Poirier K, Boddaert N,et al.: Refinement of cortical dysgeneses spectrum associated with TUBA1A mutations. J Med Genet 2008;45: 647–53. This study expands the phenotype of the new tubulin isoform mutations causing lissencephaly.PubMedCrossRef
30.
go back to reference • Abdollahi MR, Morrison E, Sirey T, et al.: Mutation of the variant alpha-tubulin TUBA8 results in polymicrogyria with optic nerve hypoplasia. Am J Hum Genet 2009;85: 737–44. Mutations in another tubulin isoform cause a cortical malformation.PubMedCrossRef • Abdollahi MR, Morrison E, Sirey T, et al.: Mutation of the variant alpha-tubulin TUBA8 results in polymicrogyria with optic nerve hypoplasia. Am J Hum Genet 2009;85: 737–44. Mutations in another tubulin isoform cause a cortical malformation.PubMedCrossRef
31.
go back to reference • Tischfield MA, Baris HN, Wu C, et al.: Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell 2010, 140: 74–87. Another mutation in tubulin causes a neurologic disorder.PubMedCrossRef • Tischfield MA, Baris HN, Wu C, et al.: Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell 2010, 140: 74–87. Another mutation in tubulin causes a neurologic disorder.PubMedCrossRef
32.
go back to reference •• Poirier K, Saillour Y, Bahi-Buisson N, et al.: Mutations in the neuronal {beta}-tubulin subunit TUBB3 result in malformation of cortical development and neuronal migration defects. Hum Mol Genet 2010, 19: 4462–73. The tubulin isoform that causes congenital fibrosis of the extraocular muscles also is a causative gene for lissencephaly.PubMedCrossRef •• Poirier K, Saillour Y, Bahi-Buisson N, et al.: Mutations in the neuronal {beta}-tubulin subunit TUBB3 result in malformation of cortical development and neuronal migration defects. Hum Mol Genet 2010, 19: 4462–73. The tubulin isoform that causes congenital fibrosis of the extraocular muscles also is a causative gene for lissencephaly.PubMedCrossRef
33.
go back to reference Tischfield MA, Engle EC: Distinct alpha- and beta-tubulin isotypes are required for the positioning, differentiation and survival of neurons: new support for the ‘multi-tubulin’ hypothesis. Biosci Rep 2010, 30: 319–30.PubMedCrossRef Tischfield MA, Engle EC: Distinct alpha- and beta-tubulin isotypes are required for the positioning, differentiation and survival of neurons: new support for the ‘multi-tubulin’ hypothesis. Biosci Rep 2010, 30: 319–30.PubMedCrossRef
34.
go back to reference Hong SE, Shugart YY, Huang DT, et al.: Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 2000;26: 93–6.PubMedCrossRef Hong SE, Shugart YY, Huang DT, et al.: Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 2000;26: 93–6.PubMedCrossRef
35.
go back to reference •• Ozcelik T, Akarsu N, Uz E, et al.: Mutations in the very low-density lipoprotein receptor VLDLR cause cerebellar hypoplasia and quadrupedal locomotion in humans. Proc Natl Acad Sci U S A 2008;105: 4232–6. This is the first report of human mutations in the VLDLR receptor causing lissencephaly and a very strong cerebellar phenotype.PubMedCrossRef •• Ozcelik T, Akarsu N, Uz E, et al.: Mutations in the very low-density lipoprotein receptor VLDLR cause cerebellar hypoplasia and quadrupedal locomotion in humans. Proc Natl Acad Sci U S A 2008;105: 4232–6. This is the first report of human mutations in the VLDLR receptor causing lissencephaly and a very strong cerebellar phenotype.PubMedCrossRef
36.
go back to reference Boycott KM, Bonnemann C, Herz J, et al.: Mutations in VLDLR as a cause for autosomal recessive cerebellar ataxia with mental retardation (dysequilibrium syndrome). J Child Neurol 2009;24: 1310–5.PubMedCrossRef Boycott KM, Bonnemann C, Herz J, et al.: Mutations in VLDLR as a cause for autosomal recessive cerebellar ataxia with mental retardation (dysequilibrium syndrome). J Child Neurol 2009;24: 1310–5.PubMedCrossRef
37.
go back to reference Kitamura K, Yanazawa M, Sugiyama N, et al.: Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 2002;32: 359–69.PubMedCrossRef Kitamura K, Yanazawa M, Sugiyama N, et al.: Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 2002;32: 359–69.PubMedCrossRef
38.
go back to reference Shoubridge C, Fullston T, Gecz J: ARX spectrum disorders: making inroads into the molecular pathology. Hum Mutat 2010, 31: 889–900.PubMedCrossRef Shoubridge C, Fullston T, Gecz J: ARX spectrum disorders: making inroads into the molecular pathology. Hum Mutat 2010, 31: 889–900.PubMedCrossRef
39.
go back to reference Kato M, Das S, Petras K, et al.: Mutations of ARX are associated with striking pleiotropy and consistent genotype-phenotype correlation. Hum Mutat 2004;23: 147–59.PubMedCrossRef Kato M, Das S, Petras K, et al.: Mutations of ARX are associated with striking pleiotropy and consistent genotype-phenotype correlation. Hum Mutat 2004;23: 147–59.PubMedCrossRef
40.
go back to reference Kato M, Saitoh S, Kamei A, et al.: A longer polyalanine expansion mutation in the ARX gene causes early infantile epileptic encephalopathy with suppression-burst pattern (Ohtahara syndrome). Am J Hum Genet 2007;81: 361–6.PubMedCrossRef Kato M, Saitoh S, Kamei A, et al.: A longer polyalanine expansion mutation in the ARX gene causes early infantile epileptic encephalopathy with suppression-burst pattern (Ohtahara syndrome). Am J Hum Genet 2007;81: 361–6.PubMedCrossRef
41.
go back to reference Guerrini R, Moro F, Kato M, et al.: Expansion of the first PolyA tract of ARX causes infantile spasms and status dystonicus. Neurology 2007;69: 427–33.PubMedCrossRef Guerrini R, Moro F, Kato M, et al.: Expansion of the first PolyA tract of ARX causes infantile spasms and status dystonicus. Neurology 2007;69: 427–33.PubMedCrossRef
42.
go back to reference •• Marsh E, Fulp C, Gomez E, et al.: Targeted loss of Arx results in a developmental epilepsy mouse model and recapitulates the human phenotype in heterozygous females. Brain 2009;132: 1563–76. The animal model of ARX mutations shows defects in interneuron migration.PubMedCrossRef •• Marsh E, Fulp C, Gomez E, et al.: Targeted loss of Arx results in a developmental epilepsy mouse model and recapitulates the human phenotype in heterozygous females. Brain 2009;132: 1563–76. The animal model of ARX mutations shows defects in interneuron migration.PubMedCrossRef
43.
go back to reference Collombat P, Mansouri A, Hecksher-Sorensen J, et al.: Opposing actions of Arx and Pax4 in endocrine pancreas development. Genes Dev 2003;17: 2591–603.PubMedCrossRef Collombat P, Mansouri A, Hecksher-Sorensen J, et al.: Opposing actions of Arx and Pax4 in endocrine pancreas development. Genes Dev 2003;17: 2591–603.PubMedCrossRef
44.
go back to reference Sheen VL, Dixon PH, Fox JW, et al.: Mutations in the X-linked filamin 1 gene cause periventricular nodular heterotopia in males as well as in females. Hum Mol Genet 2001;10: 1775–83.PubMedCrossRef Sheen VL, Dixon PH, Fox JW, et al.: Mutations in the X-linked filamin 1 gene cause periventricular nodular heterotopia in males as well as in females. Hum Mol Genet 2001;10: 1775–83.PubMedCrossRef
45.
go back to reference Sheen VL, Jansen A, Chen MH, et al.: Filamin A mutations cause periventricular heterotopia with Ehlers-Danlos syndrome. Neurology 2005;64: 254–62.PubMed Sheen VL, Jansen A, Chen MH, et al.: Filamin A mutations cause periventricular heterotopia with Ehlers-Danlos syndrome. Neurology 2005;64: 254–62.PubMed
46.
go back to reference Parrini E, Ramazzotti A, Dobyns WB, et al.: Periventricular heterotopia: phenotypic heterogeneity and correlation with Filamin A mutations. Brain 2006;129: 1892–906.PubMedCrossRef Parrini E, Ramazzotti A, Dobyns WB, et al.: Periventricular heterotopia: phenotypic heterogeneity and correlation with Filamin A mutations. Brain 2006;129: 1892–906.PubMedCrossRef
47.
go back to reference Guerrini R, Mei D, Sisodiya S, et al.: Germline and mosaic mutations of FLN1 in men with periventricular heterotopia. Neurology 2004;63: 51–6.PubMed Guerrini R, Mei D, Sisodiya S, et al.: Germline and mosaic mutations of FLN1 in men with periventricular heterotopia. Neurology 2004;63: 51–6.PubMed
48.
go back to reference Sheen VL, Ganesh VS, Topcu M, et al.: Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex. Nat Genet 2004;36: 69–76.PubMedCrossRef Sheen VL, Ganesh VS, Topcu M, et al.: Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex. Nat Genet 2004;36: 69–76.PubMedCrossRef
49.
go back to reference de Wit MC, de Coo IF, Halley DJ, et al.: Movement disorder and neuronal migration disorder due to ARFGEF2 mutation. Neurogenetics 2009;10: 333–6.PubMedCrossRef de Wit MC, de Coo IF, Halley DJ, et al.: Movement disorder and neuronal migration disorder due to ARFGEF2 mutation. Neurogenetics 2009;10: 333–6.PubMedCrossRef
50.
go back to reference Guerrini R, Filippi T: Neuronal migration disorders, genetics, and epileptogenesis. J Child Neurol 2005, 20:287–299.PubMedCrossRef Guerrini R, Filippi T: Neuronal migration disorders, genetics, and epileptogenesis. J Child Neurol 2005, 20:287–299.PubMedCrossRef
Metadata
Title
Molecular Genetics of Neuronal Migration Disorders
Author
Judy S. Liu
Publication date
01-04-2011
Publisher
Current Science Inc.
Published in
Current Neurology and Neuroscience Reports / Issue 2/2011
Print ISSN: 1528-4042
Electronic ISSN: 1534-6293
DOI
https://doi.org/10.1007/s11910-010-0176-5

Other articles of this Issue 2/2011

Current Neurology and Neuroscience Reports 2/2011 Go to the issue