Skip to main content
Top
Published in: Current Hypertension Reports 11/2016

01-11-2016 | Hypertension and Obesity (E Reisin, Section Editor)

A Clinical Perspective: Contribution of Dysfunctional Perivascular Adipose Tissue (PVAT) to Cardiovascular Risk

Authors: Xiaoming Lian, Maik Gollasch

Published in: Current Hypertension Reports | Issue 11/2016

Login to get access

Abstract

Perivascular adipose tissue (PVAT) is now recognized as an important paracrine organ influencing the homeostasis of the vessel wall, regional blood flow and peripheral arterial resistance. There is remarkable phenotypic variability and plasticity of PVAT among various vascular beds, exhibiting phenotypes from white to brown and beige adipocytes. PVAT dysfunction is characterized by disturbed secretion of various adipokines, which, together with endothelial dysfunction, contribute to hypertension and cardiovascular disease (CVD). This brief review describes our current knowledge on PVAT in health and cardiovascular disease, with a special focus on different phenotypes and signaling pathways in adipocytes of PVAT associated with hypertension, obesity and cardiovascular disorders.
Literature
1.
go back to reference Ogden CL, Carroll MD, Fryar CD, Flegal KM. Prevalence of Obesity Among Adults and Youth: United States, 2011-2014. NCHS Data Brief. 2015(219):1–8. Ogden CL, Carroll MD, Fryar CD, Flegal KM. Prevalence of Obesity Among Adults and Youth: United States, 2011-2014. NCHS Data Brief. 2015(219):1–8.
3.
go back to reference Writing Group M, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–360. doi:10.1161/CIR.0000000000000350.CrossRef Writing Group M, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–360. doi:10.​1161/​CIR.​0000000000000350​.CrossRef
9.
14.
go back to reference Rittig K, Dolderer JH, Balletshofer B, Machann J, Schick F, Meile T, et al. The secretion pattern of perivascular fat cells is different from that of subcutaneous and visceral fat cells. Diabetologia. 2012;55(5):1514–25. doi:10.1007/s00125-012-2481-9.CrossRefPubMed Rittig K, Dolderer JH, Balletshofer B, Machann J, Schick F, Meile T, et al. The secretion pattern of perivascular fat cells is different from that of subcutaneous and visceral fat cells. Diabetologia. 2012;55(5):1514–25. doi:10.​1007/​s00125-012-2481-9.CrossRefPubMed
22.
go back to reference Wang P, Xu TY, Guan YF, Su DF, Fan GR, Miao CY. Perivascular adipose tissue-derived visfatin is a vascular smooth muscle cell growth factor: role of nicotinamide mononucleotide. Cardiovasc Res. 2009;81(2):370–80. doi:10.1093/cvr/cvn288.CrossRefPubMed Wang P, Xu TY, Guan YF, Su DF, Fan GR, Miao CY. Perivascular adipose tissue-derived visfatin is a vascular smooth muscle cell growth factor: role of nicotinamide mononucleotide. Cardiovasc Res. 2009;81(2):370–80. doi:10.​1093/​cvr/​cvn288.CrossRefPubMed
25.
go back to reference Knudson JD, Dincer UD, Zhang C, Swafford Jr AN, Koshida R, Picchi A, et al. Leptin receptors are expressed in coronary arteries, and hyperleptinemia causes significant coronary endothelial dysfunction. Am J Physiol Heart Circ Physiol. 2005;289(1):H48–56. doi:10.1152/ajpheart.01159.2004.CrossRefPubMed Knudson JD, Dincer UD, Zhang C, Swafford Jr AN, Koshida R, Picchi A, et al. Leptin receptors are expressed in coronary arteries, and hyperleptinemia causes significant coronary endothelial dysfunction. Am J Physiol Heart Circ Physiol. 2005;289(1):H48–56. doi:10.​1152/​ajpheart.​01159.​2004.CrossRefPubMed
26.
go back to reference Van de Voorde J, Boydens C, Pauwels B, Decaluwe K. Perivascular adipose tissue, inflammation and vascular dysfunction in obesity. Curr Vasc Pharmacol. 2014;12(3):403–11.CrossRef Van de Voorde J, Boydens C, Pauwels B, Decaluwe K. Perivascular adipose tissue, inflammation and vascular dysfunction in obesity. Curr Vasc Pharmacol. 2014;12(3):403–11.CrossRef
27.
go back to reference Ketonen J, Shi J, Martonen E, Mervaala E. Periadventitial adipose tissue promotes endothelial dysfunction via oxidative stress in diet-induced obese C57Bl/6 mice. Circ J. 2010;74(7):1479–87.CrossRefPubMed Ketonen J, Shi J, Martonen E, Mervaala E. Periadventitial adipose tissue promotes endothelial dysfunction via oxidative stress in diet-induced obese C57Bl/6 mice. Circ J. 2010;74(7):1479–87.CrossRefPubMed
28.
29.
go back to reference Galvez-Prieto B, Dubrovska G, Cano MV, Delgado M, Aranguez I, Gonzalez MC, et al. A reduction in the amount and anti-contractile effect of periadventitial mesenteric adipose tissue precedes hypertension development in spontaneously hypertensive rats. Hypertens Res. 2008;31(7):1415–23. doi:10.1291/hypres.31.1415.CrossRefPubMed Galvez-Prieto B, Dubrovska G, Cano MV, Delgado M, Aranguez I, Gonzalez MC, et al. A reduction in the amount and anti-contractile effect of periadventitial mesenteric adipose tissue precedes hypertension development in spontaneously hypertensive rats. Hypertens Res. 2008;31(7):1415–23. doi:10.​1291/​hypres.​31.​1415.CrossRefPubMed
30.
go back to reference Chang J, Li Y, Huang Y, Lam KS, Hoo RL, Wong WT, et al. Adiponectin prevents diabetic premature senescence of endothelial progenitor cells and promotes endothelial repair by suppressing the p38 MAP kinase/p16INK4A signaling pathway. Diabetes. 2010;59(11):2949–59. doi:10.2337/db10-0582.CrossRefPubMedPubMedCentral Chang J, Li Y, Huang Y, Lam KS, Hoo RL, Wong WT, et al. Adiponectin prevents diabetic premature senescence of endothelial progenitor cells and promotes endothelial repair by suppressing the p38 MAP kinase/p16INK4A signaling pathway. Diabetes. 2010;59(11):2949–59. doi:10.​2337/​db10-0582.CrossRefPubMedPubMedCentral
31.
go back to reference Zhang P, Wang Y, Fan Y, Tang Z, Wang N. Overexpression of adiponectin receptors potentiates the antiinflammatory action of subeffective dose of globular adiponectin in vascular endothelial cells. Arterioscler Thromb Vasc Biol. 2009;29(1):67–74. doi:10.1161/ATVBAHA.108.178061.CrossRefPubMed Zhang P, Wang Y, Fan Y, Tang Z, Wang N. Overexpression of adiponectin receptors potentiates the antiinflammatory action of subeffective dose of globular adiponectin in vascular endothelial cells. Arterioscler Thromb Vasc Biol. 2009;29(1):67–74. doi:10.​1161/​ATVBAHA.​108.​178061.CrossRefPubMed
34.
go back to reference Peri-Okonny PA, Ayers C, Maalouf N, Das SR, de Lemos JA, Berry JD, et al. Adiponectin protects against incident hypertension independent of body fat distribution: observations from the Dallas Heart Study. Diabetes Metab Res Rev. 2016. doi:10.1002/dmrr.2840.PubMed Peri-Okonny PA, Ayers C, Maalouf N, Das SR, de Lemos JA, Berry JD, et al. Adiponectin protects against incident hypertension independent of body fat distribution: observations from the Dallas Heart Study. Diabetes Metab Res Rev. 2016. doi:10.​1002/​dmrr.​2840.PubMed
36.
go back to reference Sarvottam K, Magan D, Yadav RK, Mehta N, Mahapatra SC. Adiponectin, interleukin-6, and cardiovascular disease risk factors are modified by a short-term yoga-based lifestyle intervention in overweight and obese men. J Altern Complement Med. 2013;19(5):397–402. doi:10.1089/acm.2012.0086.CrossRefPubMed Sarvottam K, Magan D, Yadav RK, Mehta N, Mahapatra SC. Adiponectin, interleukin-6, and cardiovascular disease risk factors are modified by a short-term yoga-based lifestyle intervention in overweight and obese men. J Altern Complement Med. 2013;19(5):397–402. doi:10.​1089/​acm.​2012.​0086.CrossRefPubMed
38.
go back to reference Morita Y, Maeda K, Kondo T, Ishii H, Matsudaira K, Okumura N, et al. Impact of adiponectin and leptin on long-term adverse events in Japanese patients with acute myocardial infarction. Results from the Nagoya Acute Myocardial Infarction Study (NAMIS). Circ J. 2013;77(11):2778–85.CrossRefPubMed Morita Y, Maeda K, Kondo T, Ishii H, Matsudaira K, Okumura N, et al. Impact of adiponectin and leptin on long-term adverse events in Japanese patients with acute myocardial infarction. Results from the Nagoya Acute Myocardial Infarction Study (NAMIS). Circ J. 2013;77(11):2778–85.CrossRefPubMed
40.
go back to reference Cheng KK, Lam KS, Wang Y, Huang Y, Carling D, Wu D, et al. Adiponectin-induced endothelial nitric oxide synthase activation and nitric oxide production are mediated by APPL1 in endothelial cells. Diabetes. 2007;56(5):1387–94. doi:10.2337/db06-1580.CrossRefPubMed Cheng KK, Lam KS, Wang Y, Huang Y, Carling D, Wu D, et al. Adiponectin-induced endothelial nitric oxide synthase activation and nitric oxide production are mediated by APPL1 in endothelial cells. Diabetes. 2007;56(5):1387–94. doi:10.​2337/​db06-1580.CrossRefPubMed
41.
go back to reference Margaritis M, Antonopoulos AS, Digby J, Lee R, Reilly S, Coutinho P, et al. Interactions between vascular wall and perivascular adipose tissue reveal novel roles for adiponectin in the regulation of endothelial nitric oxide synthase function in human vessels. Circulation. 2013;127(22):2209–21. doi:10.1161/CIRCULATIONAHA.112.001133.CrossRefPubMed Margaritis M, Antonopoulos AS, Digby J, Lee R, Reilly S, Coutinho P, et al. Interactions between vascular wall and perivascular adipose tissue reveal novel roles for adiponectin in the regulation of endothelial nitric oxide synthase function in human vessels. Circulation. 2013;127(22):2209–21. doi:10.​1161/​CIRCULATIONAHA.​112.​001133.CrossRefPubMed
42.
go back to reference Yu L, Tu Q, Han Q, Zhang L, Sui L, Zheng L, et al. Adiponectin regulates bone marrow mesenchymal stem cell niche through a unique signal transduction pathway: an approach for treating bone disease in diabetes. Stem Cells. 2015;33(1):240–52. doi:10.1002/stem.1844.CrossRefPubMedPubMedCentral Yu L, Tu Q, Han Q, Zhang L, Sui L, Zheng L, et al. Adiponectin regulates bone marrow mesenchymal stem cell niche through a unique signal transduction pathway: an approach for treating bone disease in diabetes. Stem Cells. 2015;33(1):240–52. doi:10.​1002/​stem.​1844.CrossRefPubMedPubMedCentral
45.
go back to reference Guo J, Bian Y, Bai R, Li H, Fu M, Xiao C. Globular adiponectin attenuates myocardial ischemia/reperfusion injury by upregulating endoplasmic reticulum Ca(2)(+)-ATPase activity and inhibiting endoplasmic reticulum stress. J Cardiovasc Pharmacol. 2013;62(2):143–53. doi:10.1097/FJC.0b013e31829521af.CrossRefPubMed Guo J, Bian Y, Bai R, Li H, Fu M, Xiao C. Globular adiponectin attenuates myocardial ischemia/reperfusion injury by upregulating endoplasmic reticulum Ca(2)(+)-ATPase activity and inhibiting endoplasmic reticulum stress. J Cardiovasc Pharmacol. 2013;62(2):143–53. doi:10.​1097/​FJC.​0b013e31829521af​.CrossRefPubMed
48.
go back to reference Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science. 1995;269(5223):543–6.CrossRefPubMed Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science. 1995;269(5223):543–6.CrossRefPubMed
52.
go back to reference Martin SS, Qasim AN, Rader DJ, Reilly MP. C-reactive protein modifies the association of plasma leptin with coronary calcium in asymptomatic overweight individuals. Obesity (Silver Spring). 2012;20(4):856–61. doi:10.1038/oby.2011.164.CrossRef Martin SS, Qasim AN, Rader DJ, Reilly MP. C-reactive protein modifies the association of plasma leptin with coronary calcium in asymptomatic overweight individuals. Obesity (Silver Spring). 2012;20(4):856–61. doi:10.​1038/​oby.​2011.​164.CrossRef
53.
go back to reference Bickel C, Schnabel RB, Zeller T, Lackner KJ, Rupprecht HJ, Blankenberg S et al. Predictors of leptin concentration and association with cardiovascular risk in patients with coronary artery disease: results from the AtheroGene study. Biomarkers. 2016:1–9. doi:10.3109/1354750X.2015.1130745. Bickel C, Schnabel RB, Zeller T, Lackner KJ, Rupprecht HJ, Blankenberg S et al. Predictors of leptin concentration and association with cardiovascular risk in patients with coronary artery disease: results from the AtheroGene study. Biomarkers. 2016:1–9. doi:10.​3109/​1354750X.​2015.​1130745.
55.
go back to reference Petrini S, Neri T, Lombardi S, Cordazzo C, Balia C, Scalise V, et al. Leptin induces the generation of procoagulant, tissue factor bearing microparticles by human peripheral blood mononuclear cells. Biochim Biophys Acta. 2016;1860(6):1354–61. doi:10.1016/j.bbagen.2016.03.029.CrossRefPubMed Petrini S, Neri T, Lombardi S, Cordazzo C, Balia C, Scalise V, et al. Leptin induces the generation of procoagulant, tissue factor bearing microparticles by human peripheral blood mononuclear cells. Biochim Biophys Acta. 2016;1860(6):1354–61. doi:10.​1016/​j.​bbagen.​2016.​03.​029.CrossRefPubMed
56.
go back to reference Zlokovic BV, Jovanovic S, Miao W, Samara S, Verma S, Farrell CL. Differential regulation of leptin transport by the choroid plexus and blood-brain barrier and high affinity transport systems for entry into hypothalamus and across the blood-cerebrospinal fluid barrier. Endocrinology. 2000;141(4):1434–41. doi:10.1210/endo.141.4.7435.PubMed Zlokovic BV, Jovanovic S, Miao W, Samara S, Verma S, Farrell CL. Differential regulation of leptin transport by the choroid plexus and blood-brain barrier and high affinity transport systems for entry into hypothalamus and across the blood-cerebrospinal fluid barrier. Endocrinology. 2000;141(4):1434–41. doi:10.​1210/​endo.​141.​4.​7435.PubMed
57.
go back to reference Benkhoff S, Loot AE, Pierson I, Sturza A, Kohlstedt K, Fleming I, et al. Leptin potentiates endothelium-dependent relaxation by inducing endothelial expression of neuronal NO synthase. Arterioscler Thromb Vasc Biol. 2012;32(7):1605–12. doi:10.1161/ATVBAHA.112.251140.CrossRefPubMed Benkhoff S, Loot AE, Pierson I, Sturza A, Kohlstedt K, Fleming I, et al. Leptin potentiates endothelium-dependent relaxation by inducing endothelial expression of neuronal NO synthase. Arterioscler Thromb Vasc Biol. 2012;32(7):1605–12. doi:10.​1161/​ATVBAHA.​112.​251140.CrossRefPubMed
58.
go back to reference Matsumoto T, Noguchi E, Ishida K, Nakayama N, Kobayashi T, Kamata K. Cilostazol improves endothelial dysfunction by increasing endothelium-derived hyperpolarizing factor response in mesenteric arteries from Type 2 diabetic rats. Eur J Pharmacol. 2008;599(1-3):102–9. doi:10.1016/j.ejphar.2008.10.006.CrossRefPubMed Matsumoto T, Noguchi E, Ishida K, Nakayama N, Kobayashi T, Kamata K. Cilostazol improves endothelial dysfunction by increasing endothelium-derived hyperpolarizing factor response in mesenteric arteries from Type 2 diabetic rats. Eur J Pharmacol. 2008;599(1-3):102–9. doi:10.​1016/​j.​ejphar.​2008.​10.​006.CrossRefPubMed
59.
60.
go back to reference Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111(3):305–17.CrossRefPubMed Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111(3):305–17.CrossRefPubMed
64.
68.
go back to reference Galvez-Prieto B, Bolbrinker J, Stucchi P, de Las Heras AI, Merino B, Arribas S, et al. Comparative expression analysis of the renin-angiotensin system components between white and brown perivascular adipose tissue. J Endocrinol. 2008;197(1):55–64. doi:10.1677/JOE-07-0284.CrossRefPubMed Galvez-Prieto B, Bolbrinker J, Stucchi P, de Las Heras AI, Merino B, Arribas S, et al. Comparative expression analysis of the renin-angiotensin system components between white and brown perivascular adipose tissue. J Endocrinol. 2008;197(1):55–64. doi:10.​1677/​JOE-07-0284.CrossRefPubMed
74.
go back to reference Hausman DB, DiGirolamo M, Bartness TJ, Hausman GJ, Martin RJ. The biology of white adipocyte proliferation. Obes Rev. 2001;2(4):239–54.CrossRefPubMed Hausman DB, DiGirolamo M, Bartness TJ, Hausman GJ, Martin RJ. The biology of white adipocyte proliferation. Obes Rev. 2001;2(4):239–54.CrossRefPubMed
79.
go back to reference Richard D, Monge-Roffarello B, Chechi K, Labbe SM, Turcotte EE. Control and physiological determinants of sympathetically mediated brown adipose tissue thermogenesis. Front Endocrinol (Lausanne). 2012;3:36. doi:10.3389/fendo.2012.00036. Richard D, Monge-Roffarello B, Chechi K, Labbe SM, Turcotte EE. Control and physiological determinants of sympathetically mediated brown adipose tissue thermogenesis. Front Endocrinol (Lausanne). 2012;3:36. doi:10.​3389/​fendo.​2012.​00036.
80.
go back to reference Sacks HS, Fain JN, Holman B, Cheema P, Chary A, Parks F, et al. Uncoupling protein-1 and related messenger ribonucleic acids in human epicardial and other adipose tissues: epicardial fat functioning as brown fat. J Clin Endocrinol Metab. 2009;94(9):3611–5. doi:10.1210/jc.2009-0571.CrossRefPubMed Sacks HS, Fain JN, Holman B, Cheema P, Chary A, Parks F, et al. Uncoupling protein-1 and related messenger ribonucleic acids in human epicardial and other adipose tissues: epicardial fat functioning as brown fat. J Clin Endocrinol Metab. 2009;94(9):3611–5. doi:10.​1210/​jc.​2009-0571.CrossRefPubMed
84.
go back to reference Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, et al. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab. 2010;298(6):E1244–53. doi:10.1152/ajpendo.00600.2009.CrossRefPubMed Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, et al. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab. 2010;298(6):E1244–53. doi:10.​1152/​ajpendo.​00600.​2009.CrossRefPubMed
85.
go back to reference Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J. Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem. 2010;285(10):7153–64. doi:10.1074/jbc.M109.053942.CrossRefPubMed Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J. Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem. 2010;285(10):7153–64. doi:10.​1074/​jbc.​M109.​053942.CrossRefPubMed
89.
go back to reference Kassmann M, Harteneck C, Zhu Z, Nurnberg B, Tepel M, Gollasch M. Transient receptor potential vanilloid 1 (TRPV1), TRPV4, and the kidney. Acta Physiol (Oxf). 2013;207(3):546–64. doi:10.1111/apha.12051.CrossRef Kassmann M, Harteneck C, Zhu Z, Nurnberg B, Tepel M, Gollasch M. Transient receptor potential vanilloid 1 (TRPV1), TRPV4, and the kidney. Acta Physiol (Oxf). 2013;207(3):546–64. doi:10.​1111/​apha.​12051.CrossRef
90.
go back to reference Palazzo E, Rossi F, de Novellis V, Maione S. Endogenous modulators of TRP channels. Curr Top Med Chem. 2013;13(3):398–407.CrossRefPubMed Palazzo E, Rossi F, de Novellis V, Maione S. Endogenous modulators of TRP channels. Curr Top Med Chem. 2013;13(3):398–407.CrossRefPubMed
93.
go back to reference Baskaran P, Krishnan V, Ren J, Thyagarajan B. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. Br J Pharmacol. 2016;173(15):2369–89. doi:10.1111/bph.13514.CrossRefPubMed Baskaran P, Krishnan V, Ren J, Thyagarajan B. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. Br J Pharmacol. 2016;173(15):2369–89. doi:10.​1111/​bph.​13514.CrossRefPubMed
95.
go back to reference Bratz IN, Dick GM, Tune JD, Edwards JM, Neeb ZP, Dincer UD, et al. Impaired capsaicin-induced relaxation of coronary arteries in a porcine model of the metabolic syndrome. Am J Physiol Heart Circ Physiol. 2008;294(6):H2489–96. doi:10.1152/ajpheart.01191.2007.CrossRefPubMed Bratz IN, Dick GM, Tune JD, Edwards JM, Neeb ZP, Dincer UD, et al. Impaired capsaicin-induced relaxation of coronary arteries in a porcine model of the metabolic syndrome. Am J Physiol Heart Circ Physiol. 2008;294(6):H2489–96. doi:10.​1152/​ajpheart.​01191.​2007.CrossRefPubMed
96.
go back to reference Kark T, Bagi Z, Lizanecz E, Pasztor ET, Erdei N, Czikora A, et al. Tissue-specific regulation of microvascular diameter: opposite functional roles of neuronal and smooth muscle located vanilloid receptor-1. Mol Pharmacol. 2008;73(5):1405–12. doi:10.1124/mol.107.043323.CrossRefPubMed Kark T, Bagi Z, Lizanecz E, Pasztor ET, Erdei N, Czikora A, et al. Tissue-specific regulation of microvascular diameter: opposite functional roles of neuronal and smooth muscle located vanilloid receptor-1. Mol Pharmacol. 2008;73(5):1405–12. doi:10.​1124/​mol.​107.​043323.CrossRefPubMed
98.
go back to reference Schleifenbaum J, Kassmann M, Szijarto IA, Hercule HC, Tano JY, Weinert S, et al. Stretch-activation of angiotensin II type 1a receptors contributes to the myogenic response of mouse mesenteric and renal arteries. Circ Res. 2014;115(2):263–72. doi:10.1161/CIRCRESAHA.115.302882.CrossRefPubMed Schleifenbaum J, Kassmann M, Szijarto IA, Hercule HC, Tano JY, Weinert S, et al. Stretch-activation of angiotensin II type 1a receptors contributes to the myogenic response of mouse mesenteric and renal arteries. Circ Res. 2014;115(2):263–72. doi:10.​1161/​CIRCRESAHA.​115.​302882.CrossRefPubMed
100.
102.
go back to reference Weston AH, Egner I, Dong Y, Porter EL, Heagerty AM, Edwards G. Stimulated release of a hyperpolarizing factor (ADHF) from mesenteric artery perivascular adipose tissue: involvement of myocyte BKCa channels and adiponectin. Br J Pharmacol. 2013;169(7):1500–9. doi:10.1111/bph.12157.CrossRefPubMedPubMedCentral Weston AH, Egner I, Dong Y, Porter EL, Heagerty AM, Edwards G. Stimulated release of a hyperpolarizing factor (ADHF) from mesenteric artery perivascular adipose tissue: involvement of myocyte BKCa channels and adiponectin. Br J Pharmacol. 2013;169(7):1500–9. doi:10.​1111/​bph.​12157.CrossRefPubMedPubMedCentral
104.
go back to reference Iwabu M, Yamauchi T, Okada-Iwabu M, Sato K, Nakagawa T, Funata M, et al. Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature. 2010;464(7293):1313–9. doi:10.1038/nature08991.CrossRefPubMed Iwabu M, Yamauchi T, Okada-Iwabu M, Sato K, Nakagawa T, Funata M, et al. Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature. 2010;464(7293):1313–9. doi:10.​1038/​nature08991.CrossRefPubMed
105.
106.
go back to reference Perez GJ, Bonev AD, Nelson MT. Micromolar Ca(2+) from sparks activates Ca(2+)-sensitive K(+) channels in rat cerebral artery smooth muscle. Am J Physiol Cell Physiol. 2001;281(6):C1769–75.PubMed Perez GJ, Bonev AD, Nelson MT. Micromolar Ca(2+) from sparks activates Ca(2+)-sensitive K(+) channels in rat cerebral artery smooth muscle. Am J Physiol Cell Physiol. 2001;281(6):C1769–75.PubMed
Metadata
Title
A Clinical Perspective: Contribution of Dysfunctional Perivascular Adipose Tissue (PVAT) to Cardiovascular Risk
Authors
Xiaoming Lian
Maik Gollasch
Publication date
01-11-2016
Publisher
Springer US
Published in
Current Hypertension Reports / Issue 11/2016
Print ISSN: 1522-6417
Electronic ISSN: 1534-3111
DOI
https://doi.org/10.1007/s11906-016-0692-z

Other articles of this Issue 11/2016

Current Hypertension Reports 11/2016 Go to the issue

Blood Pressure Monitoring and Management (J Cockcroft, Section Editor)

Isolated Systolic Hypertension in Young and Middle-Aged Adults

Antihypertensive Agents: Mechanisms of Drug Action (M Ernst, Section Editor)

Hypertension in Athletes and Active Populations

Pulmonary Hypertension (J Klinger, Section Editor)

Pulmonary Arterial Hypertension and the Sex Hormone Paradox

Antihypertensive Agents: Mechanisms of Drug Action (M Ernst, Section Editor)

White Coat Hypertension: to Treat or Not to Treat?

Antihypertensive Agents: Mechanisms of Drug Action (ME Ernst, Section Editor)

Effects of Aspirin on Endothelial Function and Hypertension

Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine