Skip to main content
Top
Published in: Current Hypertension Reports 1/2016

01-01-2016 | Hypertension and Obesity (E Reisin, Section Editor)

Emerging Role of Nitric Oxide and Heat Shock Proteins in Insulin Resistance

Authors: Marisa Nile Molina, León Ferder, Walter Manucha

Published in: Current Hypertension Reports | Issue 1/2016

Login to get access

Abstract

Insulin resistance (IR) is present in pathologies such as diabetes, obesity, metabolic syndrome, impaired glucose tolerance, hypertension, inflammation, cardiac disease, and dyslipidemias. Population studies show that IR is multifactorial and has genetic components, such as defects in the insulin-signaling pathway (as serine phosphorylation on insulin substrate or decreased activation of signaling molecules) and RAS/MAPK-dependent pathways. IR is connected to mitochondrial dysfunction, overproduction of oxidants, accumulation of fat, and an over-activation of the renin-angiotensin system linked to the NADPH oxidase activity. In addition, nitric oxide (NO), synthesized by nitric oxide synthases (endothelial and inducible), is also associated with IR when both impaired release and reduced bioavailability of all which lead to inflammation and hypertension. However, increased NO may promote vasculoprotection. Moreover, reduced NO release induces heat shock protein 70 kDa (HSP70) expression in IR and diabetes, mediating beneficial effects against oxidative stress injury, inflammation and apoptosis. HSP70 may be used as biomarker of the chronicity of diabetes. Hsp72 (inducible protein) is linked to vascular complications with a high-fat diet by blocking inflammation signaling (cytoprotective and anti-cytotoxicity intracellular role). Elucidating the IR signaling pathways and the roles of NO and HSPs is relevant to the application of new treatments, such as heat shock and thermal therapy, nitrosylated drugs, chemical chaperones or exercise training.
Literature
1.
go back to reference Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53.PubMedCrossRef Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53.PubMedCrossRef
2.
go back to reference Yip J, Facchini FS, Reaven GM. Resistance to insulin-mediated glucose disposal as a predictor of cardiovascular disease. J Clin Endocrinol Metab. 1998;83(8):2773–6.PubMedCrossRef Yip J, Facchini FS, Reaven GM. Resistance to insulin-mediated glucose disposal as a predictor of cardiovascular disease. J Clin Endocrinol Metab. 1998;83(8):2773–6.PubMedCrossRef
3.
go back to reference Jeon JY, Ko SH, Kwon HS, Kim NH, Kim JH, Kim CS, et al. Prevalence of diabetes and prediabetes according to fasting plasma glucose and HbA1. Diabetes Metab J. 2013;37(5):349–57.PubMedCentralPubMedCrossRef Jeon JY, Ko SH, Kwon HS, Kim NH, Kim JH, Kim CS, et al. Prevalence of diabetes and prediabetes according to fasting plasma glucose and HbA1. Diabetes Metab J. 2013;37(5):349–57.PubMedCentralPubMedCrossRef
4.•
go back to reference DeFronzo RA, Ferrannini E. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991;14(3):173–94. This review discussed that insulin resistance appears to be a syndrome that is associated with a clustering of metabolic disorders. PubMedCrossRef DeFronzo RA, Ferrannini E. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991;14(3):173–94. This review discussed that insulin resistance appears to be a syndrome that is associated with a clustering of metabolic disorders. PubMedCrossRef
5.
go back to reference Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414(6865):799–806.PubMedCrossRef Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414(6865):799–806.PubMedCrossRef
7.
go back to reference Bonora E, Kiechl S, Willeit J, Oberhollenzer F, Egger G, Targher G, et al. Prevalence of IR in metabolic disorders: the Bruneck study. Diabetes. 1988;47(10):1643–9.CrossRef Bonora E, Kiechl S, Willeit J, Oberhollenzer F, Egger G, Targher G, et al. Prevalence of IR in metabolic disorders: the Bruneck study. Diabetes. 1988;47(10):1643–9.CrossRef
8.
go back to reference Reaven GM. Insulin resistance: the link between obesity and cardiovascular disease. Med Clin N Am. 2011;95(5):875–92.PubMedCrossRef Reaven GM. Insulin resistance: the link between obesity and cardiovascular disease. Med Clin N Am. 2011;95(5):875–92.PubMedCrossRef
9.
go back to reference Muniyappa R, Yavuz S. Metabolic actions of angiotensin II and insulin: a microvascular endothelial balancing act. Mol Cell Endocrinol. 2012;378(1–2):59–69.PubMedCentralPubMed Muniyappa R, Yavuz S. Metabolic actions of angiotensin II and insulin: a microvascular endothelial balancing act. Mol Cell Endocrinol. 2012;378(1–2):59–69.PubMedCentralPubMed
10.•
go back to reference Pfeilschifter J, Eberhardt W, Huwiler A. Nitric oxide and mechanisms of redox signaling. J Am Soc Nephrol. 2003;14(8 Suppl 3):S237–40. Generation and action of free radicals such as nitric oxide, is discussed with a special focus on the renal injury. PubMedCrossRef Pfeilschifter J, Eberhardt W, Huwiler A. Nitric oxide and mechanisms of redox signaling. J Am Soc Nephrol. 2003;14(8 Suppl 3):S237–40. Generation and action of free radicals such as nitric oxide, is discussed with a special focus on the renal injury. PubMedCrossRef
11.
go back to reference Steinberg H, Cressman E, Wu Y, Hook G, Cronin J, Johnson A, et al. Insulin mediated nitric oxide production is impaired in insulin resistance. Diabetes. 1997;46:24A. Steinberg H, Cressman E, Wu Y, Hook G, Cronin J, Johnson A, et al. Insulin mediated nitric oxide production is impaired in insulin resistance. Diabetes. 1997;46:24A.
12.•
go back to reference Morimoto RI. The heat shock response: systems biology of proteotoxic stress in aging and disease. Cold Spring Harb Symp Quant Biol. 2011;76:91–9. This review examines the properties of the stress-responsive transcription factor in the regulation of the HSR, our current understanding of the stress-sensing mechanisms that recognize and distinguish between acute stress such as heat shock and chronic proteostasis imbalance. PubMedCrossRef Morimoto RI. The heat shock response: systems biology of proteotoxic stress in aging and disease. Cold Spring Harb Symp Quant Biol. 2011;76:91–9. This review examines the properties of the stress-responsive transcription factor in the regulation of the HSR, our current understanding of the stress-sensing mechanisms that recognize and distinguish between acute stress such as heat shock and chronic proteostasis imbalance. PubMedCrossRef
13.
14.
go back to reference Macario AJL, Conway de Macario E. Sick chaperones, cellular stress, and disease. N Engl J Med. 2005;353(14):1489–501.PubMedCrossRef Macario AJL, Conway de Macario E. Sick chaperones, cellular stress, and disease. N Engl J Med. 2005;353(14):1489–501.PubMedCrossRef
15.
go back to reference Tytell M, Hooper PL. Heat shock proteins: new keys to the development of cytoprotective therapies. Expert Opin Ther Targets. 2001;5(2):267–87.PubMedCrossRef Tytell M, Hooper PL. Heat shock proteins: new keys to the development of cytoprotective therapies. Expert Opin Ther Targets. 2001;5(2):267–87.PubMedCrossRef
16.••
go back to reference Krause M, Bock PM, Takahashi HK, Homem De Bittencourt Jr PI, Newsholme P. The regulatory roles of NADPH oxidase, intra- and extra-cellular HSP70 in pancreatic islet function, dysfunction and diabetes. Clin Sci (Lond). 2015;128(11):789–803. This review describes possible mechanisms by which HSP70 participates in cell function/dysfunction, focusing on the possible role of HSPs in pancreatic islet α- and β-cell physiological function in health and Type 2 diabetes mellitus. CrossRef Krause M, Bock PM, Takahashi HK, Homem De Bittencourt Jr PI, Newsholme P. The regulatory roles of NADPH oxidase, intra- and extra-cellular HSP70 in pancreatic islet function, dysfunction and diabetes. Clin Sci (Lond). 2015;128(11):789–803. This review describes possible mechanisms by which HSP70 participates in cell function/dysfunction, focusing on the possible role of HSPs in pancreatic islet α- and β-cell physiological function in health and Type 2 diabetes mellitus. CrossRef
17.••
go back to reference Hooper P. Diabetes, nitric oxide, and heat shock protein. Diabetes Care. 2003;26(3):951–2. Dr. Hooper describes that decreased Hsps linked to nitric oxide imbalance in type 1 and type 2 diabetes may be a primary factor leading to the development of diabetes and its diverse, widespread organ damage. PubMedCrossRef Hooper P. Diabetes, nitric oxide, and heat shock protein. Diabetes Care. 2003;26(3):951–2. Dr. Hooper describes that decreased Hsps linked to nitric oxide imbalance in type 1 and type 2 diabetes may be a primary factor leading to the development of diabetes and its diverse, widespread organ damage. PubMedCrossRef
18.•
go back to reference Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37(12):1595–607. The resistance to insulin-stimulated glucose uptake and hyperinsulinemia are involved in the etiology and clinical course of three major related diseases- non-insulin-dependent diabetes mellitus, hypertension, and coronary artery disease. PubMedCrossRef Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37(12):1595–607. The resistance to insulin-stimulated glucose uptake and hyperinsulinemia are involved in the etiology and clinical course of three major related diseases- non-insulin-dependent diabetes mellitus, hypertension, and coronary artery disease. PubMedCrossRef
19.
go back to reference Faerch K, Borch-Johnsen K, Holst JJ, Vaag A. Pathophysiology and aetiology of impaired fasting glycaemia and impaired glucose tolerance: does it matter for prevention and treatment of type 2 diabetes? Diabetologia. 2009;52(9):1714–23.PubMedCrossRef Faerch K, Borch-Johnsen K, Holst JJ, Vaag A. Pathophysiology and aetiology of impaired fasting glycaemia and impaired glucose tolerance: does it matter for prevention and treatment of type 2 diabetes? Diabetologia. 2009;52(9):1714–23.PubMedCrossRef
20.
go back to reference Kahn CR. Insulin resistance, Insulin insensitivity, and insulin unresponsiveness: a necessary distinction. Metab Clin Exp. 1978;27(12 Suppl 2):1893–902.PubMedCrossRef Kahn CR. Insulin resistance, Insulin insensitivity, and insulin unresponsiveness: a necessary distinction. Metab Clin Exp. 1978;27(12 Suppl 2):1893–902.PubMedCrossRef
21.
go back to reference Reaven G. The metabolic syndrome or the insulin resistance syndrome? Different names, different concepts, and different goals. Endocrinol Metab Clin N Am. 2004;33(2):283–303.CrossRef Reaven G. The metabolic syndrome or the insulin resistance syndrome? Different names, different concepts, and different goals. Endocrinol Metab Clin N Am. 2004;33(2):283–303.CrossRef
22.
go back to reference Groop LC, Saloranta C, Shank M, Bonadonna RC, Ferrannini E, DeFronzo RA. The role of free fatty acid metabolism in the pathogenesis of insulin resistance in obesity and noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1991;72(1):96–107.PubMedCrossRef Groop LC, Saloranta C, Shank M, Bonadonna RC, Ferrannini E, DeFronzo RA. The role of free fatty acid metabolism in the pathogenesis of insulin resistance in obesity and noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1991;72(1):96–107.PubMedCrossRef
23.
go back to reference Ritz P, Berrut G. Mitochondrial function, energy expenditure, aging and insulin resistance. Diabetes Metab. 2005;31(Spec No2):5S67–73.PubMed Ritz P, Berrut G. Mitochondrial function, energy expenditure, aging and insulin resistance. Diabetes Metab. 2005;31(Spec No2):5S67–73.PubMed
24.•
go back to reference Morino K, Petersen KF, Shulman GI. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes. 2006;55 Suppl 2:S9–15. Recent magnetic resonance spectroscopy studies in healthy lean elderly subjects and healthy lean insulin-resistant offspring of parents with type 2 diabetes have demonstrated that reduced mitochondrial function may predispose these individuals to insulin resistance. PubMedCentralPubMedCrossRef Morino K, Petersen KF, Shulman GI. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes. 2006;55 Suppl 2:S9–15. Recent magnetic resonance spectroscopy studies in healthy lean elderly subjects and healthy lean insulin-resistant offspring of parents with type 2 diabetes have demonstrated that reduced mitochondrial function may predispose these individuals to insulin resistance. PubMedCentralPubMedCrossRef
25.
go back to reference Dedoussis GV, Kaliora AC, Panagiotakos DB. Genes, diet and type 2 diabetes mellitus: a review. Rev Diabetes Stud. 2007;4(1):13–24.CrossRef Dedoussis GV, Kaliora AC, Panagiotakos DB. Genes, diet and type 2 diabetes mellitus: a review. Rev Diabetes Stud. 2007;4(1):13–24.CrossRef
26.
go back to reference Franks PW. Gene & environment interactions in type 2 diabetes. Curr Diabetes Rep. 2011;11(6):552–61.CrossRef Franks PW. Gene & environment interactions in type 2 diabetes. Curr Diabetes Rep. 2011;11(6):552–61.CrossRef
27.
go back to reference Ashcroft FM, Rorsman P. Diabetes mellitus and the cell: the last ten years. Cell. 2012;148(6):1160–71.PubMedCrossRef Ashcroft FM, Rorsman P. Diabetes mellitus and the cell: the last ten years. Cell. 2012;148(6):1160–71.PubMedCrossRef
28.
go back to reference Maechler P, Wollheim CB. Mitochondrial function in normal and diabetic beta-cells. Nature. 2001;414(6865):807–12.PubMedCrossRef Maechler P, Wollheim CB. Mitochondrial function in normal and diabetic beta-cells. Nature. 2001;414(6865):807–12.PubMedCrossRef
30.••
go back to reference Kim J, Wei Y, Sowers JR. Role of mitochondrial dysfunction in insulin resistance. Circ Res. 2008;102(4):401–14. The authors propose that mitochondrial dysfunction may be a central cause of insulin resistance and associated complications. PubMedCentralPubMedCrossRef Kim J, Wei Y, Sowers JR. Role of mitochondrial dysfunction in insulin resistance. Circ Res. 2008;102(4):401–14. The authors propose that mitochondrial dysfunction may be a central cause of insulin resistance and associated complications. PubMedCentralPubMedCrossRef
31.
go back to reference Zierath JR, Krook A, Wallberg-Henriksson H. Insulin action and insulin resistance in human skeletal muscle. Diabetologia. 2000;43(7):821–35.PubMedCrossRef Zierath JR, Krook A, Wallberg-Henriksson H. Insulin action and insulin resistance in human skeletal muscle. Diabetologia. 2000;43(7):821–35.PubMedCrossRef
32.
go back to reference Cohen P. The search for physiological substrates of MAP and SAP kinases in mammalian cells. Trends Cell Biol. 1997;7(9):353–61.PubMedCrossRef Cohen P. The search for physiological substrates of MAP and SAP kinases in mammalian cells. Trends Cell Biol. 1997;7(9):353–61.PubMedCrossRef
33.
go back to reference Petersen KF, Dufour S, Savage DB, Bilz S, Solomon G, Yonemitsu S, et al. The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci U S A. 2007;104(31):12587–94.PubMedCentralPubMedCrossRef Petersen KF, Dufour S, Savage DB, Bilz S, Solomon G, Yonemitsu S, et al. The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci U S A. 2007;104(31):12587–94.PubMedCentralPubMedCrossRef
34.
go back to reference DeFronzo RA, Gunnarsson R, Björkman O, Olsson M, Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in non-insulin-dependent (Type II) diabetes mellitus. J Clin Invest. 1985;76(1):149–55.PubMedCentralPubMedCrossRef DeFronzo RA, Gunnarsson R, Björkman O, Olsson M, Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in non-insulin-dependent (Type II) diabetes mellitus. J Clin Invest. 1985;76(1):149–55.PubMedCentralPubMedCrossRef
35.
go back to reference Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004;350:664–71.PubMedCentralPubMedCrossRef Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004;350:664–71.PubMedCentralPubMedCrossRef
36.•
go back to reference Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science. 2005;307(5708):384–7. This review presents emerging evidence that supports the potentially unifying hypothesis that prominent features of type 2 diabetes are caused by mitochondrial dysfunction. PubMedCrossRef Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science. 2005;307(5708):384–7. This review presents emerging evidence that supports the potentially unifying hypothesis that prominent features of type 2 diabetes are caused by mitochondrial dysfunction. PubMedCrossRef
37.••
go back to reference Jelenik T, Roden M. Mitochondrial plasticity in obesity and diabetes mellitus. Antioxid Redox Signal. 2013;19(3):258–68. The variability of baseline mitochondrial function in the main target tissue of insulin action, skeletal muscle and liver, may be attributed to inherited and acquired changes in either mitochondrial quantity or quality. PubMedCentralPubMedCrossRef Jelenik T, Roden M. Mitochondrial plasticity in obesity and diabetes mellitus. Antioxid Redox Signal. 2013;19(3):258–68. The variability of baseline mitochondrial function in the main target tissue of insulin action, skeletal muscle and liver, may be attributed to inherited and acquired changes in either mitochondrial quantity or quality. PubMedCentralPubMedCrossRef
38.
go back to reference Lee HK. Evidence that the mitochondrial genome is the thrifty genome. Diabetes Res Clin Pract. 1999;45(2–3):127–35.PubMedCrossRef Lee HK. Evidence that the mitochondrial genome is the thrifty genome. Diabetes Res Clin Pract. 1999;45(2–3):127–35.PubMedCrossRef
39.••
go back to reference Crescenzo R, Bianco F, Mazzoli A, Giacco A, Liverini G, Iossa S. Mitochondrial efficiency and insulin resistance. Front Physiol. 2015;5:512. The authors present evidence suggesting that an increase in mitochondrial efficiency precede and therefore can contribute to the development of high-fat-induced insulin resistance in skeletal muscle. PubMedCentralPubMedCrossRef Crescenzo R, Bianco F, Mazzoli A, Giacco A, Liverini G, Iossa S. Mitochondrial efficiency and insulin resistance. Front Physiol. 2015;5:512. The authors present evidence suggesting that an increase in mitochondrial efficiency precede and therefore can contribute to the development of high-fat-induced insulin resistance in skeletal muscle. PubMedCentralPubMedCrossRef
40.
go back to reference Ren J, Pulakat L, Whaley-Connelland A, Sowers JR. Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J Mol Med (Berl). 2010;88(10):993–1001.CrossRef Ren J, Pulakat L, Whaley-Connelland A, Sowers JR. Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J Mol Med (Berl). 2010;88(10):993–1001.CrossRef
41.
go back to reference Murphy MP. Induction of mitochondrial ROS production by electrophilic lipids: a new pathway of redox signaling? Am J Physiol Heart Circ Physiol. 2006;290:H1754–5.PubMedCrossRef Murphy MP. Induction of mitochondrial ROS production by electrophilic lipids: a new pathway of redox signaling? Am J Physiol Heart Circ Physiol. 2006;290:H1754–5.PubMedCrossRef
42.
go back to reference Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006;313:1137–40.PubMedCrossRefPubMedCentral Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006;313:1137–40.PubMedCrossRefPubMedCentral
43.
go back to reference Solinas G, Karin M. JNK1 and IKKβ: molecular links between obesity and metabolic dysfunction. FASEB J. 2010;24:2596–611.PubMedCrossRef Solinas G, Karin M. JNK1 and IKKβ: molecular links between obesity and metabolic dysfunction. FASEB J. 2010;24:2596–611.PubMedCrossRef
44.
go back to reference Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Are oxidative stress-activated signaling pathways mediators of insulin resistance and b-cell dysfunction? Diabetes. 2003;52:1–8.PubMedCrossRef Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Are oxidative stress-activated signaling pathways mediators of insulin resistance and b-cell dysfunction? Diabetes. 2003;52:1–8.PubMedCrossRef
45.
go back to reference Borradaile NM, Han X, Harp JD, Gale SE, Ory DS, Schaeffer JE. Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. J Lipid Res. 2006;47:2726–37.PubMedCrossRef Borradaile NM, Han X, Harp JD, Gale SE, Ory DS, Schaeffer JE. Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. J Lipid Res. 2006;47:2726–37.PubMedCrossRef
46.
go back to reference Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54:1615–25.PubMedCrossRef Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54:1615–25.PubMedCrossRef
47.
go back to reference Kim JK, Wi JK, Youn JH. Metabolic impairment precedes insulin resistance in skeletal muscle during high-fat feeding in rats. Diabetes. 1996;45:651–8.PubMedCrossRef Kim JK, Wi JK, Youn JH. Metabolic impairment precedes insulin resistance in skeletal muscle during high-fat feeding in rats. Diabetes. 1996;45:651–8.PubMedCrossRef
48.
go back to reference Dresner A, Laurent D, Marcucci M, Griffin ME, Dufour S, Cline GW, et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest. 1999;103:253–9.PubMedCentralPubMedCrossRef Dresner A, Laurent D, Marcucci M, Griffin ME, Dufour S, Cline GW, et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest. 1999;103:253–9.PubMedCentralPubMedCrossRef
49.
go back to reference Kim F, Tysseling KA, Rice J, Pham M, Haji L, Gallis BM, et al. Free fatty acid impairment of nitric oxide production in endothelial cells is mediated by IKKbeta. Arterioscler Thromb Vasc Biol. 2005;25:989–94.PubMedCrossRef Kim F, Tysseling KA, Rice J, Pham M, Haji L, Gallis BM, et al. Free fatty acid impairment of nitric oxide production in endothelial cells is mediated by IKKbeta. Arterioscler Thromb Vasc Biol. 2005;25:989–94.PubMedCrossRef
50.
go back to reference Boden G, Lebed B, Schatz M, Homko C, Lemieux S. Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects. Diabetes. 2001;50:1612–7.PubMedCrossRef Boden G, Lebed B, Schatz M, Homko C, Lemieux S. Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects. Diabetes. 2001;50:1612–7.PubMedCrossRef
51.
go back to reference Zhang DX, Zou AP, Li PL. Ceramide-induced activation of NADPH oxidase and endothelial dysfunction in small coronary arteries. Am J Physiol Heart Circ Physiol. 2003;284:H605–12.PubMedCrossRef Zhang DX, Zou AP, Li PL. Ceramide-induced activation of NADPH oxidase and endothelial dysfunction in small coronary arteries. Am J Physiol Heart Circ Physiol. 2003;284:H605–12.PubMedCrossRef
52.
go back to reference Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes. 2000;49:1939–45.PubMedCrossRef Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes. 2000;49:1939–45.PubMedCrossRef
53.
go back to reference Ogihara T, Asano T, Ando K, Chiba Y, Sakoda H, Anai M, et al. Angiotensin II-induced insulin resistance is associated with enhanced insulin signaling. Hypertension. 2002;40(6):872–9.PubMedCrossRef Ogihara T, Asano T, Ando K, Chiba Y, Sakoda H, Anai M, et al. Angiotensin II-induced insulin resistance is associated with enhanced insulin signaling. Hypertension. 2002;40(6):872–9.PubMedCrossRef
54.
go back to reference Diamond-Stanic MK, Henriksen EJ. Direct inhibition by angiotensin II of insulin-dependent glucose transport activity in mammalian skeletal muscle involves a ROS-dependent mechanism. Arch Physiol Biochem. 2010;116:88–95.PubMedCentralPubMedCrossRef Diamond-Stanic MK, Henriksen EJ. Direct inhibition by angiotensin II of insulin-dependent glucose transport activity in mammalian skeletal muscle involves a ROS-dependent mechanism. Arch Physiol Biochem. 2010;116:88–95.PubMedCentralPubMedCrossRef
55.
go back to reference Henriksen EJ, Diamond-Stanic MK, Marchionne EM. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic Biol Med. 2011;51:993–9.PubMedCentralPubMedCrossRef Henriksen EJ, Diamond-Stanic MK, Marchionne EM. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic Biol Med. 2011;51:993–9.PubMedCentralPubMedCrossRef
57.•
go back to reference Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev. 1991;43:109–42. Original review, which highlights the physiological, patho-physiological and, pharmacological aspects of the nitric oxide. PubMed Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev. 1991;43:109–42. Original review, which highlights the physiological, patho-physiological and, pharmacological aspects of the nitric oxide. PubMed
58.
go back to reference Poderoso JJ, Lisdero C, Schopfer F, Riobo N, Carreras MC, Cadenas E, et al. The regulation of mitochondrial oxygen uptake by redox reactions involving nitric oxide and ubiquinol. J Biol Chem. 1999;274:37709–16.PubMedCrossRef Poderoso JJ, Lisdero C, Schopfer F, Riobo N, Carreras MC, Cadenas E, et al. The regulation of mitochondrial oxygen uptake by redox reactions involving nitric oxide and ubiquinol. J Biol Chem. 1999;274:37709–16.PubMedCrossRef
59.
go back to reference Boveris A, Valdez LB, Zaobornyj T, Bustamante J. Mitochondrial metabolic states regulate nitric oxide and hydrogen peroxide diffusion to the cytosol. Biochim Biophys Acta. 2006;1757(5–6):535–42.PubMedCrossRef Boveris A, Valdez LB, Zaobornyj T, Bustamante J. Mitochondrial metabolic states regulate nitric oxide and hydrogen peroxide diffusion to the cytosol. Biochim Biophys Acta. 2006;1757(5–6):535–42.PubMedCrossRef
60.
go back to reference Kissner R, Nauser T, Bugnon P, Lye PG, Koppenol WH. Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique, and pulse radiolysis. Chem Res Toxicol. 1997;10:1285–92.PubMedCrossRef Kissner R, Nauser T, Bugnon P, Lye PG, Koppenol WH. Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique, and pulse radiolysis. Chem Res Toxicol. 1997;10:1285–92.PubMedCrossRef
61.
go back to reference Navarro A, Boveris A. The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol. 2007;292:C670–86.PubMedCrossRef Navarro A, Boveris A. The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol. 2007;292:C670–86.PubMedCrossRef
62.
go back to reference Albina JE, Reichner JS. Role of nitric oxide in mediation of macrophage cytotoxicity and apoptosis. Cancer Metastasis Rev. 1998;17:39–53.PubMedCrossRef Albina JE, Reichner JS. Role of nitric oxide in mediation of macrophage cytotoxicity and apoptosis. Cancer Metastasis Rev. 1998;17:39–53.PubMedCrossRef
64.•
go back to reference Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A. Negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev. 2009;89:27–71. The cellular and molecular mechanisms by which ROS and RNS are thought to participate in normal insulin action and in the induction of insulin resistance are mainly described. PubMedCrossRef Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A. Negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev. 2009;89:27–71. The cellular and molecular mechanisms by which ROS and RNS are thought to participate in normal insulin action and in the induction of insulin resistance are mainly described. PubMedCrossRef
65.
go back to reference Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987;84(24):9265–9.PubMedCentralPubMedCrossRef Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987;84(24):9265–9.PubMedCentralPubMedCrossRef
68.•
go back to reference Sansbury BE, Cummins TD, Tang Y, Hellmann J, Holden CR, Harbeson MA, et al. Overexpression of endothelial nitric oxide synthase prevents diet-induced obesity and regulates adipocyte phenotype. Circ Res. 2012;111:1176–89. Increased eNOS activity prevents the obesogenic effects of high-fat diet without affecting systemic insulin resistance, in part, by stimulating metabolic activity in adipose tissue. PubMedCentralPubMedCrossRef Sansbury BE, Cummins TD, Tang Y, Hellmann J, Holden CR, Harbeson MA, et al. Overexpression of endothelial nitric oxide synthase prevents diet-induced obesity and regulates adipocyte phenotype. Circ Res. 2012;111:1176–89. Increased eNOS activity prevents the obesogenic effects of high-fat diet without affecting systemic insulin resistance, in part, by stimulating metabolic activity in adipose tissue. PubMedCentralPubMedCrossRef
69.
go back to reference Sadler CJ, Wilding JP. Reduced ventromedial hypothalamic neuronal nitric oxide synthase and increased sensitivity to NOS inhibition in dietary obese rats: further evidence of a role for nitric oxide in the regulation of energy balance. Brain Res. 2004;1016:222–8.PubMedCrossRef Sadler CJ, Wilding JP. Reduced ventromedial hypothalamic neuronal nitric oxide synthase and increased sensitivity to NOS inhibition in dietary obese rats: further evidence of a role for nitric oxide in the regulation of energy balance. Brain Res. 2004;1016:222–8.PubMedCrossRef
70.
go back to reference Muniyappa R, Iantorno M, Quon MJ. An integrated view of insulin resistance and endothelial dysfunction. Endocrinol Metab Clin N Am. 2008;37(3):685–711.CrossRef Muniyappa R, Iantorno M, Quon MJ. An integrated view of insulin resistance and endothelial dysfunction. Endocrinol Metab Clin N Am. 2008;37(3):685–711.CrossRef
71.
go back to reference Baylis C. Nitric oxide deficiency in chronic kidney disease. Am J Physiol Ren Physiol. 2008;294:F1–9.CrossRef Baylis C. Nitric oxide deficiency in chronic kidney disease. Am J Physiol Ren Physiol. 2008;294:F1–9.CrossRef
72.•
go back to reference Vallés P, Manucha W. Nitric oxide in the kidney: physiological roles and regulation. In: Gimenéz MS, Gómez NN, editors. Advances in chemistry and biology of nitric oxide. Kerala: Research Signpost; 2007. p. 53–80. This review is focused on NOS isoforms distribution and regulation and on nitric oxide roles in renal physiology. Vallés P, Manucha W. Nitric oxide in the kidney: physiological roles and regulation. In: Gimenéz MS, Gómez NN, editors. Advances in chemistry and biology of nitric oxide. Kerala: Research Signpost; 2007. p. 53–80. This review is focused on NOS isoforms distribution and regulation and on nitric oxide roles in renal physiology.
73.
74.
go back to reference Ushmorov A, Ratter F, Lehmann V, Dröge W, Schirrmacher V, Umansky V. Nitric oxide- induced apoptosis in human leukemic lines requires mitochondrial lipid degradation and cytochrome c release. Blood. 1999;93:2342–52.PubMed Ushmorov A, Ratter F, Lehmann V, Dröge W, Schirrmacher V, Umansky V. Nitric oxide- induced apoptosis in human leukemic lines requires mitochondrial lipid degradation and cytochrome c release. Blood. 1999;93:2342–52.PubMed
75.
go back to reference Kim YM, Bombeck CA, Billiar TR. Nitric oxide as a bifunctional regulator of apoptosis. Circ Res. 1999;84(3):253–6.PubMedCrossRef Kim YM, Bombeck CA, Billiar TR. Nitric oxide as a bifunctional regulator of apoptosis. Circ Res. 1999;84(3):253–6.PubMedCrossRef
76.
go back to reference Kim YM, Talanian RV, Billiar TR. Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms. J Biol Chem. 1997;272:31138–48.PubMedCrossRef Kim YM, Talanian RV, Billiar TR. Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms. J Biol Chem. 1997;272:31138–48.PubMedCrossRef
77.
go back to reference Mosser DD, Caron AW, Bourget L, Denis-Larose C, Massie B. Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol Cell Biol. 1997;17(9):5317–27.PubMedCentralPubMedCrossRef Mosser DD, Caron AW, Bourget L, Denis-Larose C, Massie B. Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol Cell Biol. 1997;17(9):5317–27.PubMedCentralPubMedCrossRef
78.•
go back to reference Manucha W, Vallés P. Cytoprotective role of nitric oxide associated whit Hsp70 expression in neonatal obstructive nephropathy. Nitric Oxide Biol Chem. 2008;18(3):204–15. In this original study, the authors postulated that the mechanism of apoptosis inhibition by nitric oxide would include stimulation of heat shock protein 70 expression. CrossRef Manucha W, Vallés P. Cytoprotective role of nitric oxide associated whit Hsp70 expression in neonatal obstructive nephropathy. Nitric Oxide Biol Chem. 2008;18(3):204–15. In this original study, the authors postulated that the mechanism of apoptosis inhibition by nitric oxide would include stimulation of heat shock protein 70 expression. CrossRef
79.••
go back to reference Kaneki M, Shimizu N, Yamada D, Chang K. Nitrosative stress and pathogenesis of insulin resistance. Antioxid Redox Signal. 2007;9:319–29. S-nitrosylation has recently been proposed to play an important role in the pathogenesis of insulin resistance. PubMedCrossRef Kaneki M, Shimizu N, Yamada D, Chang K. Nitrosative stress and pathogenesis of insulin resistance. Antioxid Redox Signal. 2007;9:319–29. S-nitrosylation has recently been proposed to play an important role in the pathogenesis of insulin resistance. PubMedCrossRef
80.•
go back to reference Wang H, Wang AX, Aylor K, Barrett EJ. Nitric oxide directly promotes vascular endothelial insulin transport. Diabetes. 2013;62:4030–42. Nitric oxide directly promotes endothelial cell insulin transport by enhancing protein S-nitrosylation. PubMedCentralPubMedCrossRef Wang H, Wang AX, Aylor K, Barrett EJ. Nitric oxide directly promotes vascular endothelial insulin transport. Diabetes. 2013;62:4030–42. Nitric oxide directly promotes endothelial cell insulin transport by enhancing protein S-nitrosylation. PubMedCentralPubMedCrossRef
81.
go back to reference Scherrer U, Randin D, Vollenweider P, Vollenweider L, Nicod P. Nitric oxide release accounts for insulin’s vascular effects in humans. J Clin Invest. 1994;94:2511–5.PubMedCentralPubMedCrossRef Scherrer U, Randin D, Vollenweider P, Vollenweider L, Nicod P. Nitric oxide release accounts for insulin’s vascular effects in humans. J Clin Invest. 1994;94:2511–5.PubMedCentralPubMedCrossRef
82.•
go back to reference Zeng G, Nystrom FH, Ravichandran LV, Cong LN, Kirby M, Mostowski H, et al. Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation. 2000;101:1539–45. Receptor kinase activity is necessary to mediate production of nitric oxide through the insulin receptor. Both PI3K and Akt contribute importantly to this process. PubMedCrossRef Zeng G, Nystrom FH, Ravichandran LV, Cong LN, Kirby M, Mostowski H, et al. Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation. 2000;101:1539–45. Receptor kinase activity is necessary to mediate production of nitric oxide through the insulin receptor. Both PI3K and Akt contribute importantly to this process. PubMedCrossRef
83.
go back to reference Montagnani M, Chen H, Barr VA, Quon MJ. Insulin-stimulated activation of eNOS is independent of Ca2+ but requires phosphorylation by Akt at Ser1179. J Biol Chem. 2001;276(32):30392–8.PubMedCrossRef Montagnani M, Chen H, Barr VA, Quon MJ. Insulin-stimulated activation of eNOS is independent of Ca2+ but requires phosphorylation by Akt at Ser1179. J Biol Chem. 2001;276(32):30392–8.PubMedCrossRef
84.
go back to reference Muniyappa R, Montagnani M, Koh KK, Quon MJ. Cardiovascular actions of insulin. Endocr Rev. 2007;28(5):463–91.PubMedCrossRef Muniyappa R, Montagnani M, Koh KK, Quon MJ. Cardiovascular actions of insulin. Endocr Rev. 2007;28(5):463–91.PubMedCrossRef
85.
go back to reference Zhang QJ, Holland WL, Wilson L, Tanner JM, Kearns D, Cahoon JM, et al. Ceramide mediates vascular dysfunction in diet-induced obesity by PP2A-mediated dephosphorylation of the eNOS-Akt complex. Diabetes. 2012;61(7):1848–59.PubMedCentralPubMedCrossRef Zhang QJ, Holland WL, Wilson L, Tanner JM, Kearns D, Cahoon JM, et al. Ceramide mediates vascular dysfunction in diet-induced obesity by PP2A-mediated dephosphorylation of the eNOS-Akt complex. Diabetes. 2012;61(7):1848–59.PubMedCentralPubMedCrossRef
86.
go back to reference Fleming I, Busse R. Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol. 2003;284(1):R1–12.PubMedCrossRef Fleming I, Busse R. Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol. 2003;284(1):R1–12.PubMedCrossRef
87.
go back to reference Steinberg H, Cressman E, Wu Y, et al. Insulin mediated nitric oxide production is impaired in insulin resistance. Diabetes. 1997;46:24A. Steinberg H, Cressman E, Wu Y, et al. Insulin mediated nitric oxide production is impaired in insulin resistance. Diabetes. 1997;46:24A.
88.••
go back to reference Sansbury BE, Hill BG. Regulation of obesity and insulin resistance by nitric oxide. Free Radic Biol Med. 2014;73:383–99. This review discusses the role of nitric oxide in regulating adiposity and insulin sensitivity and places its modes of action into context with the known causes and consequences of metabolic disease. PubMedCrossRef Sansbury BE, Hill BG. Regulation of obesity and insulin resistance by nitric oxide. Free Radic Biol Med. 2014;73:383–99. This review discusses the role of nitric oxide in regulating adiposity and insulin sensitivity and places its modes of action into context with the known causes and consequences of metabolic disease. PubMedCrossRef
89.
go back to reference Higashi Y, Sasaki S, Nakagawa K, Matsuura H, Chayama K, Oshima T. Effect of obesity on endothelium-dependent, nitric oxide-mediated vasodilation in normotensive individuals and patients with essential hypertension. Am J Hypertens. 2001;14:1038–45.PubMedCrossRef Higashi Y, Sasaki S, Nakagawa K, Matsuura H, Chayama K, Oshima T. Effect of obesity on endothelium-dependent, nitric oxide-mediated vasodilation in normotensive individuals and patients with essential hypertension. Am J Hypertens. 2001;14:1038–45.PubMedCrossRef
90.
go back to reference Williams IL, Wheatcroft SB, Shah AM, Kearney MT. Obesity, atherosclerosis and the vascular endothelium: mechanisms of reduced nitric oxide bioavailability in obese humans. Int J Obes Relat Metab Disord. 2002;26:754–64.PubMedCrossRef Williams IL, Wheatcroft SB, Shah AM, Kearney MT. Obesity, atherosclerosis and the vascular endothelium: mechanisms of reduced nitric oxide bioavailability in obese humans. Int J Obes Relat Metab Disord. 2002;26:754–64.PubMedCrossRef
91.•
go back to reference Duplain H, Burcelin R, Sartori C, Cook S, Egli M, Lepori M, et al. Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation. 2001;104:342–5. eNOS is important for the control not only of arterial pressure but also of glucose and lipid homeostasis. PubMedCrossRef Duplain H, Burcelin R, Sartori C, Cook S, Egli M, Lepori M, et al. Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation. 2001;104:342–5. eNOS is important for the control not only of arterial pressure but also of glucose and lipid homeostasis. PubMedCrossRef
92.
go back to reference Abudukadier A, Fujita Y, Obara A, Ohashi A, Fukushima T, Sato Y, et al. Tetrahydrobiopterin has a glucose-lowering effect by suppressing hepatic gluconeogenesis in an endothelial nitric oxide synthase-dependent manner in diabetic mice. Diabetes. 2013;62:3033–43.PubMedCentralPubMedCrossRef Abudukadier A, Fujita Y, Obara A, Ohashi A, Fukushima T, Sato Y, et al. Tetrahydrobiopterin has a glucose-lowering effect by suppressing hepatic gluconeogenesis in an endothelial nitric oxide synthase-dependent manner in diabetic mice. Diabetes. 2013;62:3033–43.PubMedCentralPubMedCrossRef
93.•
go back to reference Paneni F, Costantino S, Cosentino F. Role of oxidative stress in endothelial insulin resistance. World J Diabetes. 2015;6(2):326–32. The authors describe emerging theories concerning endothelial insulin resistance, with particular emphasis on the role oxidative stress. Complex molecular circuits including endothelial nitric oxide synthase, mitochondrial adaptor p66(Shc), and nicotinamide adenine dinucleotide phosphate-oxidase are discussed. PubMedCentralPubMedCrossRef Paneni F, Costantino S, Cosentino F. Role of oxidative stress in endothelial insulin resistance. World J Diabetes. 2015;6(2):326–32. The authors describe emerging theories concerning endothelial insulin resistance, with particular emphasis on the role oxidative stress. Complex molecular circuits including endothelial nitric oxide synthase, mitochondrial adaptor p66(Shc), and nicotinamide adenine dinucleotide phosphate-oxidase are discussed. PubMedCentralPubMedCrossRef
94.•
go back to reference Kubota T, Kubota N, Kumagai H, Yamaguchi S, Kozono H, Takahashi T, et al. Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle. Cell Metab. 2011;13:294–307. Improving endothelial insulin signaling may serve as a therapeutic strategy for ameliorating skeletal muscle insulin resistance. PubMedCrossRef Kubota T, Kubota N, Kumagai H, Yamaguchi S, Kozono H, Takahashi T, et al. Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle. Cell Metab. 2011;13:294–307. Improving endothelial insulin signaling may serve as a therapeutic strategy for ameliorating skeletal muscle insulin resistance. PubMedCrossRef
95.
go back to reference Hasegawa Y, Saito T, Ogihara T, Ishigaki Y, Yamada T, Imai J, et al. Blockade of the nuclear factor-κB pathway in the endothelium prevents insulin resistance and prolongs life spans. Circulation. 2012;125:1122–33.PubMedCrossRef Hasegawa Y, Saito T, Ogihara T, Ishigaki Y, Yamada T, Imai J, et al. Blockade of the nuclear factor-κB pathway in the endothelium prevents insulin resistance and prolongs life spans. Circulation. 2012;125:1122–33.PubMedCrossRef
96.•
go back to reference Kim F, Pham M, Maloney E, Rizzo NO, Morton GJ, Wisse BE, et al. Vascular inflammation, insulin resistance, and reduced nitric oxide production precede the onset of peripheral insulin resistance. Arterioscler Thromb Vasc Biol. 2008;28:1982–8. The authors have demonstrated that during obesity induced by high-fat diet feeding, inflammation and insulin resistance develop in the vasculature well before these responses are detected in muscle, liver, or adipose tissue. This observation suggests that the vasculature is more susceptible than other tissues to the deleterious effects of nutrient overload. PubMedCentralPubMedCrossRef Kim F, Pham M, Maloney E, Rizzo NO, Morton GJ, Wisse BE, et al. Vascular inflammation, insulin resistance, and reduced nitric oxide production precede the onset of peripheral insulin resistance. Arterioscler Thromb Vasc Biol. 2008;28:1982–8. The authors have demonstrated that during obesity induced by high-fat diet feeding, inflammation and insulin resistance develop in the vasculature well before these responses are detected in muscle, liver, or adipose tissue. This observation suggests that the vasculature is more susceptible than other tissues to the deleterious effects of nutrient overload. PubMedCentralPubMedCrossRef
97.
go back to reference Bender SB, Herrick EK, Lott ND, Klabunde RE. Diet-induced obesity and diabetes reduce coronary responses to nitric oxide due to reduced bioavailability in isolated mouse hearts. Diabetes Obes Metab. 2007;9:688–96.PubMedCrossRef Bender SB, Herrick EK, Lott ND, Klabunde RE. Diet-induced obesity and diabetes reduce coronary responses to nitric oxide due to reduced bioavailability in isolated mouse hearts. Diabetes Obes Metab. 2007;9:688–96.PubMedCrossRef
98.
go back to reference Noronha BT, Li JM, Wheatcroft SB, Shah AM, Kearney MT. Inducible nitric oxide synthase has divergent effects on vascular and metabolic function in obesity. Diabetes. 2005;54:1082–9.PubMedCrossRef Noronha BT, Li JM, Wheatcroft SB, Shah AM, Kearney MT. Inducible nitric oxide synthase has divergent effects on vascular and metabolic function in obesity. Diabetes. 2005;54:1082–9.PubMedCrossRef
99.•
go back to reference Fujimoto M, Shimizu N, Kunii K, Martyn JA, Ueki K, Kaneki M. A role for iNOS in fasting hyperglycemia and impaired insulin signaling in the liver of obese diabetic mice. Diabetes. 2005;54:1340–8. iNOS plays a role in fasting hyperglycemia and contributes to hepatic insulin resistance in ob/ob mice. PubMedCrossRef Fujimoto M, Shimizu N, Kunii K, Martyn JA, Ueki K, Kaneki M. A role for iNOS in fasting hyperglycemia and impaired insulin signaling in the liver of obese diabetic mice. Diabetes. 2005;54:1340–8. iNOS plays a role in fasting hyperglycemia and contributes to hepatic insulin resistance in ob/ob mice. PubMedCrossRef
100.
go back to reference Sugita H, Fujimoto M, Yasukawa T, Shimizu N, Sugita M, Yasuhara S, et al. Inducible nitric-oxide synthase and NO donor induce insulin receptor substrate-1 degradation in skeletal muscle cells. J Biol Chem. 2005;280:14203–11.PubMedCrossRef Sugita H, Fujimoto M, Yasukawa T, Shimizu N, Sugita M, Yasuhara S, et al. Inducible nitric-oxide synthase and NO donor induce insulin receptor substrate-1 degradation in skeletal muscle cells. J Biol Chem. 2005;280:14203–11.PubMedCrossRef
101.
go back to reference Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes. 2007;56:16–23.PubMedCrossRef Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes. 2007;56:16–23.PubMedCrossRef
102.
go back to reference Turini P, Thalmann S, Jayet PY, Cook S, Mathieu C, Burcelin R, et al. Insulin resistance in mice lacking neuronal nitric oxide synthase is related to an alpha-adrenergic mechanism. Swiss Med Wkly. 2007;137:700–4.PubMed Turini P, Thalmann S, Jayet PY, Cook S, Mathieu C, Burcelin R, et al. Insulin resistance in mice lacking neuronal nitric oxide synthase is related to an alpha-adrenergic mechanism. Swiss Med Wkly. 2007;137:700–4.PubMed
103.
go back to reference Fink AL. Chaperone-mediated protein folding. Physiol Rev. 1999;79:425–49.PubMed Fink AL. Chaperone-mediated protein folding. Physiol Rev. 1999;79:425–49.PubMed
104.
go back to reference Asea A. Hsp70: a chaperokine. Novartis Found Symp. 2008;291:173–9. discussion 179–183, 221–4.PubMedCrossRef Asea A. Hsp70: a chaperokine. Novartis Found Symp. 2008;291:173–9. discussion 179–183, 221–4.PubMedCrossRef
106.
go back to reference Kang SS, Song JH, Lee MY, Kang YH, Lim SS, Ryu SY, et al. Developmental immunolocalization of heat shock protein 70 (HSP70) in epithelial cell of rat kidney. Histol Histopathol. 2011;26(11):1363–73.PubMed Kang SS, Song JH, Lee MY, Kang YH, Lim SS, Ryu SY, et al. Developmental immunolocalization of heat shock protein 70 (HSP70) in epithelial cell of rat kidney. Histol Histopathol. 2011;26(11):1363–73.PubMed
107.••
go back to reference Mazzei L, Docherty NG, Manucha W. Mediators and mechanisms of heat shock protein 70 based cytoprotection in obstructive nephropathy. Cell Stress Chaperones. 2015;20(6):893–906. This review summarizes our understanding of how the biological actions of Hsp70 may affect renal cytoprotection in the context of organ injury. PubMedCrossRef Mazzei L, Docherty NG, Manucha W. Mediators and mechanisms of heat shock protein 70 based cytoprotection in obstructive nephropathy. Cell Stress Chaperones. 2015;20(6):893–906. This review summarizes our understanding of how the biological actions of Hsp70 may affect renal cytoprotection in the context of organ injury. PubMedCrossRef
108.
go back to reference Vallés P, Jorro F, Carrizo L, Manucha W, Oliva J, Cuello-Carrión FD, et al. Heat shock proteins HSP27 and HSP70 in unilateral obstructed kidneys. Pediatr Nephrol. 2003;18(6):527–35.PubMed Vallés P, Jorro F, Carrizo L, Manucha W, Oliva J, Cuello-Carrión FD, et al. Heat shock proteins HSP27 and HSP70 in unilateral obstructed kidneys. Pediatr Nephrol. 2003;18(6):527–35.PubMed
109.
go back to reference Manucha W, Carrizo L, Ruete C, Molina H, Vallés P. Angiotensin II type I antagonist on oxidative stress and heat shock protein 70 (HSP 70) expression in obstructive nephropathy. Cell Mol Biol (Noisy-le-grand). 2005;51(6):547–55. Manucha W, Carrizo L, Ruete C, Molina H, Vallés P. Angiotensin II type I antagonist on oxidative stress and heat shock protein 70 (HSP 70) expression in obstructive nephropathy. Cell Mol Biol (Noisy-le-grand). 2005;51(6):547–55.
110.
go back to reference Carrizo LC, Ruete CM, Manucha WA, Ciocca DR, Vallés PG. Heat shock protein 70 expression is associated with inhibition of renal tubule epithelial cell apoptosis during recovery from low-protein feeding. Cell Stress Chaperones. 2006;11(4):309–24.PubMedCentralPubMedCrossRef Carrizo LC, Ruete CM, Manucha WA, Ciocca DR, Vallés PG. Heat shock protein 70 expression is associated with inhibition of renal tubule epithelial cell apoptosis during recovery from low-protein feeding. Cell Stress Chaperones. 2006;11(4):309–24.PubMedCentralPubMedCrossRef
111.
go back to reference Borges TJ, Lopes RL, Pinho NG, Machado FD, Souza AP, Bonorino C. Extracellular Hsp70 inhibits pro-inflammatory cytokine production by IL-10 driven down-regulation of C/EBPβ and C/EBPδ. Int J Hyperth. 2013;29(5):455–63.CrossRef Borges TJ, Lopes RL, Pinho NG, Machado FD, Souza AP, Bonorino C. Extracellular Hsp70 inhibits pro-inflammatory cytokine production by IL-10 driven down-regulation of C/EBPβ and C/EBPδ. Int J Hyperth. 2013;29(5):455–63.CrossRef
112.
go back to reference Rinaldi Tosi ME, Bocanegra V, Manucha W, Gil Lorenzo A, Valles PG. The Nrf2-Keap1 cellular defense pathway and heat shock protein 70 (Hsp70) response. Role in protection against oxidative stress in early neonatal unilateral ureteral obstruction (UUO). Cell Stress Chaperones. 2011;16(1):57–68.PubMedCentralPubMedCrossRef Rinaldi Tosi ME, Bocanegra V, Manucha W, Gil Lorenzo A, Valles PG. The Nrf2-Keap1 cellular defense pathway and heat shock protein 70 (Hsp70) response. Role in protection against oxidative stress in early neonatal unilateral ureteral obstruction (UUO). Cell Stress Chaperones. 2011;16(1):57–68.PubMedCentralPubMedCrossRef
113.
go back to reference Ferder L, Inserra F, Martinez-Maldonado M. Inflammation and the metabolic syndrome: role of angiotensin II and oxidative stress. Curr Hypertens Rep. 2006;8(3):191–8.PubMedCrossRef Ferder L, Inserra F, Martinez-Maldonado M. Inflammation and the metabolic syndrome: role of angiotensin II and oxidative stress. Curr Hypertens Rep. 2006;8(3):191–8.PubMedCrossRef
114.•
go back to reference Garcia IM, Altamirano L, Mazzei L, Fornes M, Molina MN, Ferder L, et al. Role of mitochondria in paricalcitol-mediated cytoprotection during obstructive nephropathy. Am J Physiol Ren Physiol. 2012;302(12):F1595–605. This study evaluates the cytoprotective effects of paricalcitol, a VDR activator, at the mitochondrial level using an obstructive nephropathy model. CrossRef Garcia IM, Altamirano L, Mazzei L, Fornes M, Molina MN, Ferder L, et al. Role of mitochondria in paricalcitol-mediated cytoprotection during obstructive nephropathy. Am J Physiol Ren Physiol. 2012;302(12):F1595–605. This study evaluates the cytoprotective effects of paricalcitol, a VDR activator, at the mitochondrial level using an obstructive nephropathy model. CrossRef
115.•
go back to reference Garcia IM, Altamirano L, Mazzei L, Fornes M, Cuello-Carrion FD, Ferder L, et al. Vitamin D receptor modulated Hsp70/AT1 expression may protect the kidneys of SHRs at the structural and functional levels. Cell Stress Chaperones. 2014;19(4):479–91. Recent data suggest that Hsp70/AT1 modulated by VDR is involved in the mechanism by which paricalcitol provides renal protection in a hypertension model. In addition, lower AT1 expression through VDR induction could be a consequence of the heat shock response Hsp70-mediated cell protection. PubMedCentralPubMedCrossRef Garcia IM, Altamirano L, Mazzei L, Fornes M, Cuello-Carrion FD, Ferder L, et al. Vitamin D receptor modulated Hsp70/AT1 expression may protect the kidneys of SHRs at the structural and functional levels. Cell Stress Chaperones. 2014;19(4):479–91. Recent data suggest that Hsp70/AT1 modulated by VDR is involved in the mechanism by which paricalcitol provides renal protection in a hypertension model. In addition, lower AT1 expression through VDR induction could be a consequence of the heat shock response Hsp70-mediated cell protection. PubMedCentralPubMedCrossRef
116.•
go back to reference Lutz W, Kohno K, Kumar R. The role of heat shock protein 70 in vitamin D receptor function. Biochem Biophys Res Commun. 2001;282(5):1211–9. Hsp70-like chaperone proteins play a role in controlling concentrations of the VDR within the cell. PubMedCrossRef Lutz W, Kohno K, Kumar R. The role of heat shock protein 70 in vitamin D receptor function. Biochem Biophys Res Commun. 2001;282(5):1211–9. Hsp70-like chaperone proteins play a role in controlling concentrations of the VDR within the cell. PubMedCrossRef
117.
go back to reference Adams JS, Chen H, Chun RF, Nguyen L, Wu S, Ren SY, et al. Novel regulators of vitamin D action and metabolism: lessons learned at the Los Angeles zoo. J Cell Biochem. 2003;88(2):308–14.PubMedCrossRef Adams JS, Chen H, Chun RF, Nguyen L, Wu S, Ren SY, et al. Novel regulators of vitamin D action and metabolism: lessons learned at the Los Angeles zoo. J Cell Biochem. 2003;88(2):308–14.PubMedCrossRef
118.•
go back to reference Mitri J, Pittas AG. Vitamin D and diabetes. Endocrinol Metab Clin N Am. 2014;43(1):205–32. This article summarizes the current evidence from human studies that suggests but does not prove a relation between vitamin D and type 2 diabetes, and briefly reports on the potential association between vitamin D and type 1 diabetes. CrossRef Mitri J, Pittas AG. Vitamin D and diabetes. Endocrinol Metab Clin N Am. 2014;43(1):205–32. This article summarizes the current evidence from human studies that suggests but does not prove a relation between vitamin D and type 2 diabetes, and briefly reports on the potential association between vitamin D and type 1 diabetes. CrossRef
119.
go back to reference Koroshi A, Idrizi A. Renoprotective effects of Vitamin D and renin-angiotensin system. Hippokratia. 2011;15(4):308–11.PubMedCentralPubMed Koroshi A, Idrizi A. Renoprotective effects of Vitamin D and renin-angiotensin system. Hippokratia. 2011;15(4):308–11.PubMedCentralPubMed
120.
go back to reference Cheng Q, Boucher BJ, Leung PS. Modulation of hypovitaminosis D-induced islet dysfunction and insulin resistance through direct suppression of the pancreatic islet renin-angiotensin system in mice. Diabetologia. 2013;56(3):553–62.PubMedCrossRef Cheng Q, Boucher BJ, Leung PS. Modulation of hypovitaminosis D-induced islet dysfunction and insulin resistance through direct suppression of the pancreatic islet renin-angiotensin system in mice. Diabetologia. 2013;56(3):553–62.PubMedCrossRef
121.•
go back to reference Ferder M, Inserra F, Manucha W, Ferder L. The world pandemic of vitamin D deficiency could possibly be explained by cellular inflammatory response activity induced by the renin-angiotensin system. Am J Physiol Cell Physiol. 2013;304(11):C1027–39. This review attempts to show that there may be a relationship between inflammatory processes induced by chronic overstimulation of the renin-angiotensin system (RAS) and the worldwide deficiency of vitamin D (VitD) and that both disorders are probably associated with environmental factors. PubMedCentralPubMedCrossRef Ferder M, Inserra F, Manucha W, Ferder L. The world pandemic of vitamin D deficiency could possibly be explained by cellular inflammatory response activity induced by the renin-angiotensin system. Am J Physiol Cell Physiol. 2013;304(11):C1027–39. This review attempts to show that there may be a relationship between inflammatory processes induced by chronic overstimulation of the renin-angiotensin system (RAS) and the worldwide deficiency of vitamin D (VitD) and that both disorders are probably associated with environmental factors. PubMedCentralPubMedCrossRef
122.
123.
go back to reference Pandey KB, Mishra N, Rizvi SI. Protein oxidation biomarkers in plasma of type 2 diabetic patients. Clin Biochem. 2010;43(4–5):508–11.PubMedCrossRef Pandey KB, Mishra N, Rizvi SI. Protein oxidation biomarkers in plasma of type 2 diabetic patients. Clin Biochem. 2010;43(4–5):508–11.PubMedCrossRef
124.
go back to reference Gupte AA, Bomhoff GL, Swerdlow RH, Geiger PC. Heat treatment improves glucose tolerance and prevents skeletal muscle insulin resistance in rats fed a high-fat diet. Diabetes. 2009;58:567–78.PubMedCentralPubMedCrossRef Gupte AA, Bomhoff GL, Swerdlow RH, Geiger PC. Heat treatment improves glucose tolerance and prevents skeletal muscle insulin resistance in rats fed a high-fat diet. Diabetes. 2009;58:567–78.PubMedCentralPubMedCrossRef
125.••
go back to reference Kondo T, Motoshima H, Igata M, Kawashima J, Matsumura T, Kai H, et al. The role of heat shock response in insulin resistance and diabetes. Diabetes Metab J. 2014;38:100–6. Physical medicine using simultaneous stimulation of heat with mild electric current activates heat shock response, thereby reducing visceral adiposity, insulin resistance, chronic inflammation and improving glucose homeostasis in mice models of T2DM, as well as in humans with MS or T2DM. PubMedCentralPubMedCrossRef Kondo T, Motoshima H, Igata M, Kawashima J, Matsumura T, Kai H, et al. The role of heat shock response in insulin resistance and diabetes. Diabetes Metab J. 2014;38:100–6. Physical medicine using simultaneous stimulation of heat with mild electric current activates heat shock response, thereby reducing visceral adiposity, insulin resistance, chronic inflammation and improving glucose homeostasis in mice models of T2DM, as well as in humans with MS or T2DM. PubMedCentralPubMedCrossRef
126.
go back to reference Kavanagh K, Flynn DM, Jenkins KA, Zhang L, Wagner JD. Restoring HSP70 deficiencies improves glucose tolerance in diabetic monkeys. Am J Physiol Endocrinol Metab. 2011;300:E894–901.PubMedCentralPubMedCrossRef Kavanagh K, Flynn DM, Jenkins KA, Zhang L, Wagner JD. Restoring HSP70 deficiencies improves glucose tolerance in diabetic monkeys. Am J Physiol Endocrinol Metab. 2011;300:E894–901.PubMedCentralPubMedCrossRef
127.•
go back to reference Wei W, Liu Q, Tan Y, Liu L, Li X, Cai L. Oxidative stress, diabetes, and diabetic complications. Hemoglobin. 2009;33(5):370–7. Protective agents such as metallothionein, zinc and FGFs play an important role in preventing the development of diabetes and diabetic complications. PubMedCrossRef Wei W, Liu Q, Tan Y, Liu L, Li X, Cai L. Oxidative stress, diabetes, and diabetic complications. Hemoglobin. 2009;33(5):370–7. Protective agents such as metallothionein, zinc and FGFs play an important role in preventing the development of diabetes and diabetic complications. PubMedCrossRef
128.
go back to reference Marucci A, Miscio G, Padovano L, Boonyasrisawat W, Florez JC, et al. The role of HSP70 on ENPP1 expression and insulin-receptor activation. J Mol Med (Berl). 2009;87:139–44. The authors propose that type 2 diabetes results from a vicious cycle of metabolically induced inflammation, impaired insulin responsiveness, and subsequent loss of homeostatic signaling. A crucial and previously under-recognized event contributing to this loss of homeostasis is a reduction in heat shock proteins (HSPs, or stress proteins). CrossRef Marucci A, Miscio G, Padovano L, Boonyasrisawat W, Florez JC, et al. The role of HSP70 on ENPP1 expression and insulin-receptor activation. J Mol Med (Berl). 2009;87:139–44. The authors propose that type 2 diabetes results from a vicious cycle of metabolically induced inflammation, impaired insulin responsiveness, and subsequent loss of homeostatic signaling. A crucial and previously under-recognized event contributing to this loss of homeostasis is a reduction in heat shock proteins (HSPs, or stress proteins). CrossRef
129.••
130.••
go back to reference Krause M, Bock PM, Takahashi HK, Homem De Bittencourt Jr PI, Newsholme P. The regulatory roles of NADPH oxidase, intra- and extra-cellular HSP70 in pancreatic islet function, dysfunction and diabetes. Clin Sci (Lond). 2015;128(11):789–803. In this review, authors describe possible mechanisms by which HSP70 participates in cell function/dysfunction, including the activation of NADPH oxidase isoforms leading to oxidative stress, focusing on the possible role of HSPs and signaling in pancreatic islet α- and β-cell physiological function in health and Type 2 diabetes mellitus. CrossRef Krause M, Bock PM, Takahashi HK, Homem De Bittencourt Jr PI, Newsholme P. The regulatory roles of NADPH oxidase, intra- and extra-cellular HSP70 in pancreatic islet function, dysfunction and diabetes. Clin Sci (Lond). 2015;128(11):789–803. In this review, authors describe possible mechanisms by which HSP70 participates in cell function/dysfunction, including the activation of NADPH oxidase isoforms leading to oxidative stress, focusing on the possible role of HSPs and signaling in pancreatic islet α- and β-cell physiological function in health and Type 2 diabetes mellitus. CrossRef
131.
go back to reference Kavanagh K, Zhang L, Wagner JD. Tissue-specific regulation and expression of heat shock proteins in type 2 diabetic monkeys. Cell Stress Chaperones. 2009;14(3):291–9.PubMedCentralPubMedCrossRef Kavanagh K, Zhang L, Wagner JD. Tissue-specific regulation and expression of heat shock proteins in type 2 diabetic monkeys. Cell Stress Chaperones. 2009;14(3):291–9.PubMedCentralPubMedCrossRef
132.
go back to reference Hooper PL. Insulin signaling, GSK-3, heat shock proteins and the natural history of type 2 diabetes mellitus: a hypothesis. Metab Syndr Relat Disord. 2007;5(3):220–30.PubMedCrossRef Hooper PL. Insulin signaling, GSK-3, heat shock proteins and the natural history of type 2 diabetes mellitus: a hypothesis. Metab Syndr Relat Disord. 2007;5(3):220–30.PubMedCrossRef
133.
go back to reference Lee JH, Gao J, Kosinski PA, Elliman SJ, Hughes TE, Gromada J, et al. Heat shock protein 90 (HSP90) inhibitors activate the heat shock factor 1 (HSF1) stress response pathway and improve glucose regulation in diabetic mice. Biochem Biophys Res Commun. 2013;430(3):1109–13.PubMedCrossRef Lee JH, Gao J, Kosinski PA, Elliman SJ, Hughes TE, Gromada J, et al. Heat shock protein 90 (HSP90) inhibitors activate the heat shock factor 1 (HSF1) stress response pathway and improve glucose regulation in diabetic mice. Biochem Biophys Res Commun. 2013;430(3):1109–13.PubMedCrossRef
134.••
go back to reference Krause M, Heck TG, Bittencourt A, Scomazzon SP, Newsholme P, Curi R, et al. The chaperone balance hypothesis: the importance of the extracellular to intracellular HSP70 ratio to inflammation-driven type 2 diabetes, the effect of exercise, and the implications for clinical management. Mediat Inflamm. 2015;2015:249205. Imbalances in the HSP70 status, described by the [eHSP70]/[iHSP70] ratio, may be determinant to trigger a chronic pro-inflammatory state that leads to insulin resistance and T2DM development. Krause M, Heck TG, Bittencourt A, Scomazzon SP, Newsholme P, Curi R, et al. The chaperone balance hypothesis: the importance of the extracellular to intracellular HSP70 ratio to inflammation-driven type 2 diabetes, the effect of exercise, and the implications for clinical management. Mediat Inflamm. 2015;2015:249205. Imbalances in the HSP70 status, described by the [eHSP70]/[iHSP70] ratio, may be determinant to trigger a chronic pro-inflammatory state that leads to insulin resistance and T2DM development.
135.•
go back to reference Nakhjavani M, Morteza A, Khajeali L, Esteghamati A, Khalilzadeh O, Asgarani F, et al. Increased serum HSP70 levels are associated with the duration of diabetes. Cell Stress Chaperones. 2010;15:959–64. Serum level of HSP70 is significantly higher in patients with diabetes and correlates with the duration of disease. Higher HSP70 in prolonged diabetes versus newly diagnosed diabetes may be an indicator of metabolic derangement in the course of diabetes. PubMedCentralPubMedCrossRef Nakhjavani M, Morteza A, Khajeali L, Esteghamati A, Khalilzadeh O, Asgarani F, et al. Increased serum HSP70 levels are associated with the duration of diabetes. Cell Stress Chaperones. 2010;15:959–64. Serum level of HSP70 is significantly higher in patients with diabetes and correlates with the duration of disease. Higher HSP70 in prolonged diabetes versus newly diagnosed diabetes may be an indicator of metabolic derangement in the course of diabetes. PubMedCentralPubMedCrossRef
136.••
go back to reference Karpe PA, Tikoo K. Heat shock prevents insulin resistance-induced vascular complications by augmenting angiotensin-(1–7) signaling. Diabetes. 2014;63:1124–39. Induction of HSP72 is a novel approach to prevent insulin resistance-induced vascular complications. PubMedCrossRef Karpe PA, Tikoo K. Heat shock prevents insulin resistance-induced vascular complications by augmenting angiotensin-(1–7) signaling. Diabetes. 2014;63:1124–39. Induction of HSP72 is a novel approach to prevent insulin resistance-induced vascular complications. PubMedCrossRef
137.•
go back to reference Henstridge DC, Bruce CR, Drew BG, Tory K, Kolonics A, Estevez E, et al. Activating HSP72 in rodent skeletal muscle increases mitochondrial number and oxidative capacity and decreases insulin resistance. Diabetes. 2014;63(6):1881–94. Increased oxidative metabolism associated with activation of HSP72 has potential clinical implications not only for type 2 diabetes but also for other disorders where mitochondrial function is compromised. PubMedCentralPubMedCrossRef Henstridge DC, Bruce CR, Drew BG, Tory K, Kolonics A, Estevez E, et al. Activating HSP72 in rodent skeletal muscle increases mitochondrial number and oxidative capacity and decreases insulin resistance. Diabetes. 2014;63(6):1881–94. Increased oxidative metabolism associated with activation of HSP72 has potential clinical implications not only for type 2 diabetes but also for other disorders where mitochondrial function is compromised. PubMedCentralPubMedCrossRef
138.
go back to reference Chow AM, Steel R, Anderson RL. Hsp72 chaperone function is dispensable for protection against stress-induced apoptosis. Cell Stress Chaperones. 2009;14:253–63.PubMedCentralPubMedCrossRef Chow AM, Steel R, Anderson RL. Hsp72 chaperone function is dispensable for protection against stress-induced apoptosis. Cell Stress Chaperones. 2009;14:253–63.PubMedCentralPubMedCrossRef
139.•
go back to reference Chung J, Nguyen AK, Henstridge DC, Holmes AG, Stanley Chan MH, Mesa JL, et al. HSP72 protects against obesity-induced insulin resistance. Proc Natl Acad Sci U S A. 2008;105:1739–44. HSP72 is essential in blocking inflammation and preventing insulin resistance in the context of genetic obesity or high-fat feeding. PubMedCentralPubMedCrossRef Chung J, Nguyen AK, Henstridge DC, Holmes AG, Stanley Chan MH, Mesa JL, et al. HSP72 protects against obesity-induced insulin resistance. Proc Natl Acad Sci U S A. 2008;105:1739–44. HSP72 is essential in blocking inflammation and preventing insulin resistance in the context of genetic obesity or high-fat feeding. PubMedCentralPubMedCrossRef
140.
go back to reference Chae JI, Kim J, Son MY, Jeon YJ, Kim DW, Kim HE, et al. Cardioprotective molecules are enriched in beating cardiomyocytes derived from human embryonic stem cells. Int J Cardiol. 2013;165(2):341–54.PubMedCrossRef Chae JI, Kim J, Son MY, Jeon YJ, Kim DW, Kim HE, et al. Cardioprotective molecules are enriched in beating cardiomyocytes derived from human embryonic stem cells. Int J Cardiol. 2013;165(2):341–54.PubMedCrossRef
141.••
go back to reference Gao H, Meng J, Xu M, Zhang S, Ghose B, Liu J, et al. Serum heat shock protein 70 concentration in relation to polycystic ovary syndrome in a non-obese Chinese population. PLoS ONE. 2013;8(6):e67727. Increased serum Hsp70 levels are associated with the combination of IR, oxidative stress and low-grade chronic inflammation in Polycystic ovary syndrome individuals, which provides supportive evidence that Hsp70 plays a key role in this pathogenesis. PubMedCentralPubMedCrossRef Gao H, Meng J, Xu M, Zhang S, Ghose B, Liu J, et al. Serum heat shock protein 70 concentration in relation to polycystic ovary syndrome in a non-obese Chinese population. PLoS ONE. 2013;8(6):e67727. Increased serum Hsp70 levels are associated with the combination of IR, oxidative stress and low-grade chronic inflammation in Polycystic ovary syndrome individuals, which provides supportive evidence that Hsp70 plays a key role in this pathogenesis. PubMedCentralPubMedCrossRef
142.
go back to reference Atalay M, Oksala NK, Laaksonen DE, Khanna S, Nakao C, Lappalainen J, et al. Exercise training modulates heat shock protein response in diabetic rats. J Appl Physiol (1985). 2004;97(2):605–11. Diabetic therapies that induce the stress response, whether via heat, bioactive compounds, or genetic manipulation, improve or prevent all of the morbidities and comorbidities associated with the disease. CrossRef Atalay M, Oksala NK, Laaksonen DE, Khanna S, Nakao C, Lappalainen J, et al. Exercise training modulates heat shock protein response in diabetic rats. J Appl Physiol (1985). 2004;97(2):605–11. Diabetic therapies that induce the stress response, whether via heat, bioactive compounds, or genetic manipulation, improve or prevent all of the morbidities and comorbidities associated with the disease. CrossRef
143.••
go back to reference Hooper PL, Balogh G, Rivas E, Kavanagh K, Vigh L. The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes. Cell Stress Chaperones. 2014;19(4):447–64.PubMedCentralPubMedCrossRef Hooper PL, Balogh G, Rivas E, Kavanagh K, Vigh L. The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes. Cell Stress Chaperones. 2014;19(4):447–64.PubMedCentralPubMedCrossRef
144.•
go back to reference Krause M, Ludwig MS, Heck TG, Takahashi HK. Heat shock proteins and heat therapy for type 2 diabetes: pros and cons. Curr Opin Clin Nutr Metab Care. 2015;18(4):374–80. Transient increments in nitric oxide and heat shock protein 70 levels may explain the benefits of heat therapy in obesity and diabetes. PubMedCrossRef Krause M, Ludwig MS, Heck TG, Takahashi HK. Heat shock proteins and heat therapy for type 2 diabetes: pros and cons. Curr Opin Clin Nutr Metab Care. 2015;18(4):374–80. Transient increments in nitric oxide and heat shock protein 70 levels may explain the benefits of heat therapy in obesity and diabetes. PubMedCrossRef
145.•
go back to reference Bathaie SZ, Jafarnejad A, Hosseinkhani S, Nakhjavani M. The effect of hot-tub therapy on serum Hsp70 level and its benefit on diabetic rats: a preliminary report. Int J Hyperthermia. 2010;26(6):577–85. A decrease in complications in diabetic rats after hot-tub therapy is shown here. PubMedCrossRef Bathaie SZ, Jafarnejad A, Hosseinkhani S, Nakhjavani M. The effect of hot-tub therapy on serum Hsp70 level and its benefit on diabetic rats: a preliminary report. Int J Hyperthermia. 2010;26(6):577–85. A decrease in complications in diabetic rats after hot-tub therapy is shown here. PubMedCrossRef
146.
go back to reference Bhatia S, Shukla R, Venkata Madhu S, Kaur Gambhir J, Madhava Prabhu K. Antioxidant status, lipid peroxidation and nitric oxide end products in patients of type 2 diabetes mellitus with nephropathy. Clin Biochem. 2003;36:557–62.PubMedCrossRef Bhatia S, Shukla R, Venkata Madhu S, Kaur Gambhir J, Madhava Prabhu K. Antioxidant status, lipid peroxidation and nitric oxide end products in patients of type 2 diabetes mellitus with nephropathy. Clin Biochem. 2003;36:557–62.PubMedCrossRef
147.•
go back to reference Henstridge DC, Whitham M, Febbraio MA. Chaperoning to the metabolic party: the emerging therapeutic role of heat-shock proteins in obesity and type 2 diabetes. Mol Metab. 2014;3:781–93. Targeted manipulation of Hsp72 or use of chemical chaperiones may have clinical utility in treating metabolic disorders such as insulin resistance and T2DM. PubMedCentralPubMedCrossRef Henstridge DC, Whitham M, Febbraio MA. Chaperoning to the metabolic party: the emerging therapeutic role of heat-shock proteins in obesity and type 2 diabetes. Mol Metab. 2014;3:781–93. Targeted manipulation of Hsp72 or use of chemical chaperiones may have clinical utility in treating metabolic disorders such as insulin resistance and T2DM. PubMedCentralPubMedCrossRef
148.•
go back to reference Prasad P, Kochhar A. Interplay of vitamin D and metabolic syndrome: a review. Diabetes Metab Syndr. 2015. March 6. The paper provides an insight into the physiology of vitamin D and relationship of vitamin D deficiency with risk factors of metabolic syndrome through observational and supplementation studies. Prasad P, Kochhar A. Interplay of vitamin D and metabolic syndrome: a review. Diabetes Metab Syndr. 2015. March 6. The paper provides an insight into the physiology of vitamin D and relationship of vitamin D deficiency with risk factors of metabolic syndrome through observational and supplementation studies.
149.
go back to reference Rajan RS, Tsumoto K, Tokunaga M, Tokunaga H, Kita Y, Arakawa T. Chemical and pharmacological chaperones: application for recombinant protein production and protein folding diseases. Curr Med Chem. 2011;18(1):1–15.PubMedCrossRef Rajan RS, Tsumoto K, Tokunaga M, Tokunaga H, Kita Y, Arakawa T. Chemical and pharmacological chaperones: application for recombinant protein production and protein folding diseases. Curr Med Chem. 2011;18(1):1–15.PubMedCrossRef
150.
go back to reference Kashfi K. Nitric oxide-releasing hybrid drugs target cellular processes through S-nitrosylation. For Immunopathol Dis Ther. 2012;3(2):97–108.CrossRef Kashfi K. Nitric oxide-releasing hybrid drugs target cellular processes through S-nitrosylation. For Immunopathol Dis Ther. 2012;3(2):97–108.CrossRef
151.••
go back to reference Zaouali MA, Bejaoui M, Calvo M, Folch-Puy E, Pantazi E, Pasut G, et al. Polyethylene glycol rinse solution: an effective way to prevent ischemia-reperfusion injury. World J Gastroenterol. 2014;20(43):16203–14. The PEG-35 rinse solution prevented oxidative stress, mitochondrial damage, and liver autophagy. Further, it increased the expression of cytoprotective heat shock proteins such as HO-1 and HSP70, activated AMPK, and contributed to the restoration of cytoskeleton integrity after IRI. PubMedCentralPubMed Zaouali MA, Bejaoui M, Calvo M, Folch-Puy E, Pantazi E, Pasut G, et al. Polyethylene glycol rinse solution: an effective way to prevent ischemia-reperfusion injury. World J Gastroenterol. 2014;20(43):16203–14. The PEG-35 rinse solution prevented oxidative stress, mitochondrial damage, and liver autophagy. Further, it increased the expression of cytoprotective heat shock proteins such as HO-1 and HSP70, activated AMPK, and contributed to the restoration of cytoskeleton integrity after IRI. PubMedCentralPubMed
152.••
go back to reference McCarty MF, Barroso-Aranda J, Contreras F. Regular thermal therapy may promote insulin sensitivity while boosting expression of endothelial nitric oxide synthase-effects comparable to those of exercise training. Med Hypotheses. 2009;73(1):103–5. Regular thermal therapy has the potential to improve impaired insulin sensitivity and boost endothelial expression of the “constitutive” isoform of nitric oxide synthase-effects. PubMedCrossRef McCarty MF, Barroso-Aranda J, Contreras F. Regular thermal therapy may promote insulin sensitivity while boosting expression of endothelial nitric oxide synthase-effects comparable to those of exercise training. Med Hypotheses. 2009;73(1):103–5. Regular thermal therapy has the potential to improve impaired insulin sensitivity and boost endothelial expression of the “constitutive” isoform of nitric oxide synthase-effects. PubMedCrossRef
153.
go back to reference Atalay M, Oksala N, Lappalainen J, Laaksonen DE, Sen CK, Roy S. Heat shock proteins in diabetes and wound healing. Curr Protein Pept Sci. 2009;10(1):85–95.PubMedCentralPubMedCrossRef Atalay M, Oksala N, Lappalainen J, Laaksonen DE, Sen CK, Roy S. Heat shock proteins in diabetes and wound healing. Curr Protein Pept Sci. 2009;10(1):85–95.PubMedCentralPubMedCrossRef
Metadata
Title
Emerging Role of Nitric Oxide and Heat Shock Proteins in Insulin Resistance
Authors
Marisa Nile Molina
León Ferder
Walter Manucha
Publication date
01-01-2016
Publisher
Springer US
Published in
Current Hypertension Reports / Issue 1/2016
Print ISSN: 1522-6417
Electronic ISSN: 1534-3111
DOI
https://doi.org/10.1007/s11906-015-0615-4

Other articles of this Issue 1/2016

Current Hypertension Reports 1/2016 Go to the issue

Secondary Hypertension: Nervous System Mechanisms (M Wyss, Section Editor)

Blood Pressure: Return of the Sympathetics?

Device-Based Approaches for Hypertension (M Schlaich, Section Editor)

Renal Denervation for Treatment of Hypertension: a Second Start and New Challenges

Blood Pressure Monitoring and Management (J Cockcroft, Section Editor)

Prehypertension: Defining the Transitional Phenotype

Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine