Skip to main content
Top
Published in: Current Hypertension Reports 2/2013

01-04-2013 | Hot Topic

Urinary Markers of Intrarenal Renin-Angiotensin System Activity In Vivo

Authors: Lodi C. W. Roksnoer, Koen Verdonk, Anton H. van den Meiracker, Ewout J. Hoorn, Robert Zietse, A. H. Jan Danser

Published in: Current Hypertension Reports | Issue 2/2013

Login to get access

Abstract

Recent interest focuses on urinary renin and angiotensinogen as markers of renal renin-angiotensin system activity. Before concluding that these components are independent markers, we need to exclude that their presence in urine, like that of albumin (a protein of comparable size), is due to (disturbed) glomerular filtration. This review critically discusses their filtration, reabsorption and local release. Given the close correlation between urinary angiotensinogen and albumin in human studies, it concludes that, in humans, urinary angiotensinogen is a filtration barrier damage marker with the same predictive power as urinary albumin. In contrast, in animals, tubular angiotensinogen release may occur, although tubulus-specific knockout studies do not support a functional role for such angiotensinogen. Urinary renin levels, relative to albumin, are >200-fold higher and unrelated to albumin. This may reflect release of renin from the urinary tract, but could also be attributed to activation of filtered, plasma-derived prorenin and/or incomplete tubular reabsorption.
Literature
1.
go back to reference van Kats JP, Schalekamp MADH, Verdouw PD, et al. Intrarenal angiotensin II: interstitial and cellular levels and site of production. Kidney Int. 2001;60:2311–7.PubMedCrossRef van Kats JP, Schalekamp MADH, Verdouw PD, et al. Intrarenal angiotensin II: interstitial and cellular levels and site of production. Kidney Int. 2001;60:2311–7.PubMedCrossRef
2.
go back to reference Schalekamp MADH, Danser AHJ. Angiotensin II production and distribution in the kidney: I. A kinetic model. Kidney Int. 2006;69:1543–52.PubMedCrossRef Schalekamp MADH, Danser AHJ. Angiotensin II production and distribution in the kidney: I. A kinetic model. Kidney Int. 2006;69:1543–52.PubMedCrossRef
3.
go back to reference Schalekamp MADH, Danser AHJ. Angiotensin II production and distribution in the kidney: II. Model-based analysis of experimental data. Kidney Int. 2006;69:1553–7.PubMedCrossRef Schalekamp MADH, Danser AHJ. Angiotensin II production and distribution in the kidney: II. Model-based analysis of experimental data. Kidney Int. 2006;69:1553–7.PubMedCrossRef
4.
go back to reference Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59:251–87.PubMedCrossRef Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59:251–87.PubMedCrossRef
5.
go back to reference Alexiou T, Boon WM, Denton DA, et al. Angiotensinogen and angiotensin-converting enzyme gene copy number and angiotensin and bradykinin peptide levels in mice. J Hypertens. 2005;23:945–54.PubMedCrossRef Alexiou T, Boon WM, Denton DA, et al. Angiotensinogen and angiotensin-converting enzyme gene copy number and angiotensin and bradykinin peptide levels in mice. J Hypertens. 2005;23:945–54.PubMedCrossRef
6.
go back to reference Leyssac PP. Changes in single nephron renin release are mediated by tubular fluid flow rate. Kidney Int. 1986;30:332–9.PubMedCrossRef Leyssac PP. Changes in single nephron renin release are mediated by tubular fluid flow rate. Kidney Int. 1986;30:332–9.PubMedCrossRef
7.
go back to reference Prieto-Carrasquero MC, Harrison-Bernard LM, Kobori H, et al. Enhancement of collecting duct renin in angiotensin II-dependent hypertensive rats. Hypertension. 2004;44:223–9.PubMedCrossRef Prieto-Carrasquero MC, Harrison-Bernard LM, Kobori H, et al. Enhancement of collecting duct renin in angiotensin II-dependent hypertensive rats. Hypertension. 2004;44:223–9.PubMedCrossRef
8.
go back to reference Kang JJ, Toma I, Sipos A, et al. The collecting duct is the major source of prorenin in diabetes. Hypertension. 2008;51:1597–604.PubMedCrossRef Kang JJ, Toma I, Sipos A, et al. The collecting duct is the major source of prorenin in diabetes. Hypertension. 2008;51:1597–604.PubMedCrossRef
9.
go back to reference de Lannoy LM, Danser AHJ, van Kats JP, et al. Renin-angiotensin system components in the interstitial fluid of the isolated perfused rat heart. Local production of angiotensin I. Hypertension. 1997;29:1240–51.PubMedCrossRef de Lannoy LM, Danser AHJ, van Kats JP, et al. Renin-angiotensin system components in the interstitial fluid of the isolated perfused rat heart. Local production of angiotensin I. Hypertension. 1997;29:1240–51.PubMedCrossRef
10.
go back to reference Danser AHJ, Batenburg WW, van den Meiracker AH, Danilov SM. ACE phenotyping as a first step toward personalized medicine for ACE inhibitors. Why does ACE genotyping not predict the therapeutic efficacy of ACE inhibition? Pharmacol Ther. 2007;113:607–18.PubMedCrossRef Danser AHJ, Batenburg WW, van den Meiracker AH, Danilov SM. ACE phenotyping as a first step toward personalized medicine for ACE inhibitors. Why does ACE genotyping not predict the therapeutic efficacy of ACE inhibition? Pharmacol Ther. 2007;113:607–18.PubMedCrossRef
11.
go back to reference Metzger R, Bohle RM, Pauls K, et al. Angiotensin-converting enzyme in non-neoplastic kidney diseases. Kidney Int. 1999;56:1442–54.PubMedCrossRef Metzger R, Bohle RM, Pauls K, et al. Angiotensin-converting enzyme in non-neoplastic kidney diseases. Kidney Int. 1999;56:1442–54.PubMedCrossRef
12.
go back to reference • van den Heuvel M, Batenburg WW, Jainandunsing S, et al. Urinary renin, but not angiotensinogen or aldosterone, reflects the renal renin-angiotensin-aldosterone system activity and the efficacy of renin-angiotensin-aldosterone system blockade in the kidney. J Hypertens. 2011;29:2147–55. This paper is the first to simultaneously analyze angiotensinogen and albumin in plasma and urine of diabetic and hypertensive patients. PubMedCrossRef • van den Heuvel M, Batenburg WW, Jainandunsing S, et al. Urinary renin, but not angiotensinogen or aldosterone, reflects the renal renin-angiotensin-aldosterone system activity and the efficacy of renin-angiotensin-aldosterone system blockade in the kidney. J Hypertens. 2011;29:2147–55. This paper is the first to simultaneously analyze angiotensinogen and albumin in plasma and urine of diabetic and hypertensive patients. PubMedCrossRef
13.
go back to reference Kobori H, Alper Jr AB, Shenava R, et al. Urinary angiotensinogen as a novel biomarker of the intrarenal renin-angiotensin system status in hypertensive patients. Hypertension. 2009;53:344–50.PubMedCrossRef Kobori H, Alper Jr AB, Shenava R, et al. Urinary angiotensinogen as a novel biomarker of the intrarenal renin-angiotensin system status in hypertensive patients. Hypertension. 2009;53:344–50.PubMedCrossRef
14.
go back to reference Kobori H, Harrison-Bernard LM, Navar LG. Urinary excretion of angiotensinogen reflects intrarenal angiotensinogen production. Kidney Int. 2002;61:579–85.PubMedCrossRef Kobori H, Harrison-Bernard LM, Navar LG. Urinary excretion of angiotensinogen reflects intrarenal angiotensinogen production. Kidney Int. 2002;61:579–85.PubMedCrossRef
15.
go back to reference Rohrwasser A, Morgan T, Dillon HF, et al. Elements of a paracrine tubular renin-angiotensin system along the entire nephron. Hypertension. 1999;34:1265–74.PubMedCrossRef Rohrwasser A, Morgan T, Dillon HF, et al. Elements of a paracrine tubular renin-angiotensin system along the entire nephron. Hypertension. 1999;34:1265–74.PubMedCrossRef
16.
go back to reference Kobori H, Prieto-Carrasquero MC, Ozawa Y, Navar LG. AT1 receptor mediated augmentation of intrarenal angiotensinogen in angiotensin II-dependent hypertension. Hypertension. 2004;43:1126–32.PubMedCrossRef Kobori H, Prieto-Carrasquero MC, Ozawa Y, Navar LG. AT1 receptor mediated augmentation of intrarenal angiotensinogen in angiotensin II-dependent hypertension. Hypertension. 2004;43:1126–32.PubMedCrossRef
17.
go back to reference Gonzalez-Villalobos RA, Satou R, Seth DM, et al. Angiotensin-converting enzyme-derived angiotensin II formation during angiotensin II-induced hypertension. Hypertension. 2009;53:351–5.PubMedCrossRef Gonzalez-Villalobos RA, Satou R, Seth DM, et al. Angiotensin-converting enzyme-derived angiotensin II formation during angiotensin II-induced hypertension. Hypertension. 2009;53:351–5.PubMedCrossRef
18.
go back to reference Herrmann HC, Dzau VJ. The feedback regulation of angiotensinogen production by components of the renin-angiotensin system. Circ Res. 1983;52:328–34.PubMedCrossRef Herrmann HC, Dzau VJ. The feedback regulation of angiotensinogen production by components of the renin-angiotensin system. Circ Res. 1983;52:328–34.PubMedCrossRef
19.
go back to reference • Pohl M, Kaminski H, Castrop H, et al. Intrarenal renin angiotensin system revisited: role of megalin-dependent endocytosis along the proximal nephron. J Biol Chem. 2010;285:41935–46. This paper provides a detailed analysis of the reabsorption of RAS components in the kidney. PubMedCrossRef • Pohl M, Kaminski H, Castrop H, et al. Intrarenal renin angiotensin system revisited: role of megalin-dependent endocytosis along the proximal nephron. J Biol Chem. 2010;285:41935–46. This paper provides a detailed analysis of the reabsorption of RAS components in the kidney. PubMedCrossRef
20.
go back to reference van Kats JP, van Meegen JR, Verdouw PD, et al. Subcellular localization of angiotensin II in kidney and adrenal. J Hypertens. 2001;19:583–9.PubMedCrossRef van Kats JP, van Meegen JR, Verdouw PD, et al. Subcellular localization of angiotensin II in kidney and adrenal. J Hypertens. 2001;19:583–9.PubMedCrossRef
21.
go back to reference Zou LX, Imig JD, von Thun AM, et al. Receptor-mediated intrarenal angiotensin II augmentation in angiotensin II-infused rats. Hypertension. 1996;28:669–77.PubMedCrossRef Zou LX, Imig JD, von Thun AM, et al. Receptor-mediated intrarenal angiotensin II augmentation in angiotensin II-infused rats. Hypertension. 1996;28:669–77.PubMedCrossRef
22.
go back to reference van Kats JP, de Lannoy LM, Danser AHJ, et al. Angiotensin II type 1 (AT1) receptor-mediated accumulation of angiotensin II in tissues and its intracellular half-life in vivo. Hypertension. 1997;30:42–9.PubMedCrossRef van Kats JP, de Lannoy LM, Danser AHJ, et al. Angiotensin II type 1 (AT1) receptor-mediated accumulation of angiotensin II in tissues and its intracellular half-life in vivo. Hypertension. 1997;30:42–9.PubMedCrossRef
23.
go back to reference Rands VF, Seth DM, Kobori H, Prieto MC. Sexual dimorphism in urinary angiotensinogen excretion during chronic angiotensin II-salt hypertension. Gend Med. 2012;9:207–18.PubMedCrossRef Rands VF, Seth DM, Kobori H, Prieto MC. Sexual dimorphism in urinary angiotensinogen excretion during chronic angiotensin II-salt hypertension. Gend Med. 2012;9:207–18.PubMedCrossRef
24.
go back to reference Kobori H, Nishiyama A, Harrison-Bernard LM, Navar LG. Urinary angiotensinogen as an indicator of intrarenal angiotensin status in hypertension. Hypertension. 2003;41:42–9.PubMedCrossRef Kobori H, Nishiyama A, Harrison-Bernard LM, Navar LG. Urinary angiotensinogen as an indicator of intrarenal angiotensin status in hypertension. Hypertension. 2003;41:42–9.PubMedCrossRef
25.
go back to reference Kobori H, Nishiyama A, Abe Y, Navar LG. Enhancement of intrarenal angiotensinogen in Dahl salt-sensitive rats on high salt diet. Hypertension. 2003;41:592–7.PubMedCrossRef Kobori H, Nishiyama A, Abe Y, Navar LG. Enhancement of intrarenal angiotensinogen in Dahl salt-sensitive rats on high salt diet. Hypertension. 2003;41:592–7.PubMedCrossRef
26.
go back to reference Kamiyama M, Zsombok A, Kobori H. Urinary angiotensinogen as a novel early biomarker of intrarenal renin-angiotensin system activation in experimental type 1 diabetes. J Pharmacol Sci. 2012;119:314–23.PubMedCrossRef Kamiyama M, Zsombok A, Kobori H. Urinary angiotensinogen as a novel early biomarker of intrarenal renin-angiotensin system activation in experimental type 1 diabetes. J Pharmacol Sci. 2012;119:314–23.PubMedCrossRef
27.
go back to reference Kobori H, Katsurada A, Miyata K, et al. Determination of plasma and urinary angiotensinogen levels in rodents by newly developed ELISA. Am J Physiol Renal Physiol. 2008;294:F1257–63.PubMedCrossRef Kobori H, Katsurada A, Miyata K, et al. Determination of plasma and urinary angiotensinogen levels in rodents by newly developed ELISA. Am J Physiol Renal Physiol. 2008;294:F1257–63.PubMedCrossRef
28.
go back to reference Susic D, Frohlich ED, Kobori H, et al. Salt-induced renal injury in SHRs is mediated by AT1 receptor activation. J Hypertens. 2011;29:716–73.PubMedCrossRef Susic D, Frohlich ED, Kobori H, et al. Salt-induced renal injury in SHRs is mediated by AT1 receptor activation. J Hypertens. 2011;29:716–73.PubMedCrossRef
29.
go back to reference Hollenberg NK, Fisher ND, Nussberger J, et al. Renal responses to three types of renin-angiotensin system blockers in patients with diabetes mellitus on a high-salt diet: a need for higher doses in diabetic patients? J Hypertens. 2011;29:2454–61.PubMedCrossRef Hollenberg NK, Fisher ND, Nussberger J, et al. Renal responses to three types of renin-angiotensin system blockers in patients with diabetes mellitus on a high-salt diet: a need for higher doses in diabetic patients? J Hypertens. 2011;29:2454–61.PubMedCrossRef
30.
go back to reference Sawaguchi M, Araki SI, Kobori H, et al. Association between urinary angiotensinogen levels and renal and cardiovascular prognoses in patients with type 2 diabetes mellitus. J Diabetes Investig. 2012;3:318–24.PubMedCrossRef Sawaguchi M, Araki SI, Kobori H, et al. Association between urinary angiotensinogen levels and renal and cardiovascular prognoses in patients with type 2 diabetes mellitus. J Diabetes Investig. 2012;3:318–24.PubMedCrossRef
31.
go back to reference Mills KT, Kobori H, Hamm LL, et al. Increased urinary excretion of angiotensinogen is associated with risk of chronic kidney disease. Nephrol Dial Transplant. 2012;27:3176–81.PubMedCrossRef Mills KT, Kobori H, Hamm LL, et al. Increased urinary excretion of angiotensinogen is associated with risk of chronic kidney disease. Nephrol Dial Transplant. 2012;27:3176–81.PubMedCrossRef
32.
go back to reference Yamamoto T, Nakagawa T, Suzuki H, et al. Urinary angiotensinogen as a marker of intrarenal angiotensin II activity associated with deterioration of renal function in patients with chronic kidney disease. J Am Soc Nephrol. 2007;18:1558–65.PubMedCrossRef Yamamoto T, Nakagawa T, Suzuki H, et al. Urinary angiotensinogen as a marker of intrarenal angiotensin II activity associated with deterioration of renal function in patients with chronic kidney disease. J Am Soc Nephrol. 2007;18:1558–65.PubMedCrossRef
33.
go back to reference Kobori H, Urushihara M, Xu JH, et al. Urinary angiotensinogen is correlated with blood pressure in men (Bogalusa Heart Study). J Hypertens. 2010;28:1422–8.PubMedCrossRef Kobori H, Urushihara M, Xu JH, et al. Urinary angiotensinogen is correlated with blood pressure in men (Bogalusa Heart Study). J Hypertens. 2010;28:1422–8.PubMedCrossRef
34.
go back to reference Lantelme P, Rohrwasser A, Vincent M, et al. Significance of urinary angiotensinogen in essential hypertension as a function of plasma renin and aldosterone status. J Hypertens. 2005;23:785–92.PubMedCrossRef Lantelme P, Rohrwasser A, Vincent M, et al. Significance of urinary angiotensinogen in essential hypertension as a function of plasma renin and aldosterone status. J Hypertens. 2005;23:785–92.PubMedCrossRef
35.
go back to reference Jang HR, Kim SM, Lee YJ, et al. The origin and the clinical significance of urinary angiotensinogen in proteinuric IgA nephropathy patients. Ann Med. 2012;44:448–57.PubMedCrossRef Jang HR, Kim SM, Lee YJ, et al. The origin and the clinical significance of urinary angiotensinogen in proteinuric IgA nephropathy patients. Ann Med. 2012;44:448–57.PubMedCrossRef
36.
go back to reference Nishiyama A, Konishi Y, Ohashi N, et al. Urinary angiotensinogen reflects the activity of intrarenal renin-angiotensin system in patients with IgA nephropathy. Nephrol Dial Transplant. 2011;26:170–7.PubMedCrossRef Nishiyama A, Konishi Y, Ohashi N, et al. Urinary angiotensinogen reflects the activity of intrarenal renin-angiotensin system in patients with IgA nephropathy. Nephrol Dial Transplant. 2011;26:170–7.PubMedCrossRef
37.
go back to reference Konishi Y, Nishiyama A, Morikawa T, et al. Relationship between urinary angiotensinogen and salt sensitivity of blood pressure in patients with IgA nephropathy. Hypertension. 2011;58:205–11.PubMedCrossRef Konishi Y, Nishiyama A, Morikawa T, et al. Relationship between urinary angiotensinogen and salt sensitivity of blood pressure in patients with IgA nephropathy. Hypertension. 2011;58:205–11.PubMedCrossRef
38.
go back to reference •• Nakano D, Kobori H, Burford JL, et al. Multiphoton imaging of the glomerular permeability of angiotensinogen. J Am Soc Nephrol. 2012;23:1847–56. This paper compares the glomerular filtration of angiotensinogen and albumin in vivo under normal and pathological conditions. PubMedCrossRef •• Nakano D, Kobori H, Burford JL, et al. Multiphoton imaging of the glomerular permeability of angiotensinogen. J Am Soc Nephrol. 2012;23:1847–56. This paper compares the glomerular filtration of angiotensinogen and albumin in vivo under normal and pathological conditions. PubMedCrossRef
39.
go back to reference Richoux JP, Cordonnier JL, Bouhnik J, et al. Immunocytochemical localization of angiotensinogen in rat liver and kidney. Cell Tissue Res. 1983;233:439–51.PubMedCrossRef Richoux JP, Cordonnier JL, Bouhnik J, et al. Immunocytochemical localization of angiotensinogen in rat liver and kidney. Cell Tissue Res. 1983;233:439–51.PubMedCrossRef
40.
go back to reference Hirsch AT, Opsahl JA, Lunzer MM, Katz SA. Active renin and angiotensinogen in cardiac interstitial fluid after myocardial infarction. Am J Physiol. 1999;276:H1818–26.PubMed Hirsch AT, Opsahl JA, Lunzer MM, Katz SA. Active renin and angiotensinogen in cardiac interstitial fluid after myocardial infarction. Am J Physiol. 1999;276:H1818–26.PubMed
41.
go back to reference van Kats JP, Danser AHJ, van Meegen JR, et al. Angiotensin production by the heart: a quantitative study in pigs with the use of radiolabeled angiotensin infusions. Circulation. 1998;98:73–81.PubMedCrossRef van Kats JP, Danser AHJ, van Meegen JR, et al. Angiotensin production by the heart: a quantitative study in pigs with the use of radiolabeled angiotensin infusions. Circulation. 1998;98:73–81.PubMedCrossRef
42.
go back to reference Danser AHJ, van Kesteren CAM, Bax WA, et al. Prorenin, renin, angiotensinogen, and angiotensin-converting enzyme in normal and failing human hearts. Evidence for renin binding. Circulation. 1997;96:220–6.PubMedCrossRef Danser AHJ, van Kesteren CAM, Bax WA, et al. Prorenin, renin, angiotensinogen, and angiotensin-converting enzyme in normal and failing human hearts. Evidence for renin binding. Circulation. 1997;96:220–6.PubMedCrossRef
43.
go back to reference Klotz S, Burkhoff D, Garrelds IM, et al. The impact of left ventricular assist device-induced left ventricular unloading on the myocardial renin-angiotensin-aldosterone system: therapeutic consequences? Eur Heart J. 2009;30:805–12.PubMedCrossRef Klotz S, Burkhoff D, Garrelds IM, et al. The impact of left ventricular assist device-induced left ventricular unloading on the myocardial renin-angiotensin-aldosterone system: therapeutic consequences? Eur Heart J. 2009;30:805–12.PubMedCrossRef
44.
go back to reference •• Matsusaka T, Niimura F, Shimizu A, et al. Liver angiotensinogen is the primary source of renal angiotensin II. J Am Soc Nephrol. 2012;23:1181–9. Using a kidney-specific knockout approach, this paper demonstrates that renal angiotensin generation depends on hepatic angiotensinogen. PubMedCrossRef •• Matsusaka T, Niimura F, Shimizu A, et al. Liver angiotensinogen is the primary source of renal angiotensin II. J Am Soc Nephrol. 2012;23:1181–9. Using a kidney-specific knockout approach, this paper demonstrates that renal angiotensin generation depends on hepatic angiotensinogen. PubMedCrossRef
45.
go back to reference Lumbers ER, Skinner SL. Observations on the origin of renin in human urine. Circ Res. 1969;24:689–97.PubMedCrossRef Lumbers ER, Skinner SL. Observations on the origin of renin in human urine. Circ Res. 1969;24:689–97.PubMedCrossRef
46.
go back to reference Lumbers ER, Skinner SL. The occurrence and assay of renin in human urine. Aust J Exp Biol Med Sci. 1969;47:251–62.PubMedCrossRef Lumbers ER, Skinner SL. The occurrence and assay of renin in human urine. Aust J Exp Biol Med Sci. 1969;47:251–62.PubMedCrossRef
47.
go back to reference Danser AHJ, Derkx FHM, Schalekamp MADH, et al. Determinants of interindividual variation of renin and prorenin concentrations: evidence for a sexual dimorphism of (pro)renin levels in humans. J Hypertens. 1998;16:853–62.PubMedCrossRef Danser AHJ, Derkx FHM, Schalekamp MADH, et al. Determinants of interindividual variation of renin and prorenin concentrations: evidence for a sexual dimorphism of (pro)renin levels in humans. J Hypertens. 1998;16:853–62.PubMedCrossRef
48.
go back to reference Yukimura T, Miura K, Matsushima Y, et al. Urinary excretion of renin and its biochemical properties in dogs. Hypertension. 1984;6:837–42.PubMedCrossRef Yukimura T, Miura K, Matsushima Y, et al. Urinary excretion of renin and its biochemical properties in dogs. Hypertension. 1984;6:837–42.PubMedCrossRef
49.
go back to reference Mazanti I, Hermann KL, Nielsen AH, Poulsen K. Ultrafiltration of renin in the mouse kidney studied by inhibition of tubular protein reabsorption with lysine. Clin Sci (Lond). 1988;75:331–6. Mazanti I, Hermann KL, Nielsen AH, Poulsen K. Ultrafiltration of renin in the mouse kidney studied by inhibition of tubular protein reabsorption with lysine. Clin Sci (Lond). 1988;75:331–6.
50.
go back to reference Nielsen AH, Hermann KL, Mazanti I, Poulsen K. Urinary excretion of inactive renin during blockade of the renal tubular protein reabsorption with lysine. J Hypertens. 1989;7:77–82.PubMed Nielsen AH, Hermann KL, Mazanti I, Poulsen K. Urinary excretion of inactive renin during blockade of the renal tubular protein reabsorption with lysine. J Hypertens. 1989;7:77–82.PubMed
51.
go back to reference Prieto-Carrasquero MC, Kobori H, Ozawa Y, et al. AT1 receptor-mediated enhancement of collecting duct renin in angiotensin II-dependent hypertensive rats. Am J Physiol Renal Physiol. 2005;289:F632–7.PubMedCrossRef Prieto-Carrasquero MC, Kobori H, Ozawa Y, et al. AT1 receptor-mediated enhancement of collecting duct renin in angiotensin II-dependent hypertensive rats. Am J Physiol Renal Physiol. 2005;289:F632–7.PubMedCrossRef
52.
go back to reference Krop M, Danser AHJ. Circulating versus tissue renin-angiotensin system: on the origin of (pro)renin. Curr Hypertens Rep. 2008;10:112–8.PubMedCrossRef Krop M, Danser AHJ. Circulating versus tissue renin-angiotensin system: on the origin of (pro)renin. Curr Hypertens Rep. 2008;10:112–8.PubMedCrossRef
53.
go back to reference Krop M, de Bruyn JHB, Derkx FHM, Danser AHJ. Renin and prorenin disappearance in humans post-nephrectomy: evidence for binding? Front Biosci. 2008;13:3931–9.PubMed Krop M, de Bruyn JHB, Derkx FHM, Danser AHJ. Renin and prorenin disappearance in humans post-nephrectomy: evidence for binding? Front Biosci. 2008;13:3931–9.PubMed
54.
go back to reference Leyssac PP. A micropuncture study of glomerular filtration and tubular reabsorption of endogenous renin in the rat. Renal Physiol. 1978;1:181–8. Leyssac PP. A micropuncture study of glomerular filtration and tubular reabsorption of endogenous renin in the rat. Renal Physiol. 1978;1:181–8.
55.
go back to reference Alge JL, Karakala N, Neely BA, et al. Urinary angiotensinogen and risk of severe AKI. Clin J Am Soc Nephrol. 2012. Alge JL, Karakala N, Neely BA, et al. Urinary angiotensinogen and risk of severe AKI. Clin J Am Soc Nephrol. 2012.
56.
go back to reference Hillege HL, Fidler V, Diercks GF, et al. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation. 2002;106:1777–82.PubMedCrossRef Hillege HL, Fidler V, Diercks GF, et al. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation. 2002;106:1777–82.PubMedCrossRef
57.
go back to reference Menne J, Chatzikyrkou C, Haller H. Microalbuminuria as a risk factor: the influence of renin-angiotensin system blockade. J Hypertens. 2010;28:1983–94.PubMedCrossRef Menne J, Chatzikyrkou C, Haller H. Microalbuminuria as a risk factor: the influence of renin-angiotensin system blockade. J Hypertens. 2010;28:1983–94.PubMedCrossRef
58.
go back to reference Jackson CE, Solomon SD, Gerstein HC, et al. Albuminuria in chronic heart failure: prevalence and prognostic importance. Lancet. 2009;374:543–50.PubMedCrossRef Jackson CE, Solomon SD, Gerstein HC, et al. Albuminuria in chronic heart failure: prevalence and prognostic importance. Lancet. 2009;374:543–50.PubMedCrossRef
Metadata
Title
Urinary Markers of Intrarenal Renin-Angiotensin System Activity In Vivo
Authors
Lodi C. W. Roksnoer
Koen Verdonk
Anton H. van den Meiracker
Ewout J. Hoorn
Robert Zietse
A. H. Jan Danser
Publication date
01-04-2013
Publisher
Current Science Inc.
Published in
Current Hypertension Reports / Issue 2/2013
Print ISSN: 1522-6417
Electronic ISSN: 1534-3111
DOI
https://doi.org/10.1007/s11906-012-0326-z

Other articles of this Issue 2/2013

Current Hypertension Reports 2/2013 Go to the issue

Pathogenesis of Hypertension (R Agarwal, Section Editor)

Does Kidney Disease Cause Hypertension?

Pathogenesis of Hypertension (R Agarwal, Section Editor)

Preeclampsia and the Future Risk of Hypertension: The Pregnant Evidence

Pathogenesis of Hypertension (R Agarwal, Section Editor)

Sodium and Potassium and the Pathogenesis of Hypertension

Pathogenesis of Hypertension (R Agarwal, Section Editor)

Aldosterone and the Risk of Hypertension

Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine