Skip to main content
Top
Published in: Current Hematologic Malignancy Reports 4/2015

01-12-2015 | Myeloproliferative Disorders (C Harrison, Section Editor)

Immunological Consequences of JAK Inhibition: Friend or Foe?

Authors: Donal P. McLornan, Alesia A. Khan, Claire N. Harrison

Published in: Current Hematologic Malignancy Reports | Issue 4/2015

Login to get access

Abstract

Over the last decade, unparalleled advances have been made within the field of ‘Philadelphia chromosome’-negative myeloproliferative neoplasms (MPN) regarding both disease pathogenesis and therapeutic targeting. The discovery of deregulated JAK-STAT signalling in MPN led to the rapid development of JAK inhibitor agents, targeting both mutated and wild-type JAK, which have significantly altered the therapeutic paradigm for patients with MPN. Although the largest population treated with these agents incorporates those with myelofibrosis, increasing data supports potential usage in other MPNs such as essential thromocythaemia and polycythaemia vera. Many MPNs are associated with a hyperinflammatory state and deregulation of immune homeostasis. Over the last few years, research has focused on attempting to decipher the complex and context-dependent changes that contribute to this immune deregulation. Moreover, very recent studies have demonstrated significant JAK inhibitor-mediated effects within the T cell, natural killer cell and dendritic cell compartments following exposure to JAK inhibitors. In parallel, case reports of infections occurring following exposure to ruxolitinib, many of which are atypical, have focused research efforts on delineating JAK inhibitor-associated immunological consequences. Within this review article, we will describe what is currently known about MPN-associated immune deregulation and JAK inhibitor-mediated immunomodulation.
Literature
1.
go back to reference James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signaling causes polycythaemia vera. Nature. 2005;434(7037):1144–8.CrossRefPubMed James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signaling causes polycythaemia vera. Nature. 2005;434(7037):1144–8.CrossRefPubMed
2.
go back to reference Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):779–90.CrossRef Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):779–90.CrossRef
3.
go back to reference Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–97.CrossRefPubMed Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–97.CrossRefPubMed
4.
go back to reference Baxter EJ, Scott LM, Campbell PJ, et al. Cancer Genome Project. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365(9464):1054–61. Erratum in: Lancet 2005; 366(9480)122.CrossRefPubMed Baxter EJ, Scott LM, Campbell PJ, et al. Cancer Genome Project. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365(9464):1054–61. Erratum in: Lancet 2005; 366(9480)122.CrossRefPubMed
5.
go back to reference Quintas-Cardama A, Vaddi K, Liu P, et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood. 2010;115:3109–17.PubMedCentralCrossRefPubMed Quintas-Cardama A, Vaddi K, Liu P, et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood. 2010;115:3109–17.PubMedCentralCrossRefPubMed
6.
7.
go back to reference Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia. 2010;24:1128–38.PubMedCentralCrossRefPubMed Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia. 2010;24:1128–38.PubMedCentralCrossRefPubMed
8.
go back to reference Larsen TS, Christensen JH, Hasselbalch HC, Pallisgaard N. The JAK2 V617F mutation involves B- and T-lymphocyte lineages in a subgroup of patients with Philadelphia-chromosome negative chronic myeloproliferative disorders. Br J Haematol. 2007;136(5):745–51.CrossRefPubMed Larsen TS, Christensen JH, Hasselbalch HC, Pallisgaard N. The JAK2 V617F mutation involves B- and T-lymphocyte lineages in a subgroup of patients with Philadelphia-chromosome negative chronic myeloproliferative disorders. Br J Haematol. 2007;136(5):745–51.CrossRefPubMed
9.
go back to reference Delhommeau F, Dupont S, Tonetti C, et al. Evidence that the JAK2 G1849T (V617F) mutation occurs in a lympho-myeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood. 2006;109:71–7.CrossRefPubMed Delhommeau F, Dupont S, Tonetti C, et al. Evidence that the JAK2 G1849T (V617F) mutation occurs in a lympho-myeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood. 2006;109:71–7.CrossRefPubMed
12.••
go back to reference Harrison C, Kiladjian J-J, Al-Ali HK, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366:787–98. COMFORT-II trial. CrossRefPubMed Harrison C, Kiladjian J-J, Al-Ali HK, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366:787–98. COMFORT-II trial. CrossRefPubMed
13.••
go back to reference Verstovsek S, Mesa RA, Gotlib J, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366:799–807. COMFORT-I trial. CrossRefPubMed Verstovsek S, Mesa RA, Gotlib J, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366:799–807. COMFORT-I trial. CrossRefPubMed
14.
go back to reference Vannucchi AM, Kiladjian JJ, Griesshammer M, et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med. 2015;372(5):426–35.PubMedCentralCrossRefPubMed Vannucchi AM, Kiladjian JJ, Griesshammer M, et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med. 2015;372(5):426–35.PubMedCentralCrossRefPubMed
15.
go back to reference Eghtedar A, Verstovsek S, Estrov Z, et al. Phase 2 study of the JAK kinase inhibitor ruxolitinib in patients with refractory leukemias, including postmyeloproliferative neoplasm acute myeloid leukemia. Blood. 2012;119:4614–8.PubMedCentralCrossRefPubMed Eghtedar A, Verstovsek S, Estrov Z, et al. Phase 2 study of the JAK kinase inhibitor ruxolitinib in patients with refractory leukemias, including postmyeloproliferative neoplasm acute myeloid leukemia. Blood. 2012;119:4614–8.PubMedCentralCrossRefPubMed
16.
go back to reference Papp KA, Menter A, Strober B, et al. Efficacy and safety of tofacitinib, an oral Janus kinase inhibitor, in the treatment of psoriasis: a phase 2b randomized placebo-controlled dose-ranging study. Br J Dermatol. 2012;167(3):668–77.CrossRefPubMed Papp KA, Menter A, Strober B, et al. Efficacy and safety of tofacitinib, an oral Janus kinase inhibitor, in the treatment of psoriasis: a phase 2b randomized placebo-controlled dose-ranging study. Br J Dermatol. 2012;167(3):668–77.CrossRefPubMed
17.
18.
go back to reference Lee EB, Fleischmann R, Hall S, et al. Tofacitinib versus methotrexate in rheumatoid arthritis. N Engl J Med. 2014;370(25):2377–86.CrossRefPubMed Lee EB, Fleischmann R, Hall S, et al. Tofacitinib versus methotrexate in rheumatoid arthritis. N Engl J Med. 2014;370(25):2377–86.CrossRefPubMed
19.
go back to reference Wysham NG, Sullivan DR, Allada G. An opportunistic infection associated with ruxolitinib, a novel Janus kinase 1,2 inhibitor. Chest. 2013;143:1478–9.CrossRefPubMed Wysham NG, Sullivan DR, Allada G. An opportunistic infection associated with ruxolitinib, a novel Janus kinase 1,2 inhibitor. Chest. 2013;143:1478–9.CrossRefPubMed
20.
go back to reference Goldberg RA, Reichel E, Oshry LJ. Bilateral toxoplasmosis retinitis associated with ruxolitinib. N Engl J Med. 2013;369:681–3.CrossRefPubMed Goldberg RA, Reichel E, Oshry LJ. Bilateral toxoplasmosis retinitis associated with ruxolitinib. N Engl J Med. 2013;369:681–3.CrossRefPubMed
21.
go back to reference Caocci G, Murgia F, Podda L, Solinas A, Atzeni S, La Nasa G. Reactivation of hepatitis B virus infection following ruxolitinib treatment in a patient with myelofibrosis. Leukemia. 2014;28:225–7.CrossRefPubMed Caocci G, Murgia F, Podda L, Solinas A, Atzeni S, La Nasa G. Reactivation of hepatitis B virus infection following ruxolitinib treatment in a patient with myelofibrosis. Leukemia. 2014;28:225–7.CrossRefPubMed
22.
go back to reference Wathes R, Moule S, Milojkovic D. Progressive multifocal leukoencephalopathy associated with ruxolitinib. N Engl J Med. 2013;369:197–8.CrossRefPubMed Wathes R, Moule S, Milojkovic D. Progressive multifocal leukoencephalopathy associated with ruxolitinib. N Engl J Med. 2013;369:197–8.CrossRefPubMed
25.
go back to reference Müller M, Briscoe J, Laxton C, et al. The protein tyrosine kinase JAK1 complements defects in interferon-alpha/beta and -gamma signal transduction. Nature. 1993;366(6451):129–35.CrossRefPubMed Müller M, Briscoe J, Laxton C, et al. The protein tyrosine kinase JAK1 complements defects in interferon-alpha/beta and -gamma signal transduction. Nature. 1993;366(6451):129–35.CrossRefPubMed
26.
go back to reference Schindler C, Levy D, Decker T. JAK-STAT signaling: from interferons to cytokines. J Biol Chem. 2007;282(28):20059–63.CrossRefPubMed Schindler C, Levy D, Decker T. JAK-STAT signaling: from interferons to cytokines. J Biol Chem. 2007;282(28):20059–63.CrossRefPubMed
27.
go back to reference Krishnan K, Pine R, Krolewski JJ. Kinase-deficient forms of Jak1 and Tyk2 inhibit interferon signaling in a dominant manner. Eur J Biochem. 1997;247:298–305.CrossRefPubMed Krishnan K, Pine R, Krolewski JJ. Kinase-deficient forms of Jak1 and Tyk2 inhibit interferon signaling in a dominant manner. Eur J Biochem. 1997;247:298–305.CrossRefPubMed
28.
go back to reference O’Sullivan LA, Liongue C, Lewis RS, Stephenson SE, Ward AC. Cytokine receptor signaling through the Jak-Stat-Socs pathway in disease. Mol Immunol. 2007;44(10):2497–506.CrossRefPubMed O’Sullivan LA, Liongue C, Lewis RS, Stephenson SE, Ward AC. Cytokine receptor signaling through the Jak-Stat-Socs pathway in disease. Mol Immunol. 2007;44(10):2497–506.CrossRefPubMed
30.
go back to reference Macchi P, Villa A, Giliani S, et al. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature. 1995;377:65.CrossRefPubMed Macchi P, Villa A, Giliani S, et al. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature. 1995;377:65.CrossRefPubMed
31.
go back to reference Ishizaki M, Akimoto T, Muromoto R, et al. Involvement of tyrosine kinase-2 in both theIL-12/Th1 and IL-23/Th17 axes in vivo. J Immunol. 2011;187(1):181–9.CrossRefPubMed Ishizaki M, Akimoto T, Muromoto R, et al. Involvement of tyrosine kinase-2 in both theIL-12/Th1 and IL-23/Th17 axes in vivo. J Immunol. 2011;187(1):181–9.CrossRefPubMed
32.
go back to reference Tokumasa N, Suto A, Kagami S, et al. Expression of Tyk2 in dendritic cells is required for IL-12, IL-23, and IFN-gamma production and the induction of Th1 cell differentiation. Blood. 2007;110(2):553–60.CrossRefPubMed Tokumasa N, Suto A, Kagami S, et al. Expression of Tyk2 in dendritic cells is required for IL-12, IL-23, and IFN-gamma production and the induction of Th1 cell differentiation. Blood. 2007;110(2):553–60.CrossRefPubMed
33.
go back to reference Prchal-Murphy M, Witalisz-Siepracka A, Bednarik K, et al. In vivo tumor surveillance by NK cells requires TYK2 but not TYK2 kinase activity. Oncoimmunology. 2015. Prchal-Murphy M, Witalisz-Siepracka A, Bednarik K, et al. In vivo tumor surveillance by NK cells requires TYK2 but not TYK2 kinase activity. Oncoimmunology. 2015.
34.
go back to reference Agnello D, Lankford CS, Bream J, et al. Cytokines and transcription factors that regulate T helper cell differentiation: new players and new insights. J Clin Immunol. 2003;23(3):147–61.CrossRefPubMed Agnello D, Lankford CS, Bream J, et al. Cytokines and transcription factors that regulate T helper cell differentiation: new players and new insights. J Clin Immunol. 2003;23(3):147–61.CrossRefPubMed
36.
go back to reference Yang XO, Panopoulos AD, Nurieva R, et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem. 2007;282(13):9358–63.CrossRefPubMed Yang XO, Panopoulos AD, Nurieva R, et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem. 2007;282(13):9358–63.CrossRefPubMed
38.
go back to reference Kristinsson SY, Landgren O, Samuelsson J, Björkholm M, Goldin LR. Autoimmunity and the risk of myeloproliferative neoplasms. Haematologica. 2010;95(7):1216–20.PubMedCentralCrossRefPubMed Kristinsson SY, Landgren O, Samuelsson J, Björkholm M, Goldin LR. Autoimmunity and the risk of myeloproliferative neoplasms. Haematologica. 2010;95(7):1216–20.PubMedCentralCrossRefPubMed
39.
go back to reference Barcellini W, Iurlo A, Radice T, et al. Increased prevalence of autoimmune phenomena in myelofibrosis: relationship with clinical and morphological characteristics, and with immunoregulatory cytokine patterns. Leuk Res. 2013;37(11):1509–15.CrossRefPubMed Barcellini W, Iurlo A, Radice T, et al. Increased prevalence of autoimmune phenomena in myelofibrosis: relationship with clinical and morphological characteristics, and with immunoregulatory cytokine patterns. Leuk Res. 2013;37(11):1509–15.CrossRefPubMed
40.
go back to reference Skov V, Larsen TS, Thomassen M, et al. Molecular profiling of peripheral blood cells from patients with polycythemia vera and related neoplasms: identification of deregulated genes of significance for inflammation and immune surveillance. Leuk Res. 2012;36(11):1387–92.CrossRefPubMed Skov V, Larsen TS, Thomassen M, et al. Molecular profiling of peripheral blood cells from patients with polycythemia vera and related neoplasms: identification of deregulated genes of significance for inflammation and immune surveillance. Leuk Res. 2012;36(11):1387–92.CrossRefPubMed
41.
go back to reference Skov V, Riley CH, Thomassen M, et al. Whole blood transcriptional profiling reveals significant down-regulation of human leukocyte antigen class I and II genes in essential thrombocythemia, polycythemia vera and myelofibrosis. Leuk Lymphoma. 2013;54(10):2269–73.CrossRefPubMed Skov V, Riley CH, Thomassen M, et al. Whole blood transcriptional profiling reveals significant down-regulation of human leukocyte antigen class I and II genes in essential thrombocythemia, polycythemia vera and myelofibrosis. Leuk Lymphoma. 2013;54(10):2269–73.CrossRefPubMed
42.
go back to reference Tefferi A, Vaidya R, Caramazza D, et al. Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study. J Clin Oncol. 2011;29(10):1356–63.CrossRefPubMed Tefferi A, Vaidya R, Caramazza D, et al. Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study. J Clin Oncol. 2011;29(10):1356–63.CrossRefPubMed
43.
go back to reference Vannucchi AM, Bianchi L, Paoletti F, et al. A pathologic pathway linking thrombopoietin, GATA-1 and TGF-β1 in the development of myelofibrosis. Blood. 2005;105(9):3493–501.CrossRefPubMed Vannucchi AM, Bianchi L, Paoletti F, et al. A pathologic pathway linking thrombopoietin, GATA-1 and TGF-β1 in the development of myelofibrosis. Blood. 2005;105(9):3493–501.CrossRefPubMed
44.
go back to reference Letterio JJ, Roberts AB. Regulation of immune responses by TGF-beta. Annu Rev Immunol. 1998;16:137–61.CrossRefPubMed Letterio JJ, Roberts AB. Regulation of immune responses by TGF-beta. Annu Rev Immunol. 1998;16:137–61.CrossRefPubMed
45.
go back to reference Kundra A, Baptiste S, Chen C, Sindhu H and Wang JC. Programmed cell death receptor (PD-1), PD-1 ligand (PD-L1) expression and myeloid derived suppressor cells (MDSC) in myeloid neoplasms implicate the mechanism of IMiD treatment of myelofibrosis. Blood (supplement) 2013; abstract 2837. Kundra A, Baptiste S, Chen C, Sindhu H and Wang JC. Programmed cell death receptor (PD-1), PD-1 ligand (PD-L1) expression and myeloid derived suppressor cells (MDSC) in myeloid neoplasms implicate the mechanism of IMiD treatment of myelofibrosis. Blood (supplement) 2013; abstract 2837.
46.
go back to reference Cervantes F, Vannucchi AM, Kiladjian JJ, et al. Three-year efficacy, safety, and survival findings from COMFORT-II, a phase 3 study comparing ruxolitinib with best available therapy for myelofibrosis. Blood. 2013;122:4047–53.CrossRefPubMed Cervantes F, Vannucchi AM, Kiladjian JJ, et al. Three-year efficacy, safety, and survival findings from COMFORT-II, a phase 3 study comparing ruxolitinib with best available therapy for myelofibrosis. Blood. 2013;122:4047–53.CrossRefPubMed
47.
go back to reference Wilkins BS, Radia D, Woodley C, et al. Resolution of bone marrow fibrosis in a patient receiving JAK1/JAK2 inhibitor treatment with ruxolitinib. Haematologica. 2013;98(12):1872–6.PubMedCentralCrossRefPubMed Wilkins BS, Radia D, Woodley C, et al. Resolution of bone marrow fibrosis in a patient receiving JAK1/JAK2 inhibitor treatment with ruxolitinib. Haematologica. 2013;98(12):1872–6.PubMedCentralCrossRefPubMed
48.
go back to reference Lee SC, Feenstra J, Georghiou PR. Pneumocystis jiroveci pneumonitis complicating ruxolitinib therapy. BMJ Case Rep. 2014. 2014. Lee SC, Feenstra J, Georghiou PR. Pneumocystis jiroveci pneumonitis complicating ruxolitinib therapy. BMJ Case Rep. 2014. 2014.
49.
go back to reference Landman GW, Arend SM, van Dissel JT. Ruxolitinib can mask symptoms and signs of necrotizing fasciitis. J Infect. 2013;66(3):296–7.CrossRefPubMed Landman GW, Arend SM, van Dissel JT. Ruxolitinib can mask symptoms and signs of necrotizing fasciitis. J Infect. 2013;66(3):296–7.CrossRefPubMed
50.
go back to reference Kim Y-K, Lee SR, Park Y, et al. Efficacy of ruxolitinib in Korean myelofibrosis patients and cases complicated TB lymphadenitis during the treatment. Blood. 2013;122:1596. Kim Y-K, Lee SR, Park Y, et al. Efficacy of ruxolitinib in Korean myelofibrosis patients and cases complicated TB lymphadenitis during the treatment. Blood. 2013;122:1596.
51.
go back to reference Mesa R, Egyed M, Szoke A et al. Results of the PERSIST-1 phase III study of pacritinib (PAC) versus best available therapy (BAT) in primary myelofibrosis (PMF), post-polycythemia vera myelofibrosis (PPV-MF), or post-essential thrombocythemia-myelofibrosis (PET-MF). J Clin Oncol 33, 2015 (suppl; abstr LBA7006) Mesa R, Egyed M, Szoke A et al. Results of the PERSIST-1 phase III study of pacritinib (PAC) versus best available therapy (BAT) in primary myelofibrosis (PMF), post-polycythemia vera myelofibrosis (PPV-MF), or post-essential thrombocythemia-myelofibrosis (PET-MF). J Clin Oncol 33, 2015 (suppl; abstr LBA7006)
52.
go back to reference Singer J, Al-Fayoumi S, Ma H et al. Comprehensive kinase profile of pacritinib, a non-myelosuppressive JAK2 kinase inhibitor in phase 3 development in primary and post ET/PV myelofibrosis. [abstract] 2013; Blood: 122 (21) 1874. Singer J, Al-Fayoumi S, Ma H et al. Comprehensive kinase profile of pacritinib, a non-myelosuppressive JAK2 kinase inhibitor in phase 3 development in primary and post ET/PV myelofibrosis. [abstract] 2013; Blood: 122 (21) 1874.
53.
go back to reference Pardanani A, Harrison C, Cortes J et al. Results of a randomized, double-blind, placebo-controlled phase III study (JAKARTA) of the JAK2-selective inhibitor fedratinib (SAR302503) in patients with myelofibrosis (MF). [abstract] 2013; Blood: 122 (21) 393. Pardanani A, Harrison C, Cortes J et al. Results of a randomized, double-blind, placebo-controlled phase III study (JAKARTA) of the JAK2-selective inhibitor fedratinib (SAR302503) in patients with myelofibrosis (MF). [abstract] 2013; Blood: 122 (21) 393.
54.
go back to reference Zhang Q, Zhang Y, Diamond S, et al. The Janus kinase 2 inhibitor fedratinib inhibits thiamine uptake: a putative mechanism for the onset of Wernicke’s encephalopathy. Drug Metab Dispos. 2014;42(10):1656–62.CrossRefPubMed Zhang Q, Zhang Y, Diamond S, et al. The Janus kinase 2 inhibitor fedratinib inhibits thiamine uptake: a putative mechanism for the onset of Wernicke’s encephalopathy. Drug Metab Dispos. 2014;42(10):1656–62.CrossRefPubMed
55.
go back to reference Pardanani A, Gotlib J, Gupta V et al. Update on the long-term efficacy and safety of momelotinib, a JAK1 and JAK2 Iinhibitor, for the treatment of myelofibrosis. [abstract] 2013; Blood: 122 (21) 108. Pardanani A, Gotlib J, Gupta V et al. Update on the long-term efficacy and safety of momelotinib, a JAK1 and JAK2 Iinhibitor, for the treatment of myelofibrosis. [abstract] 2013; Blood: 122 (21) 108.
56.
go back to reference Verstovsek S, Mesa R, Salama M et al. Phase I study of LY2784544, a JAK2 selective inhibitor, in patients with myelofibrosis (MF), polycythemia vera (PV), and essential thrombocythemia (ET). [abstract] 2013; Blood: 122 (21). Verstovsek S, Mesa R, Salama M et al. Phase I study of LY2784544, a JAK2 selective inhibitor, in patients with myelofibrosis (MF), polycythemia vera (PV), and essential thrombocythemia (ET). [abstract] 2013; Blood: 122 (21).
57.
go back to reference Meyer DM, Jesson MI, Li X, et al. Anti-inflammatory activity and neutrophil reductions mediated by the JAK1/JAK3 inhibitor, CP-690,550, in rat adjuvant-induced arthritis. J Inflamm (Lond). 2010;7:41.CrossRef Meyer DM, Jesson MI, Li X, et al. Anti-inflammatory activity and neutrophil reductions mediated by the JAK1/JAK3 inhibitor, CP-690,550, in rat adjuvant-induced arthritis. J Inflamm (Lond). 2010;7:41.CrossRef
58.
go back to reference Kremer JM, Bloom BJ, Breedveld FC, et al. The safety and efficacy of a JAK inhibitor in patients with active rheumatoid arthritis: results of a double-blind, placebo-controlled phase IIa trial of three dosage levels of CP-690,550 versus placebo. Arthritis Rheum. 2009;60(7):1895–905.CrossRefPubMed Kremer JM, Bloom BJ, Breedveld FC, et al. The safety and efficacy of a JAK inhibitor in patients with active rheumatoid arthritis: results of a double-blind, placebo-controlled phase IIa trial of three dosage levels of CP-690,550 versus placebo. Arthritis Rheum. 2009;60(7):1895–905.CrossRefPubMed
59.
go back to reference Cohen S, Radominski SC, Gomez-Reino JJ, Wang L, Krishnaswami S, Wood SP, et al. Analysis of infections and all-cause mortality in phase II, phase III, and long-term extension studies of tofacitinib in patients with rheumatoid arthritis. Arthritis Rheumatol. 2014;66(11):2924–37.CrossRefPubMed Cohen S, Radominski SC, Gomez-Reino JJ, Wang L, Krishnaswami S, Wood SP, et al. Analysis of infections and all-cause mortality in phase II, phase III, and long-term extension studies of tofacitinib in patients with rheumatoid arthritis. Arthritis Rheumatol. 2014;66(11):2924–37.CrossRefPubMed
60.
go back to reference Wollenhaupt J, Silverfield J, Lee EB, et al. Safety and efficacy of tofacitinib, an oral Janus kinase inhibitor, for the treatment of rheumatoid arthritis in open-label, long term extension studies. J Rheumatol. 2014;41(5):837–52.CrossRefPubMed Wollenhaupt J, Silverfield J, Lee EB, et al. Safety and efficacy of tofacitinib, an oral Janus kinase inhibitor, for the treatment of rheumatoid arthritis in open-label, long term extension studies. J Rheumatol. 2014;41(5):837–52.CrossRefPubMed
61.
go back to reference Vincenti F, Tedesco Silva H, Busque S, et al. Randomized phase 2b trial of tofacitinib (CP-690,550) in de novo kidney transplant patients: efficacy, renal function and safety at 1 year. Am J Transplant : Off J Am Soc Transplant Am Soc Transplant Surg. 2012;12:2446–56.CrossRef Vincenti F, Tedesco Silva H, Busque S, et al. Randomized phase 2b trial of tofacitinib (CP-690,550) in de novo kidney transplant patients: efficacy, renal function and safety at 1 year. Am J Transplant : Off J Am Soc Transplant Am Soc Transplant Surg. 2012;12:2446–56.CrossRef
62.
go back to reference Massa M, Rosti V, Campanelli R, Fois G, Barosi G. Rapid and long-lasting decrease of T-regulatory cells in patients with myelofibrosis treated with ruxolitinib. Leukemia. 2014;28(2):449–51.CrossRefPubMed Massa M, Rosti V, Campanelli R, Fois G, Barosi G. Rapid and long-lasting decrease of T-regulatory cells in patients with myelofibrosis treated with ruxolitinib. Leukemia. 2014;28(2):449–51.CrossRefPubMed
63.
go back to reference Keohane C, Kordasti SY, Siedl T et al. JAK inhibition reduces CD25 high CD27+ FOXp3+ T regulatory cells and causes a silencing of T effector cells in patients with myeloproliferative neoplasms whilst promoting a TH17 phenotype. Abstract 4092 Blood 2013 Keohane C, Kordasti SY, Siedl T et al. JAK inhibition reduces CD25 high CD27+ FOXp3+ T regulatory cells and causes a silencing of T effector cells in patients with myeloproliferative neoplasms whilst promoting a TH17 phenotype. Abstract 4092 Blood 2013
64.
go back to reference Sharma MD, Hou DY, Baban B, et al. Reprogrammed foxp3(+) regulatory T cells provide essential help to support cross-presentation and CD8(+) T cell priming in naive mice. Immunity. 2010;33(6):942–54.PubMedCentralCrossRefPubMed Sharma MD, Hou DY, Baban B, et al. Reprogrammed foxp3(+) regulatory T cells provide essential help to support cross-presentation and CD8(+) T cell priming in naive mice. Immunity. 2010;33(6):942–54.PubMedCentralCrossRefPubMed
65.
go back to reference Parampalli Yajnanarayana S, Stübig T, Cornez I, et al. JAK1/2 inhibition impairs T cell function in vitro and in patients with myeloproliferative neoplasms. Br J Haematol. 2015 [Epub ahead of print] Parampalli Yajnanarayana S, Stübig T, Cornez I, et al. JAK1/2 inhibition impairs T cell function in vitro and in patients with myeloproliferative neoplasms. Br J Haematol. 2015 [Epub ahead of print]
66.
go back to reference Perner F, Saalfeld F, Schnoeder T et al. Specificity of JAK-kinase inhibition determines impact on T-cell function. [abstract] 2013; Blood: 122 (21) 1410. Perner F, Saalfeld F, Schnoeder T et al. Specificity of JAK-kinase inhibition determines impact on T-cell function. [abstract] 2013; Blood: 122 (21) 1410.
68.
go back to reference Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22(11):633–40. Review.CrossRefPubMed Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22(11):633–40. Review.CrossRefPubMed
69.
go back to reference Radaev S, Sun PD. Structure and function of natural killer cell surface receptors. Annu Rev Biophys Biomol Struct. 2003;32:93–114. Epub 2002. Review. 32, 93-114.CrossRefPubMed Radaev S, Sun PD. Structure and function of natural killer cell surface receptors. Annu Rev Biophys Biomol Struct. 2003;32:93–114. Epub 2002. Review. 32, 93-114.CrossRefPubMed
70.
go back to reference De Maria A, Bozzano F, Cantoni C, Moretta L. Revisiting human natural killer cell subset function revealed cytolytic CD56(dim)CD16+ NK cells as rapid producers of abundant IFN-gamma on activation. Proc Natl Acad Sci U S A. 2011;108(2):728–32.PubMedCentralCrossRefPubMed De Maria A, Bozzano F, Cantoni C, Moretta L. Revisiting human natural killer cell subset function revealed cytolytic CD56(dim)CD16+ NK cells as rapid producers of abundant IFN-gamma on activation. Proc Natl Acad Sci U S A. 2011;108(2):728–32.PubMedCentralCrossRefPubMed
71.
go back to reference Fauriat C, Long EO, Ljunggren H-G, Bryceson YT. Regulation of human NK cell cytokine and chemokine production by target cell recognition. Blood. 2010;115:2167–76.PubMedCentralCrossRefPubMed Fauriat C, Long EO, Ljunggren H-G, Bryceson YT. Regulation of human NK cell cytokine and chemokine production by target cell recognition. Blood. 2010;115:2167–76.PubMedCentralCrossRefPubMed
72.
go back to reference Gersuk GM, Carmel R, Pattamakom S, Challita PM, Rabinowitz AP, Pattengale PK. Quantitative and functional studies of impaired natural killer (NK) cells in patients with myelofibrosis, essential thrombocythemia, and polycythemia vera. I. A potential role for platelet-derived growth factor in defective NK cytotoxicity. Nat Immun. 1993;12(3):136–51.PubMed Gersuk GM, Carmel R, Pattamakom S, Challita PM, Rabinowitz AP, Pattengale PK. Quantitative and functional studies of impaired natural killer (NK) cells in patients with myelofibrosis, essential thrombocythemia, and polycythemia vera. I. A potential role for platelet-derived growth factor in defective NK cytotoxicity. Nat Immun. 1993;12(3):136–51.PubMed
73.
go back to reference Riley CH, Hansen M, Brimnes MK, et al. Expansion of circulating CD56bright natural killer cells in patients with JAK2-positive chronic myeloproliferative neoplasms during treatment with interferon-α. Eur J Haematol. 2015;94(3):227–34.CrossRefPubMed Riley CH, Hansen M, Brimnes MK, et al. Expansion of circulating CD56bright natural killer cells in patients with JAK2-positive chronic myeloproliferative neoplasms during treatment with interferon-α. Eur J Haematol. 2015;94(3):227–34.CrossRefPubMed
74.
go back to reference Schönberg K, Rudolph J, Vonnahme M et al. JAK inhibition impairs NK cell function in myeloproliferative neoplasms. Cancer Res. 2015. Schönberg K, Rudolph J, Vonnahme M et al. JAK inhibition impairs NK cell function in myeloproliferative neoplasms. Cancer Res. 2015.
76.
go back to reference Watowich S, Liu YJ. Mechanisms regulating dendritic cell specification and development. J Exp Med. 2003;198(2):305–13.CrossRef Watowich S, Liu YJ. Mechanisms regulating dendritic cell specification and development. J Exp Med. 2003;198(2):305–13.CrossRef
77.
go back to reference Li HS, Watowich SS. Diversification of dendritic cell subsets: emerging roles for STAT proteins. JAKSTAT. 2013;2(4):e25112.PubMedCentralPubMed Li HS, Watowich SS. Diversification of dendritic cell subsets: emerging roles for STAT proteins. JAKSTAT. 2013;2(4):e25112.PubMedCentralPubMed
78.
go back to reference Zhong J, Yang P, Muta K, et al. Loss of Jak2 selectively suppresses DC-mediated innate immune response and protects mice from lethal dose of LPS-induced septic shock. PLoS ONE. 2010;5(3):e9593.PubMedCentralCrossRefPubMed Zhong J, Yang P, Muta K, et al. Loss of Jak2 selectively suppresses DC-mediated innate immune response and protects mice from lethal dose of LPS-induced septic shock. PLoS ONE. 2010;5(3):e9593.PubMedCentralCrossRefPubMed
79.
go back to reference Heine A, Held SA, Daecke SN, et al. The JAK-inhibitor ruxolitinib impairs dendritic cell function in vitro and in vivo. Blood. 2013;122(7):1192–202.CrossRefPubMed Heine A, Held SA, Daecke SN, et al. The JAK-inhibitor ruxolitinib impairs dendritic cell function in vitro and in vivo. Blood. 2013;122(7):1192–202.CrossRefPubMed
80.
go back to reference Kubo S, Yamaoka K, Kondo M, et al. The JAK inhibitor, tofacitinib, reduces the T cell stimulatory capacity of human monocyte-derived dendritic cells. Ann Rheum Dis. 2014;73(12):2192–8.CrossRefPubMed Kubo S, Yamaoka K, Kondo M, et al. The JAK inhibitor, tofacitinib, reduces the T cell stimulatory capacity of human monocyte-derived dendritic cells. Ann Rheum Dis. 2014;73(12):2192–8.CrossRefPubMed
81.
go back to reference Spoer S, Mathew N, Bscheider M et al. Activity of therapeutic JAK 1/2 blockade in graft-versus-host disease. 2014; Blood: 123 (24). Spoer S, Mathew N, Bscheider M et al. Activity of therapeutic JAK 1/2 blockade in graft-versus-host disease. 2014; Blood: 123 (24).
83.
go back to reference Spoerl S, Maas-Bauer K, Verbeek M et al. Response to JAK 1/2 inhibition in patients with corticosteroid-refractory acute graft-versus-host disease. ASH 2014 meeting abstract Spoerl S, Maas-Bauer K, Verbeek M et al. Response to JAK 1/2 inhibition in patients with corticosteroid-refractory acute graft-versus-host disease. ASH 2014 meeting abstract
84.
go back to reference Carniti C, Gimondi S, Vendramin A, et al. Pharmacologic inhibition of JAK1/JAK2 signaling reduces experimental murine acute GVHD while preserving GVT effects. Clin Cancer Res. 2015. Carniti C, Gimondi S, Vendramin A, et al. Pharmacologic inhibition of JAK1/JAK2 signaling reduces experimental murine acute GVHD while preserving GVT effects. Clin Cancer Res. 2015.
86.
go back to reference Ports WC, Khan S, Lan S, et al. A randomized phase 2a efficacy and safety trial of the topical Janus kinase inhibitor tofacitinib in the treatment of chronic plaque psoriasis. Br J Dermatol. 2013;169(1):137–45.PubMedCentralCrossRefPubMed Ports WC, Khan S, Lan S, et al. A randomized phase 2a efficacy and safety trial of the topical Janus kinase inhibitor tofacitinib in the treatment of chronic plaque psoriasis. Br J Dermatol. 2013;169(1):137–45.PubMedCentralCrossRefPubMed
88.
go back to reference Punwani N, Scherle P, Flores R, et al. Preliminary clinical activity of a topical JAK1/2 inhibitor in the treatment of psoriasis. J Am Acad Dermatol. 2012;67(4):658–64.CrossRefPubMed Punwani N, Scherle P, Flores R, et al. Preliminary clinical activity of a topical JAK1/2 inhibitor in the treatment of psoriasis. J Am Acad Dermatol. 2012;67(4):658–64.CrossRefPubMed
Metadata
Title
Immunological Consequences of JAK Inhibition: Friend or Foe?
Authors
Donal P. McLornan
Alesia A. Khan
Claire N. Harrison
Publication date
01-12-2015
Publisher
Springer US
Published in
Current Hematologic Malignancy Reports / Issue 4/2015
Print ISSN: 1558-8211
Electronic ISSN: 1558-822X
DOI
https://doi.org/10.1007/s11899-015-0284-z

Other articles of this Issue 4/2015

Current Hematologic Malignancy Reports 4/2015 Go to the issue

Myeloproliferative Disorders (C Harrison, Section Editor)

Current Challenges in Stem Cell Transplantation in Myelofibrosis

Multiple Myeloma (R Nievszky, Section Editor)

Novel Induction Regimens in Multiple Myeloma

T-Cell and Other Lymphoproliferative Malignancies (P Porcu, Section Editor)

Mature T-cell leukemias: Molecular and Clinical Aspects

Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine