Skip to main content
Top
Published in: Current Cardiology Reports 3/2024

28-03-2024 | Ventricular Septal Defect | Congenital Heart Disease (RA Krasuski and G Fleming, Section Editors)

Understanding the Genetic and Non-genetic Interconnections in the Aetiology of Isolated Congenital Heart Disease: An Updated Review: Part 1

Authors: Jyoti Maddhesiya, Bhagyalaxmi Mohapatra

Published in: Current Cardiology Reports | Issue 3/2024

Login to get access

Abstract

Purpose of Review

Congenital heart disease (CHD) is the most frequently occurring birth defect. Majority of the earlier reviews focussed on the association of genetic factors with CHD. A few epidemiological studies provide convincing evidence for environmental factors in the causation of CHD. Although the multifactorial theory of gene-environment interaction is the prevailing explanation, explicit understanding of the biological mechanism(s) involved, remains obscure. Nonetheless, integration of all the information into one platform would enable us to better understand the collective risk implicated in CHD development.

Recent Findings

Great strides in novel genomic technologies namely, massive parallel sequencing, whole exome sequencing, multiomics studies supported by system-biology have greatly improved our understanding of the aetiology of CHD. Molecular genetic studies reveal that cardiac specific gene variants in transcription factors or signalling molecules, or structural proteins could cause CHD. Additionally, non-hereditary contributors such as exposure to teratogens, maternal nutrition, parental age and lifestyle factors also contribute to induce CHD. Moreover, DNA methylation and non-coding RNA are also correlated with CHD.

Summary

Here, we inform that a complex combination of genetic, environmental and epigenetic factors interact to interfere with morphogenetic processes of cardiac development leading to CHD. It is important, not only to identify individual genetic and non-inherited risk factors but also to recognize which factors interact mutually, causing cardiac defects.
Literature
1.
go back to reference Thomford NE, Dzobo K, Yao NA, Chimusa E, Evans J, Okai E, Kruszka P, Muenke M, Awandare G, Wonkam A, Dandara C. Genomics and epigenomics of congenital heart defects: expert review and lessons learned in Africa. OMICS: A Journal of Integrative Biology. 2018 May 1;22(5):301-21. Thomford NE, Dzobo K, Yao NA, Chimusa E, Evans J, Okai E, Kruszka P, Muenke M, Awandare G, Wonkam A, Dandara C. Genomics and epigenomics of congenital heart defects: expert review and lessons learned in Africa. OMICS: A Journal of Integrative Biology. 2018 May 1;22(5):301-21.
2.
go back to reference Wijnands KP, Zeilmaker GA, Meijer WM, Helbing WA, Steegers-Theunissen RP. Periconceptional parental conditions and perimembranous ventricular septal defects in the offspring. Birth Defects Res A. 2014;100:944–50.CrossRef Wijnands KP, Zeilmaker GA, Meijer WM, Helbing WA, Steegers-Theunissen RP. Periconceptional parental conditions and perimembranous ventricular septal defects in the offspring. Birth Defects Res A. 2014;100:944–50.CrossRef
3.
go back to reference Abqari S, Gupta A, Shahab T, Rabbani MU, Ali SM, Firdaus U. Profile and risk factors for congenital heart defects: a study in a tertiary care hospital. Ann Pediatr Cardiol. 2016;9:216.PubMedPubMedCentralCrossRef Abqari S, Gupta A, Shahab T, Rabbani MU, Ali SM, Firdaus U. Profile and risk factors for congenital heart defects: a study in a tertiary care hospital. Ann Pediatr Cardiol. 2016;9:216.PubMedPubMedCentralCrossRef
4.
go back to reference Bhardwaj R, Rai SK, Yadav AK, Lakhotia S, Agrawal D, Kumar A, Mohapatra B. Epidemiology of congenital heart disease in India. Congenit Heart Dis. 2015;10:437–46.CrossRef Bhardwaj R, Rai SK, Yadav AK, Lakhotia S, Agrawal D, Kumar A, Mohapatra B. Epidemiology of congenital heart disease in India. Congenit Heart Dis. 2015;10:437–46.CrossRef
5.
go back to reference Chadha SL, Singh N, Shukla DK. Epidemiological study of congenital heart disease. The Indian Journal of Pediatrics. 2001;68:507–10.PubMedCrossRef Chadha SL, Singh N, Shukla DK. Epidemiological study of congenital heart disease. The Indian Journal of Pediatrics. 2001;68:507–10.PubMedCrossRef
8.
go back to reference Ito S, Chapman KA, Kisling M, John AS. Genetic considerations for adults with congenital heart disease. InAmerican Journal of Medical Genetics Part C: Seminars in Medical Genetics 2020 Mar (Vol. 184, No. 1, pp. 149-153). Hoboken, USA: John Wiley & Sons, Inc. Ito S, Chapman KA, Kisling M, John AS. Genetic considerations for adults with congenital heart disease. InAmerican Journal of Medical Genetics Part C: Seminars in Medical Genetics 2020 Mar (Vol. 184, No. 1, pp. 149-153). Hoboken, USA: John Wiley & Sons, Inc.
9.
go back to reference Russell MW, Chung WK, Kaltman JR, Miller TA. Advances in the understanding of the genetic determinants of congenital heart disease and their impact on clinical outcomes. J Am Heart Assoc. 2018;7: e006906.PubMedPubMedCentralCrossRef Russell MW, Chung WK, Kaltman JR, Miller TA. Advances in the understanding of the genetic determinants of congenital heart disease and their impact on clinical outcomes. J Am Heart Assoc. 2018;7: e006906.PubMedPubMedCentralCrossRef
10.
go back to reference Moore-Morris T, van Vliet PP, Andelfinger G, Puceat M. Role of epigenetics in cardiac development and congenital diseases. Physiol Rev. 2018;98:2453–75.PubMedCrossRef Moore-Morris T, van Vliet PP, Andelfinger G, Puceat M. Role of epigenetics in cardiac development and congenital diseases. Physiol Rev. 2018;98:2453–75.PubMedCrossRef
11.
go back to reference Obermann‐Borst SA, Vujkovic M, De Vries JH, Wildhagen MF, Looman CW, de Jonge R, Steegers EA, Steegers‐Theunissen RP. A maternal dietary pattern characterised by fish and seafood in association with the risk of congenital heart defects in the offspring. BJOG: an international Journal of Obstetrics & Gynaecology. 2011 Sep;118(10):1205-15. Obermann‐Borst SA, Vujkovic M, De Vries JH, Wildhagen MF, Looman CW, de Jonge R, Steegers EA, Steegers‐Theunissen RP. A maternal dietary pattern characterised by fish and seafood in association with the risk of congenital heart defects in the offspring. BJOG: an international Journal of Obstetrics & Gynaecology. 2011 Sep;118(10):1205-15.
12.
go back to reference Wang F, Reece EA, Yang P. Superoxide dismutase 1 overexpression in mice abolishes maternal diabetes–induced endoplasmic reticulum stress in diabetic embryopathy. Am J Obstet Gynecol. 2013;209:345-e1.PubMedCentralCrossRef Wang F, Reece EA, Yang P. Superoxide dismutase 1 overexpression in mice abolishes maternal diabetes–induced endoplasmic reticulum stress in diabetic embryopathy. Am J Obstet Gynecol. 2013;209:345-e1.PubMedCentralCrossRef
13.
go back to reference Patel SS, Burns TL. Nongenetic risk factors and congenital heart defects. Pediatr Cardiol. 2013;34:1535–55.PubMedCrossRef Patel SS, Burns TL. Nongenetic risk factors and congenital heart defects. Pediatr Cardiol. 2013;34:1535–55.PubMedCrossRef
14.
go back to reference Sampayo F, Pinto FF. The sex distribution of congenital cardiopathies. Acta Med Port. 1994;7:413–8.PubMed Sampayo F, Pinto FF. The sex distribution of congenital cardiopathies. Acta Med Port. 1994;7:413–8.PubMed
15.
go back to reference Egbe A, Uppu S, Stroustrup A, Lee S, Ho D, Srivastava S. Incidences and sociodemographics of specific congenital heart diseases in the United States of America: an evaluation of hospital discharge diagnoses. Pediatr Cardiol. 2014;35:975–82.PubMedCrossRef Egbe A, Uppu S, Stroustrup A, Lee S, Ho D, Srivastava S. Incidences and sociodemographics of specific congenital heart diseases in the United States of America: an evaluation of hospital discharge diagnoses. Pediatr Cardiol. 2014;35:975–82.PubMedCrossRef
16.
go back to reference Loffredo CA, Chokkalingam A, Sill AM, Boughman JA, Clark EB, Scheel J, Brenner JI. Prevalence of congenital cardiovascular malformations among relatives of infants with hypoplastic left heart, coarctation of the aorta, and d-transposition of the great arteries. Am J Med Genet A. 2004;124:225–30.CrossRef Loffredo CA, Chokkalingam A, Sill AM, Boughman JA, Clark EB, Scheel J, Brenner JI. Prevalence of congenital cardiovascular malformations among relatives of infants with hypoplastic left heart, coarctation of the aorta, and d-transposition of the great arteries. Am J Med Genet A. 2004;124:225–30.CrossRef
17.
go back to reference Øyen N, Poulsen G, Boyd HA, Wohlfahrt J, Jensen PK, Melbye M. Recurrence of congenital heart defects in families. Circulation. 2009;120:295–301.PubMedCrossRef Øyen N, Poulsen G, Boyd HA, Wohlfahrt J, Jensen PK, Melbye M. Recurrence of congenital heart defects in families. Circulation. 2009;120:295–301.PubMedCrossRef
18.
go back to reference Burn J, Brennan P, Little J, Holloway S, Coffey R, Somerville J, Dennis NR, Allan L, Arnold R, Deanfield JE. Recurrence risks in offspring of adults with major heart defects: results from first cohort of British collaborative study. The Lancet. 1998;351:311–6.CrossRef Burn J, Brennan P, Little J, Holloway S, Coffey R, Somerville J, Dennis NR, Allan L, Arnold R, Deanfield JE. Recurrence risks in offspring of adults with major heart defects: results from first cohort of British collaborative study. The Lancet. 1998;351:311–6.CrossRef
19.
go back to reference Blue GM, Kirk EP, Sholler GF, Harvey RP, Winlaw DS. Congenital heart disease: current knowledge about causes and inheritance. Med J Aust. 2012;197:155–9.PubMedCrossRef Blue GM, Kirk EP, Sholler GF, Harvey RP, Winlaw DS. Congenital heart disease: current knowledge about causes and inheritance. Med J Aust. 2012;197:155–9.PubMedCrossRef
20.
go back to reference Øyen N, Boyd HA, Carstensen L, Søndergaard L, Wohlfahrt J, Melbye M. Risk of congenital heart defects in offspring of affected mothers and fathers. Circulation: Genomic and Precision Medicine. 2022 Aug;15(4):e003533. Øyen N, Boyd HA, Carstensen L, Søndergaard L, Wohlfahrt J, Melbye M. Risk of congenital heart defects in offspring of affected mothers and fathers. Circulation: Genomic and Precision Medicine. 2022 Aug;15(4):e003533.
21.
go back to reference Srivastava D. Genetic regulation of cardiogenesis and congenital heart disease. ANNUAL REVIEW OF PATHOLOG. 2006;1:199.CrossRef Srivastava D. Genetic regulation of cardiogenesis and congenital heart disease. ANNUAL REVIEW OF PATHOLOG. 2006;1:199.CrossRef
22.
go back to reference Yasuhara J, Garg V. Genetics of congenital heart disease: a narrative review of recent advances and clinical implications. Translational Pediatrics. 2021;10:2366.PubMedPubMedCentralCrossRef Yasuhara J, Garg V. Genetics of congenital heart disease: a narrative review of recent advances and clinical implications. Translational Pediatrics. 2021;10:2366.PubMedPubMedCentralCrossRef
23.
go back to reference Fahed AC, Gelb BD, Seidman JG, Seidman CE. Genetics of congenital heart disease: the glass half empty. Circ Res. 2013;112:707–20.PubMedCrossRef Fahed AC, Gelb BD, Seidman JG, Seidman CE. Genetics of congenital heart disease: the glass half empty. Circ Res. 2013;112:707–20.PubMedCrossRef
24.
go back to reference Pierpont ME, Brueckner M, Chung WK, Garg V, Lacro RV, McGuire AL, Mital S, Priest JR, Pu WT, Roberts A. Genetic basis for congenital heart disease: revisited: a scientific statement from the American Heart Association. Circulation. 2018;138:e653–711.PubMedPubMedCentralCrossRef Pierpont ME, Brueckner M, Chung WK, Garg V, Lacro RV, McGuire AL, Mital S, Priest JR, Pu WT, Roberts A. Genetic basis for congenital heart disease: revisited: a scientific statement from the American Heart Association. Circulation. 2018;138:e653–711.PubMedPubMedCentralCrossRef
25.
go back to reference Ellesøe SG, Johansen MM, Bjerre JV, Hjortdal VE, Brunak S, Larsen LA. Familial atrial septal defect and sudden cardiac death: identification of a novel NKX2-5 mutation and a review of the literature. Congenit Heart Dis. 2016;11:283–90.PubMedCrossRef Ellesøe SG, Johansen MM, Bjerre JV, Hjortdal VE, Brunak S, Larsen LA. Familial atrial septal defect and sudden cardiac death: identification of a novel NKX2-5 mutation and a review of the literature. Congenit Heart Dis. 2016;11:283–90.PubMedCrossRef
26.
go back to reference Dixit R, Narasimhan C, Balekundri VI, Agrawal D, Kumar A, Mohapatra B. Functionally significant, novel GATA4 variants are frequently associated with tetralogy of Fallot. Hum Mutat. 2018;39:1957–72.PubMedCrossRef Dixit R, Narasimhan C, Balekundri VI, Agrawal D, Kumar A, Mohapatra B. Functionally significant, novel GATA4 variants are frequently associated with tetralogy of Fallot. Hum Mutat. 2018;39:1957–72.PubMedCrossRef
27.
go back to reference Kodo K, Nishizawa T, Furutani M, Arai S, Yamamura E, Joo K, Takahashi T, Matsuoka R, Yamagishi H. GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling. Proc Natl Acad Sci. 2009;106:13933–8.PubMedPubMedCentralCrossRef Kodo K, Nishizawa T, Furutani M, Arai S, Yamamura E, Joo K, Takahashi T, Matsuoka R, Yamagishi H. GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling. Proc Natl Acad Sci. 2009;106:13933–8.PubMedPubMedCentralCrossRef
28.
go back to reference Griffin HR, Töpf A, Glen E, Zweier C, Stuart AG, Parsons J, Peart I, Deanfield J, O’Sullivan J, Rauch A. Systematic survey of variants in TBX1 in non-syndromic tetralogy of Fallot identifies a novel 57 base pair deletion that reduces transcriptional activity but finds no evidence for association with common variants. Heart. 2010;96:1651–5.PubMedCrossRef Griffin HR, Töpf A, Glen E, Zweier C, Stuart AG, Parsons J, Peart I, Deanfield J, O’Sullivan J, Rauch A. Systematic survey of variants in TBX1 in non-syndromic tetralogy of Fallot identifies a novel 57 base pair deletion that reduces transcriptional activity but finds no evidence for association with common variants. Heart. 2010;96:1651–5.PubMedCrossRef
29.
go back to reference Zhu J, Fu Y, Nettleton M, Richman A, Han Z. High throughput in vivo functional validation of candidate congenital heart disease genes in Drosophila. Elife. 2017;6: e22617.PubMedPubMedCentralCrossRef Zhu J, Fu Y, Nettleton M, Richman A, Han Z. High throughput in vivo functional validation of candidate congenital heart disease genes in Drosophila. Elife. 2017;6: e22617.PubMedPubMedCentralCrossRef
31.
go back to reference Mohapatra B, Casey B, Li H, Ho-Dawson T, Smith L, Fernbach SD, Molinari L, Niesh SR, Jefferies JL, Craigen WJ. Identification and functional characterization of NODAL rare variants in heterotaxy and isolated cardiovascular malformations. Hum Mol Genet. 2009;18:861–71.PubMedCrossRef Mohapatra B, Casey B, Li H, Ho-Dawson T, Smith L, Fernbach SD, Molinari L, Niesh SR, Jefferies JL, Craigen WJ. Identification and functional characterization of NODAL rare variants in heterotaxy and isolated cardiovascular malformations. Hum Mol Genet. 2009;18:861–71.PubMedCrossRef
32.
go back to reference • Yadav ML, Ranjan P, Das P, Jain D, Kumar A, Mohapatra B. Implication of rare genetic variants of NODAL and ACVR1B in congenital heart disease patients from Indian population. Exp Cell Res. 2021;409:112869. This study defined the role of NODAL and ACR1B mutations in impairing the NODAL signaling which might be inducing congenital heart diseases in isolated patients. • Yadav ML, Ranjan P, Das P, Jain D, Kumar A, Mohapatra B. Implication of rare genetic variants of NODAL and ACVR1B in congenital heart disease patients from Indian population. Exp Cell Res. 2021;409:112869. This study defined the role of NODAL and ACR1B mutations in impairing the NODAL signaling which might be inducing congenital heart diseases in isolated patients.
33.
go back to reference Page DJ, Miossec MJ, Williams SG, Monaghan RM, Fotiou E, Cordell HJ, Sutcliffe L, Topf A, Bourgey M, Bourque G. Whole exome sequencing reveals the major genetic contributors to nonsyndromic tetralogy of Fallot. Circ Res. 2019;124:553–63.PubMedPubMedCentralCrossRef Page DJ, Miossec MJ, Williams SG, Monaghan RM, Fotiou E, Cordell HJ, Sutcliffe L, Topf A, Bourgey M, Bourque G. Whole exome sequencing reveals the major genetic contributors to nonsyndromic tetralogy of Fallot. Circ Res. 2019;124:553–63.PubMedPubMedCentralCrossRef
34.
go back to reference H. Bean LJ, Allen EG, Tinker SW, Hollis ND, Locke AE, Druschel C, Hobbs CA, O’Leary L, Romitti PA, Royle MH,. Lack of maternal folic acid supplementation is associated with heart defects in Down syndrome: a report from the National Down Syndrome Project. Birth Defects Res A. 2011;91:885–93.CrossRef H. Bean LJ, Allen EG, Tinker SW, Hollis ND, Locke AE, Druschel C, Hobbs CA, O’Leary L, Romitti PA, Royle MH,. Lack of maternal folic acid supplementation is associated with heart defects in Down syndrome: a report from the National Down Syndrome Project. Birth Defects Res A. 2011;91:885–93.CrossRef
36.
go back to reference Soemedi R, Wilson IJ, Bentham J, Darlay R, Töpf A, Zelenika D, Cosgrove C, Setchfield K, Thornborough C, Granados-Riveron J. Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease. The American Journal of Human Genetics. 2012;91:489–501.PubMedCrossRef Soemedi R, Wilson IJ, Bentham J, Darlay R, Töpf A, Zelenika D, Cosgrove C, Setchfield K, Thornborough C, Granados-Riveron J. Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease. The American Journal of Human Genetics. 2012;91:489–501.PubMedCrossRef
37.
go back to reference Greenway SC, Pereira AC, Lin JC, DePalma SR, Israel SJ, Mesquita SM, Ergul E, Conta JH, Korn JM, McCarroll SA. De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nat Genet. 2009;41:931–5.PubMedPubMedCentralCrossRef Greenway SC, Pereira AC, Lin JC, DePalma SR, Israel SJ, Mesquita SM, Ergul E, Conta JH, Korn JM, McCarroll SA. De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nat Genet. 2009;41:931–5.PubMedPubMedCentralCrossRef
38.
go back to reference Kim DS, Kim JH, Burt AA, Crosslin DR, Burnham N, Kim CE, McDonald-McGinn DM, Zackai EH, Nicolson SC, Spray TL. Burden of potentially pathologic copy number variants is higher in children with isolated congenital heart disease and significantly impairs covariate-adjusted transplant-free survival. J Thorac Cardiovasc Surg. 2016;151:1147–51.PubMedCrossRef Kim DS, Kim JH, Burt AA, Crosslin DR, Burnham N, Kim CE, McDonald-McGinn DM, Zackai EH, Nicolson SC, Spray TL. Burden of potentially pathologic copy number variants is higher in children with isolated congenital heart disease and significantly impairs covariate-adjusted transplant-free survival. J Thorac Cardiovasc Surg. 2016;151:1147–51.PubMedCrossRef
39.
go back to reference Jenkins KJ, Correa A, Feinstein JA, Botto L, Britt AE, Daniels SR, Elixson M, Warnes CA, Webb CL. Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation. 2007;115:2995–3014.PubMedCrossRef Jenkins KJ, Correa A, Feinstein JA, Botto L, Britt AE, Daniels SR, Elixson M, Warnes CA, Webb CL. Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation. 2007;115:2995–3014.PubMedCrossRef
40.
go back to reference Gregg NM. Congenital cataract following German measles in the mother. Problems of Birth Defects: From Hippocrates to Thalidomide and After. 1941:170-80. Gregg NM. Congenital cataract following German measles in the mother. Problems of Birth Defects: From Hippocrates to Thalidomide and After. 1941:170-80.
41.
go back to reference Nora JJ. Multifactorial inheritance hypothesis for the etiology of congenital heart diseases: the genetic-environmental interaction. Circulation. 1968;38:604–17.PubMedCrossRef Nora JJ. Multifactorial inheritance hypothesis for the etiology of congenital heart diseases: the genetic-environmental interaction. Circulation. 1968;38:604–17.PubMedCrossRef
42.
go back to reference •• Szot JO, Cuny H, Blue GM, Humphreys DT, Ip E, Harrison K, Sholler GF, Giannoulatou E, Leo P, Duncan EL. A screening approach to identify clinically actionable variants causing congenital heart disease in exome data. Circ Genom Precis Med. 2018;11:e001978. Findings from this study identified clinically actionable variants and additional disease-causal genes, both of which are essential for improving the molecular diagnosis of CHD. •• Szot JO, Cuny H, Blue GM, Humphreys DT, Ip E, Harrison K, Sholler GF, Giannoulatou E, Leo P, Duncan EL. A screening approach to identify clinically actionable variants causing congenital heart disease in exome data. Circ Genom Precis Med. 2018;11:e001978. Findings from this study identified clinically actionable variants and additional disease-causal genes, both of which are essential for improving the molecular diagnosis of CHD.
43.
44.
go back to reference Nees SN, Chung WK. The genetics of isolated congenital heart disease. InAmerican Journal of Medical Genetics Part C: Seminars in Medical Genetics 2020 Mar (Vol. 184, No. 1, pp. 97-106). Hoboken, USA: John Wiley & Sons, Inc. Nees SN, Chung WK. The genetics of isolated congenital heart disease. InAmerican Journal of Medical Genetics Part C: Seminars in Medical Genetics 2020 Mar (Vol. 184, No. 1, pp. 97-106). Hoboken, USA: John Wiley & Sons, Inc.
45.
go back to reference Riehle-Colarusso TJ, Patel SS. Maternal nongenetic risk factors for congenital heart defects. InCongenital Heart Disease 2015 (pp. 57-69). Karger Publishers. Riehle-Colarusso TJ, Patel SS. Maternal nongenetic risk factors for congenital heart defects. InCongenital Heart Disease 2015 (pp. 57-69). Karger Publishers.
46.
go back to reference Miller A, Riehle-Colarusso T, Siffel C, Frías JL, Correa A. Maternal age and prevalence of isolated congenital heart defects in an urban area of the United States. Am J Med Genet A. 2011;155:2137–45.CrossRef Miller A, Riehle-Colarusso T, Siffel C, Frías JL, Correa A. Maternal age and prevalence of isolated congenital heart defects in an urban area of the United States. Am J Med Genet A. 2011;155:2137–45.CrossRef
47.
go back to reference Liu S, Joseph KS, Lisonkova S, Rouleau J, Van den Hof M, Sauve R, Kramer MS. Association between maternal chronic conditions and congenital heart defects: a population-based cohort study. Circulation. 2013;128:583–9.PubMedCrossRef Liu S, Joseph KS, Lisonkova S, Rouleau J, Van den Hof M, Sauve R, Kramer MS. Association between maternal chronic conditions and congenital heart defects: a population-based cohort study. Circulation. 2013;128:583–9.PubMedCrossRef
48.
go back to reference Dolk H, McCullough N, Callaghan S, Casey F, Craig B, Given J, Loane M, Lagan BM, Bunting B, Boyle B. Risk factors for congenital heart disease: the Baby Hearts Study, a population-based case-control study. PLoS ONE. 2020;15: e0227908.PubMedPubMedCentralCrossRef Dolk H, McCullough N, Callaghan S, Casey F, Craig B, Given J, Loane M, Lagan BM, Bunting B, Boyle B. Risk factors for congenital heart disease: the Baby Hearts Study, a population-based case-control study. PLoS ONE. 2020;15: e0227908.PubMedPubMedCentralCrossRef
49.
go back to reference Priest JR, Yang W, Reaven G, Knowles JW, Shaw GM. Maternal midpregnancy glucose levels and risk of congenital heart disease in offspring. JAMA Pediatr. 2015;169:1112–6.PubMedPubMedCentralCrossRef Priest JR, Yang W, Reaven G, Knowles JW, Shaw GM. Maternal midpregnancy glucose levels and risk of congenital heart disease in offspring. JAMA Pediatr. 2015;169:1112–6.PubMedPubMedCentralCrossRef
50.
51.
go back to reference Leirgul E, Brodwall K, Greve G, Vollset SE, Holmstrøm H, Tell GS, Øyen N. Maternal diabetes, birth weight, and neonatal risk of congenital heart defects in Norway, 1994–2009. Obstet Gynecol. 2016;128:1116–25.PubMedCrossRef Leirgul E, Brodwall K, Greve G, Vollset SE, Holmstrøm H, Tell GS, Øyen N. Maternal diabetes, birth weight, and neonatal risk of congenital heart defects in Norway, 1994–2009. Obstet Gynecol. 2016;128:1116–25.PubMedCrossRef
52.
53.
go back to reference Botto LD, Mulinare J, Erickson JD. Do multivitamin or folic acid supplements reduce the risk for congenital heart defects? Evidence and gaps. Am J Med Genet A. 2003;121:95–101.CrossRef Botto LD, Mulinare J, Erickson JD. Do multivitamin or folic acid supplements reduce the risk for congenital heart defects? Evidence and gaps. Am J Med Genet A. 2003;121:95–101.CrossRef
54.
go back to reference Mao B, Qiu J, Zhao N, Shao Y, Dai W, He X, Cui H, Lin X, Lv L, Tang Z. Maternal folic acid supplementation and dietary folate intake and congenital heart defects. PLoS ONE. 2017;12: e0187996.PubMedPubMedCentralCrossRef Mao B, Qiu J, Zhao N, Shao Y, Dai W, He X, Cui H, Lin X, Lv L, Tang Z. Maternal folic acid supplementation and dietary folate intake and congenital heart defects. PLoS ONE. 2017;12: e0187996.PubMedPubMedCentralCrossRef
55.
go back to reference Bergström S, Carr H, Petersson G, Stephansson O, Bonamy AK, Dahlström A, Halvorsen CP, Johansson S. Trends in congenital heart defects in infants with Down syndrome. Pediatrics. 2016 Jul 1;138(1). Bergström S, Carr H, Petersson G, Stephansson O, Bonamy AK, Dahlström A, Halvorsen CP, Johansson S. Trends in congenital heart defects in infants with Down syndrome. Pediatrics. 2016 Jul 1;138(1).
57.
go back to reference Stefanovic S, Zaffran S. Mechanisms of retinoic acid signaling during cardiogenesis. Mech Dev. 2017;143:9–19.PubMedCrossRef Stefanovic S, Zaffran S. Mechanisms of retinoic acid signaling during cardiogenesis. Mech Dev. 2017;143:9–19.PubMedCrossRef
58.
go back to reference Zaffran S, Niederreither K. Retinoic acid signaling and heart development. The Retinoids: Biology, Biochemistry, and Disease. 2015 Mar 20:353-69. Zaffran S, Niederreither K. Retinoic acid signaling and heart development. The Retinoids: Biology, Biochemistry, and Disease. 2015 Mar 20:353-69.
59.
go back to reference Chazaud C, Chambon P, Dollé P. Retinoic acid is required in the mouse embryo for left-right asymmetry determination and heart morphogenesis. Development. 1999;126:2589–96.PubMedCrossRef Chazaud C, Chambon P, Dollé P. Retinoic acid is required in the mouse embryo for left-right asymmetry determination and heart morphogenesis. Development. 1999;126:2589–96.PubMedCrossRef
60.
go back to reference Zile MH, Kostetskii I, Yuan S, Kostetskaia E, Amand TRS, Chen Y, Jiang W. Retinoid signaling is required to complete the vertebrate cardiac left/right asymmetry pathway. Dev Biol. 2000;223:323–38.PubMedCrossRef Zile MH, Kostetskii I, Yuan S, Kostetskaia E, Amand TRS, Chen Y, Jiang W. Retinoid signaling is required to complete the vertebrate cardiac left/right asymmetry pathway. Dev Biol. 2000;223:323–38.PubMedCrossRef
61.
go back to reference Moran R, Robin NH. Congenital heart defects. InEmery and Rimoin's Principles and Practice of Medical Genetics and Genomics 2020 Jan 1 (pp. 3-75). Academic Press. Moran R, Robin NH. Congenital heart defects. InEmery and Rimoin's Principles and Practice of Medical Genetics and Genomics 2020 Jan 1 (pp. 3-75). Academic Press.
62.
go back to reference Watson JN, Seagraves NJ. RNA-Seq analysis in an avian model of maternal phenylketonuria. Mol Genet Metab. 2019;126:23–9.PubMedCrossRef Watson JN, Seagraves NJ. RNA-Seq analysis in an avian model of maternal phenylketonuria. Mol Genet Metab. 2019;126:23–9.PubMedCrossRef
63.
go back to reference Malik S, Cleves MA, Honein MA, Romitti PA, Botto LD, Yang S, Hobbs CA, Study NBDP. Maternal smoking and congenital heart defects. Pediatrics. 2008;121:e810–6.CrossRef Malik S, Cleves MA, Honein MA, Romitti PA, Botto LD, Yang S, Hobbs CA, Study NBDP. Maternal smoking and congenital heart defects. Pediatrics. 2008;121:e810–6.CrossRef
64.
go back to reference Ferencz C, Loffredo CA, Correa-Villasenor A, Wilson PD. Categorization of cardiovascular malformations for risk factor analysis. Genetic and environmental risk factors of cardiac defects. 1997;5:12–28. Ferencz C, Loffredo CA, Correa-Villasenor A, Wilson PD. Categorization of cardiovascular malformations for risk factor analysis. Genetic and environmental risk factors of cardiac defects. 1997;5:12–28.
65.
go back to reference Alverson CJ, Strickland MJ, Gilboa SM, Correa A. Maternal smoking and congenital heart defects in the Baltimore-Washington Infant Study. Pediatrics. 2011;127:e647–53.PubMedCrossRef Alverson CJ, Strickland MJ, Gilboa SM, Correa A. Maternal smoking and congenital heart defects in the Baltimore-Washington Infant Study. Pediatrics. 2011;127:e647–53.PubMedCrossRef
66.
go back to reference Oster ME, Riehle-Colarusso T, Correa A. An update on cardiovascular malformations in congenital rubella syndrome. Birth Defects Res A. 2010;88:1–8.CrossRef Oster ME, Riehle-Colarusso T, Correa A. An update on cardiovascular malformations in congenital rubella syndrome. Birth Defects Res A. 2010;88:1–8.CrossRef
67.
go back to reference Edwards MJ. Hyperthermia and fever during pregnancy. Birth Defects Res A. 2006;76:507–16.CrossRef Edwards MJ. Hyperthermia and fever during pregnancy. Birth Defects Res A. 2006;76:507–16.CrossRef
68.
go back to reference Ruffing L. Evalulation of thalidomide children. Birth Defects Orig Artic Ser. 1977;13:287–300.PubMed Ruffing L. Evalulation of thalidomide children. Birth Defects Orig Artic Ser. 1977;13:287–300.PubMed
69.
go back to reference Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, Yamaguchi Y, Handa H. Identification of a primary target of thalidomide teratogenicity. science. 2010 Mar 12;327(5971):1345-50. Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, Yamaguchi Y, Handa H. Identification of a primary target of thalidomide teratogenicity. science. 2010 Mar 12;327(5971):1345-50.
70.
go back to reference Donovan KA, An J, Nowak RP, Yuan JC, Fink EC, Berry BC, Ebert BL, Fischer ES. Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray syndrome. Elife. 2018;7: e38430.PubMedPubMedCentralCrossRef Donovan KA, An J, Nowak RP, Yuan JC, Fink EC, Berry BC, Ebert BL, Fischer ES. Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray syndrome. Elife. 2018;7: e38430.PubMedPubMedCentralCrossRef
71.
go back to reference Matyskiela ME, Couto S, Zheng X, Lu G, Hui J, Stamp K, Drew C, Ren Y, Wang M, Carpenter A. SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate. Nat Chem Biol. 2018;14:981–7.PubMedCrossRef Matyskiela ME, Couto S, Zheng X, Lu G, Hui J, Stamp K, Drew C, Ren Y, Wang M, Carpenter A. SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate. Nat Chem Biol. 2018;14:981–7.PubMedCrossRef
72.
go back to reference Sakaki-Yumoto M, Kobayashi C, Sato A, Fujimura S, Matsumoto Y, Takasato M, Kodama T, Aburatani H, Asashima M, Yoshida N, Nishinakamura R. The murine homolog of SALL4, a causative gene in Okihiro syndrome, is essential for embryonic stem cell proliferation, and cooperates with Sall1 in anorectal, heart, brain and kidney development. Sakaki-Yumoto M, Kobayashi C, Sato A, Fujimura S, Matsumoto Y, Takasato M, Kodama T, Aburatani H, Asashima M, Yoshida N, Nishinakamura R. The murine homolog of SALL4, a causative gene in Okihiro syndrome, is essential for embryonic stem cell proliferation, and cooperates with Sall1 in anorectal, heart, brain and kidney development.
73.
go back to reference Patorno E, Huybrechts KF, Bateman BT, Cohen JM, Desai RJ, Mogun H, Cohen LS, Hernandez-Diaz S. Lithium use in pregnancy and the risk of cardiac malformations. N Engl J Med. 2017;376:2245–54.PubMedPubMedCentralCrossRef Patorno E, Huybrechts KF, Bateman BT, Cohen JM, Desai RJ, Mogun H, Cohen LS, Hernandez-Diaz S. Lithium use in pregnancy and the risk of cardiac malformations. N Engl J Med. 2017;376:2245–54.PubMedPubMedCentralCrossRef
74.
go back to reference Stambolic V, Ruel L, Woodgett JR. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol. 1996;6:1664–9.PubMedCrossRef Stambolic V, Ruel L, Woodgett JR. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol. 1996;6:1664–9.PubMedCrossRef
75.
go back to reference Ruiz-Villalba A, Hoppler S, van den Hoff MJ. Wnt signaling in the heart fields: variations on a common theme. Dev Dyn. 2016;245:294–306.PubMedCrossRef Ruiz-Villalba A, Hoppler S, van den Hoff MJ. Wnt signaling in the heart fields: variations on a common theme. Dev Dyn. 2016;245:294–306.PubMedCrossRef
76.
go back to reference Gao S-Y, Wu Q-J, Sun C, Zhang T-N, Shen Z-Q, Liu C-X, Gong T-T, Xu X, Ji C, Huang D-H. Selective serotonin reuptake inhibitor use during early pregnancy and congenital malformations: a systematic review and meta-analysis of cohort studies of more than 9 million births. BMC Med. 2018;16:1–14.CrossRef Gao S-Y, Wu Q-J, Sun C, Zhang T-N, Shen Z-Q, Liu C-X, Gong T-T, Xu X, Ji C, Huang D-H. Selective serotonin reuptake inhibitor use during early pregnancy and congenital malformations: a systematic review and meta-analysis of cohort studies of more than 9 million births. BMC Med. 2018;16:1–14.CrossRef
77.
go back to reference Choi D-S, Ward SJ, Messaddeq N, Launay J-M, Maroteaux L. 5-HT2B receptor-mediated serotonin morphogenetic functions in mouse cranial neural crest and myocardiac cells. Development. 1997;124:1745–55.PubMedCrossRef Choi D-S, Ward SJ, Messaddeq N, Launay J-M, Maroteaux L. 5-HT2B receptor-mediated serotonin morphogenetic functions in mouse cranial neural crest and myocardiac cells. Development. 1997;124:1745–55.PubMedCrossRef
78.
go back to reference Cresci M, Foffa I, Ait-Ali L, Pulignani S, Gianicolo EAL, Botto N, Picano E, Andreassi MG. Maternal and paternal environmental risk factors, metabolizing GSTM1 and GSTT1 polymorphisms, and congenital heart disease. Am J Cardiol. 2011;108:1625–31.PubMedCrossRef Cresci M, Foffa I, Ait-Ali L, Pulignani S, Gianicolo EAL, Botto N, Picano E, Andreassi MG. Maternal and paternal environmental risk factors, metabolizing GSTM1 and GSTT1 polymorphisms, and congenital heart disease. Am J Cardiol. 2011;108:1625–31.PubMedCrossRef
79.
go back to reference Waller DK, Mills JL, Simpson JL, Cunningham GC, Conley MR, Lassman MR, Rhoads GG. Are obese women at higher risk for producing malformed offspring? Am J Obstet Gynecol. 1994;170:541–8.PubMedCrossRef Waller DK, Mills JL, Simpson JL, Cunningham GC, Conley MR, Lassman MR, Rhoads GG. Are obese women at higher risk for producing malformed offspring? Am J Obstet Gynecol. 1994;170:541–8.PubMedCrossRef
80.
go back to reference Guelinckx I, Devlieger R, Beckers K, Vansant G. Maternal obesity: pregnancy complications, gestational weight gain and nutrition. Obes Rev. 2008;9:140–50.PubMedCrossRef Guelinckx I, Devlieger R, Beckers K, Vansant G. Maternal obesity: pregnancy complications, gestational weight gain and nutrition. Obes Rev. 2008;9:140–50.PubMedCrossRef
81.
go back to reference Stothard KJ, Tennant PW, Bell R, Rankin J. Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis. JAMA. 2009;301:636–50.PubMedCrossRef Stothard KJ, Tennant PW, Bell R, Rankin J. Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis. JAMA. 2009;301:636–50.PubMedCrossRef
82.
go back to reference Liu S, Liu J, Tang J, Ji J, Chen J, Liu C. Environmental risk factors for congenital heart disease in the Shandong Peninsula, China: a hospital-based case–control study. J Epidemiol. 2009;19:122–30.PubMedPubMedCentralCrossRef Liu S, Liu J, Tang J, Ji J, Chen J, Liu C. Environmental risk factors for congenital heart disease in the Shandong Peninsula, China: a hospital-based case–control study. J Epidemiol. 2009;19:122–30.PubMedPubMedCentralCrossRef
83.
go back to reference Botto LD, Mulinare J, Erickson JD. Occurrence of congenital heart defects in relation to maternal multivitamin use. Am J Epidemiol. 2000;151:878–84.PubMedCrossRef Botto LD, Mulinare J, Erickson JD. Occurrence of congenital heart defects in relation to maternal multivitamin use. Am J Epidemiol. 2000;151:878–84.PubMedCrossRef
84.
go back to reference Ramakrishnan A, Lee LJ, Mitchell LE, Agopian AJ. Maternal hypertension during pregnancy and the risk of congenital heart defects in offspring: a systematic review and meta-analysis. Pediatr Cardiol. 2015;36:1442–51.PubMedPubMedCentralCrossRef Ramakrishnan A, Lee LJ, Mitchell LE, Agopian AJ. Maternal hypertension during pregnancy and the risk of congenital heart defects in offspring: a systematic review and meta-analysis. Pediatr Cardiol. 2015;36:1442–51.PubMedPubMedCentralCrossRef
85.
go back to reference Clark EB. Pathogenetic mechanisms of congenital cardiovascular malformations revisited. InSeminars in perinatology 1996 Dec 1 (Vol. 20, No. 6, pp. 465-472). WB Saunders. Clark EB. Pathogenetic mechanisms of congenital cardiovascular malformations revisited. InSeminars in perinatology 1996 Dec 1 (Vol. 20, No. 6, pp. 465-472). WB Saunders.
86.
go back to reference Peng J, Meng Z, Zhou S, Zhou Y, Wu Y, Wang Q, Wang J, Sun K. The non-genetic paternal factors for congenital heart defects: a systematic review and meta-analysis. Clin Cardiol. 2019;42:684–91.PubMedPubMedCentralCrossRef Peng J, Meng Z, Zhou S, Zhou Y, Wu Y, Wang Q, Wang J, Sun K. The non-genetic paternal factors for congenital heart defects: a systematic review and meta-analysis. Clin Cardiol. 2019;42:684–91.PubMedPubMedCentralCrossRef
87.
go back to reference Snijder CA, Vlot IJ, Burdorf A, Obermann-Borst SA, Helbing WA, Wildhagen MF, Steegers EA, Steegers-Theunissen RP. Congenital heart defects and parental occupational exposure to chemicals. Hum Reprod. 2012;27:1510–7.PubMedCrossRef Snijder CA, Vlot IJ, Burdorf A, Obermann-Borst SA, Helbing WA, Wildhagen MF, Steegers EA, Steegers-Theunissen RP. Congenital heart defects and parental occupational exposure to chemicals. Hum Reprod. 2012;27:1510–7.PubMedCrossRef
88.
go back to reference Nie ZQ, Ou YQ, Chen JM, Liu XQ, Mai JZ, Gao XM, Wu Y, Zhuang J. Risk factors of congenital heart defects in fetal and infants born from 2004 to 2011 in Guangdong. Zhonghua Xin Xue Guan Bing Za Zhi. 2013;41:704–8.PubMed Nie ZQ, Ou YQ, Chen JM, Liu XQ, Mai JZ, Gao XM, Wu Y, Zhuang J. Risk factors of congenital heart defects in fetal and infants born from 2004 to 2011 in Guangdong. Zhonghua Xin Xue Guan Bing Za Zhi. 2013;41:704–8.PubMed
89.
go back to reference Obermann-Borst SA, van Driel LM, Helbing WA, de Jonge R, Wildhagen MF, Steegers EA, Steegers-Theunissen RP. Congenital heart defects and biomarkers of methylation in children: a case–control study. Eur J Clin Invest. 2011;41:143–50.PubMedCrossRef Obermann-Borst SA, van Driel LM, Helbing WA, de Jonge R, Wildhagen MF, Steegers EA, Steegers-Theunissen RP. Congenital heart defects and biomarkers of methylation in children: a case–control study. Eur J Clin Invest. 2011;41:143–50.PubMedCrossRef
91.
go back to reference Sheng W, Qian Y, Zhang P, Wu Y, Wang H, Ma X, Chen L, Ma D, Huang G. Association of promoter methylation statuses of congenital heart defect candidate genes with tetralogy of Fallot. J Transl Med. 2014;12:1–9.CrossRef Sheng W, Qian Y, Zhang P, Wu Y, Wang H, Ma X, Chen L, Ma D, Huang G. Association of promoter methylation statuses of congenital heart defect candidate genes with tetralogy of Fallot. J Transl Med. 2014;12:1–9.CrossRef
92.
go back to reference Joshi RO, Chellappan S, Kukshal P. Exploring the role of maternal nutritional epigenetics in congenital heart disease. Current Developments in Nutrition. 2020 Nov;4(11):nzaa166. Joshi RO, Chellappan S, Kukshal P. Exploring the role of maternal nutritional epigenetics in congenital heart disease. Current Developments in Nutrition. 2020 Nov;4(11):nzaa166.
94.
go back to reference Zhu C, Yu Z-B, Chen X-H, Ji C-B, Qian L-M, Han S-P. DNA hypermethylation of the NOX5 gene in fetal ventricular septal defect. Exp Ther Med. 2011;2:1011–5.PubMedPubMedCentralCrossRef Zhu C, Yu Z-B, Chen X-H, Ji C-B, Qian L-M, Han S-P. DNA hypermethylation of the NOX5 gene in fetal ventricular septal defect. Exp Ther Med. 2011;2:1011–5.PubMedPubMedCentralCrossRef
95.
go back to reference Lickert H, Takeuchi JK, Von Both I, Walls JR, McAuliffe F, Lee Adamson S, Mark Henkelman R, Wrana JL, Rossant J, Bruneau BG. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature. 2004;432:107–12.PubMedCrossRef Lickert H, Takeuchi JK, Von Both I, Walls JR, McAuliffe F, Lee Adamson S, Mark Henkelman R, Wrana JL, Rossant J, Bruneau BG. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature. 2004;432:107–12.PubMedCrossRef
96.
go back to reference Gottlieb PD, Pierce SA, Sims RJ, Yamagishi H, Weihe EK, Harriss JV, Maika SD, Kuziel WA, King HL, Olson EN. Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nat Genet. 2002;31:25–32.PubMedCrossRef Gottlieb PD, Pierce SA, Sims RJ, Yamagishi H, Weihe EK, Harriss JV, Maika SD, Kuziel WA, King HL, Olson EN. Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nat Genet. 2002;31:25–32.PubMedCrossRef
98.
99.
go back to reference Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005;436:214–20.PubMedCrossRef Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005;436:214–20.PubMedCrossRef
100.
go back to reference Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ, Srivastava D. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell. 2007;129:303–17.PubMedCrossRef Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ, Srivastava D. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell. 2007;129:303–17.PubMedCrossRef
101.
go back to reference Wu Y, Ma X-J, Wang H-J, Li W-C, Chen L, Ma D, Huang G-Y. Expression of Cx43-related microRNAs in patients with tetralogy of Fallot. World Journal of Pediatrics. 2014;10:138–44.PubMedCrossRef Wu Y, Ma X-J, Wang H-J, Li W-C, Chen L, Ma D, Huang G-Y. Expression of Cx43-related microRNAs in patients with tetralogy of Fallot. World Journal of Pediatrics. 2014;10:138–44.PubMedCrossRef
102.
go back to reference Liang D, Xu X, Deng F, Feng J, Zhang H, Liu Y, Zhang Y, Pan L, Liu Y, Zhang D. mi RNA-940 reduction contributes to human tetralogy of Fallot development. J Cell Mol Med. 2014;18:1830–9.PubMedPubMedCentralCrossRef Liang D, Xu X, Deng F, Feng J, Zhang H, Liu Y, Zhang Y, Pan L, Liu Y, Zhang D. mi RNA-940 reduction contributes to human tetralogy of Fallot development. J Cell Mol Med. 2014;18:1830–9.PubMedPubMedCentralCrossRef
103.
go back to reference Sucharov CC, Sucharov J, Karimpour-Fard A, Nunley K, Stauffer BL, Miyamoto SD. Micro-RNA expression in hypoplastic left heart syndrome. J Cardiac Fail. 2015;21:83–8.CrossRef Sucharov CC, Sucharov J, Karimpour-Fard A, Nunley K, Stauffer BL, Miyamoto SD. Micro-RNA expression in hypoplastic left heart syndrome. J Cardiac Fail. 2015;21:83–8.CrossRef
104.
go back to reference Li D, Ji L, Liu L, Liu Y, Hou H, Yu K, Sun Q, Zhao Z. Characterization of circulating microRNA expression in patients with a ventricular septal defect. PLoS ONE. 2014;9: e106318.PubMedPubMedCentralCrossRef Li D, Ji L, Liu L, Liu Y, Hou H, Yu K, Sun Q, Zhao Z. Characterization of circulating microRNA expression in patients with a ventricular septal defect. PLoS ONE. 2014;9: e106318.PubMedPubMedCentralCrossRef
105.
go back to reference Li J, Cao Y, Ma X, Wang H, Zhang J, Luo X, Chen W, Wu Y, Meng Y, Zhang J. Roles of miR-1-1 and miR-181c in ventricular septal defects. Int J Cardiol. 2013;168:1441–6.PubMedCrossRef Li J, Cao Y, Ma X, Wang H, Zhang J, Luo X, Chen W, Wu Y, Meng Y, Zhang J. Roles of miR-1-1 and miR-181c in ventricular septal defects. Int J Cardiol. 2013;168:1441–6.PubMedCrossRef
106.
go back to reference Song Y, Higgins H, Guo J, Harrison K, Schultz EN, Hales BJ, Moses EK, Goldblatt J, Pachter N, Zhang G. Clinical significance of circulating microRNAs as markers in detecting and predicting congenital heart defects in children. J Transl Med. 2018;16:1–11.CrossRef Song Y, Higgins H, Guo J, Harrison K, Schultz EN, Hales BJ, Moses EK, Goldblatt J, Pachter N, Zhang G. Clinical significance of circulating microRNAs as markers in detecting and predicting congenital heart defects in children. J Transl Med. 2018;16:1–11.CrossRef
107.
go back to reference Song H, Sun W, Ye G, Ding X, Liu Z, Zhang S, Xia T, Xiao B, Xi Y, Guo J. Long non-coding RNA expression profile in human gastric cancer and its clinical significances. J Transl Med. 2013;11:1–10.CrossRef Song H, Sun W, Ye G, Ding X, Liu Z, Zhang S, Xia T, Xiao B, Xi Y, Guo J. Long non-coding RNA expression profile in human gastric cancer and its clinical significances. J Transl Med. 2013;11:1–10.CrossRef
108.
go back to reference • Jiang C, Ding N, Li J, Jin X, Li L, Pan T, Huo C, Li Y, Xu J, Li X. Landscape of the long non-coding RNA transcriptome in human heart. Brief Bioinform. 2019;20:1812–25. This recent study first showed the global view of lncRNAs in human cardiovascular system based on multiples tissues and sheds light on the role of lncRNAs in carediogensis and cardiac disorders. • Jiang C, Ding N, Li J, Jin X, Li L, Pan T, Huo C, Li Y, Xu J, Li X. Landscape of the long non-coding RNA transcriptome in human heart. Brief Bioinform. 2019;20:1812–25. This recent study first showed the global view of lncRNAs in human cardiovascular system based on multiples tissues and sheds light on the role of lncRNAs in carediogensis and cardiac disorders.
109.
go back to reference Dueñas A, Expósito A, Aranega A, Franco D. The role of non-coding RNA in congenital heart diseases. Journal of cardiovascular development and disease. 2019;6:15.PubMedPubMedCentralCrossRef Dueñas A, Expósito A, Aranega A, Franco D. The role of non-coding RNA in congenital heart diseases. Journal of cardiovascular development and disease. 2019;6:15.PubMedPubMedCentralCrossRef
110.
go back to reference Zhu S, Cao L, Zhu J, Kong L, Jin J, Qian L, Zhu C, Hu X, Li M, Guo X. Identification of maternal serum microRNAs as novel non-invasive biomarkers for prenatal detection of fetal congenital heart defects. Clin Chim Acta. 2013;424:66–72.PubMedCrossRef Zhu S, Cao L, Zhu J, Kong L, Jin J, Qian L, Zhu C, Hu X, Li M, Guo X. Identification of maternal serum microRNAs as novel non-invasive biomarkers for prenatal detection of fetal congenital heart defects. Clin Chim Acta. 2013;424:66–72.PubMedCrossRef
111.
go back to reference Gu H, Chen L, Xue J, Huang T, Wei X, Liu D, Ma W, Cao S, Yuan Z. Expression profile of maternal circulating microRNAs as non-invasive biomarkers for prenatal diagnosis of congenital heart defects. Biomed Pharmacother. 2019;109:823–30.PubMedCrossRef Gu H, Chen L, Xue J, Huang T, Wei X, Liu D, Ma W, Cao S, Yuan Z. Expression profile of maternal circulating microRNAs as non-invasive biomarkers for prenatal diagnosis of congenital heart defects. Biomed Pharmacother. 2019;109:823–30.PubMedCrossRef
112.
go back to reference Lin H, McBride KL, Garg V, Zhao MT. Decoding genetics of congenital heart disease using patient-derived induced pluripotent stem cells (iPSCs). Frontiers in Cell and Developmental Biology. 2021 Jan 21;9:630069. Lin H, McBride KL, Garg V, Zhao MT. Decoding genetics of congenital heart disease using patient-derived induced pluripotent stem cells (iPSCs). Frontiers in Cell and Developmental Biology. 2021 Jan 21;9:630069.
113.
go back to reference Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA, Rothrock CR, Eapen RS, Hirayama-Yamada K, Joo K. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2003;424:443–7.PubMedCrossRef Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA, Rothrock CR, Eapen RS, Hirayama-Yamada K, Joo K. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2003;424:443–7.PubMedCrossRef
114.
go back to reference Ang Y-S, Rivas RN, Ribeiro AJ, Srivas R, Rivera J, Stone NR, Pratt K, Mohamed TM, Fu J-D, Spencer CI. Disease model of GATA4 mutation reveals transcription factor cooperativity in human cardiogenesis. Cell. 2016;167:1734–49.PubMedPubMedCentralCrossRef Ang Y-S, Rivas RN, Ribeiro AJ, Srivas R, Rivera J, Stone NR, Pratt K, Mohamed TM, Fu J-D, Spencer CI. Disease model of GATA4 mutation reveals transcription factor cooperativity in human cardiogenesis. Cell. 2016;167:1734–49.PubMedPubMedCentralCrossRef
115.
go back to reference Hrstka SC, Li X, Nelson TJ, Group WPGP. NOTCH1-dependent nitric oxide signaling deficiency in hypoplastic left heart syndrome revealed through patient-specific phenotypes detected in bioengineered cardiogenesis. Stem Cells. 2017;35:1106–19.CrossRef Hrstka SC, Li X, Nelson TJ, Group WPGP. NOTCH1-dependent nitric oxide signaling deficiency in hypoplastic left heart syndrome revealed through patient-specific phenotypes detected in bioengineered cardiogenesis. Stem Cells. 2017;35:1106–19.CrossRef
116.
go back to reference Rufaihah AJ, Chen CK, Yap CH, Mattar CN. Mending a broken heart: In vitro, in vivo and in silico models of congenital heart disease. Disease Models & Mechanisms. 2021 Mar 1;14(3):dmm047522. Rufaihah AJ, Chen CK, Yap CH, Mattar CN. Mending a broken heart: In vitro, in vivo and in silico models of congenital heart disease. Disease Models & Mechanisms. 2021 Mar 1;14(3):dmm047522.
117.
go back to reference Miao Y, Tian L, Martin M, Paige SL, Galdos FX, Li J, Klein A, Zhang H, Ma N, Wei Y. Intrinsic endocardial defects contribute to hypoplastic left heart syndrome. Cell Stem Cell. 2020;27:574–89.PubMedPubMedCentralCrossRef Miao Y, Tian L, Martin M, Paige SL, Galdos FX, Li J, Klein A, Zhang H, Ma N, Wei Y. Intrinsic endocardial defects contribute to hypoplastic left heart syndrome. Cell Stem Cell. 2020;27:574–89.PubMedPubMedCentralCrossRef
118.
go back to reference Grunert M, Appelt S, Schönhals S, Mika K, Cui H, Cooper A, Cyganek L, Guan K, Sperling SR. Induced pluripotent stem cells of patients with tetralogy of Fallot reveal transcriptional alterations in cardiomyocyte differentiation. Sci Rep. 2020;10:1–11.CrossRef Grunert M, Appelt S, Schönhals S, Mika K, Cui H, Cooper A, Cyganek L, Guan K, Sperling SR. Induced pluripotent stem cells of patients with tetralogy of Fallot reveal transcriptional alterations in cardiomyocyte differentiation. Sci Rep. 2020;10:1–11.CrossRef
119.
go back to reference Han S, Zhang Y, Meng M, Hou Z, Meng P, Zhao Y, Gao H, Tang J, Liu Z, Yang L. Generation of human iPSC line from a patient with tetralogy of Fallot, YAHKMUi001-A, carrying a mutation in TBX1 gene. Stem Cell Research. 2020;42: 101687.PubMedCrossRef Han S, Zhang Y, Meng M, Hou Z, Meng P, Zhao Y, Gao H, Tang J, Liu Z, Yang L. Generation of human iPSC line from a patient with tetralogy of Fallot, YAHKMUi001-A, carrying a mutation in TBX1 gene. Stem Cell Research. 2020;42: 101687.PubMedCrossRef
120.
go back to reference Mikryukov AA, Mazine A, Wei B, Yang D, Miao Y, Gu M, Keller GM. BMP10 signaling promotes the development of endocardial cells from human pluripotent stem cell-derived cardiovascular progenitors. Cell Stem Cell. 2021;28:96–111.PubMedCrossRef Mikryukov AA, Mazine A, Wei B, Yang D, Miao Y, Gu M, Keller GM. BMP10 signaling promotes the development of endocardial cells from human pluripotent stem cell-derived cardiovascular progenitors. Cell Stem Cell. 2021;28:96–111.PubMedCrossRef
121.
go back to reference Jin SC, Homsy J, Zaidi S, Lu Q, Morton S, DePalma SR, Zeng X, Qi H, Chang W, Sierant MC. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat Genet. 2017;49:1593–601.PubMedPubMedCentralCrossRef Jin SC, Homsy J, Zaidi S, Lu Q, Morton S, DePalma SR, Zeng X, Qi H, Chang W, Sierant MC. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat Genet. 2017;49:1593–601.PubMedPubMedCentralCrossRef
122.
go back to reference Watkins WS, Hernandez EJ, Wesolowski S, Bisgrove BW, Sunderland RT, Lin E, Lemmon G, Demarest BL, Miller TA, Bernstein D. De novo and recessive forms of congenital heart disease have distinct genetic and phenotypic landscapes. Nat Commun. 2019;10:1–12.CrossRef Watkins WS, Hernandez EJ, Wesolowski S, Bisgrove BW, Sunderland RT, Lin E, Lemmon G, Demarest BL, Miller TA, Bernstein D. De novo and recessive forms of congenital heart disease have distinct genetic and phenotypic landscapes. Nat Commun. 2019;10:1–12.CrossRef
123.
go back to reference Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J, Overton JD, Romano-Adesman A, Bjornson RD, Breitbart RE, Brown KK. De novo mutations in histone-modifying genes in congenital heart disease. Nature. 2013;498:220–3.PubMedPubMedCentralCrossRef Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J, Overton JD, Romano-Adesman A, Bjornson RD, Breitbart RE, Brown KK. De novo mutations in histone-modifying genes in congenital heart disease. Nature. 2013;498:220–3.PubMedPubMedCentralCrossRef
124.
go back to reference Li Y-J, Yang Y-Q. An update on the molecular diagnosis of congenital heart disease: focus on loss-of-function mutations. Expert Rev Mol Diagn. 2017;17:393–401.PubMedCrossRef Li Y-J, Yang Y-Q. An update on the molecular diagnosis of congenital heart disease: focus on loss-of-function mutations. Expert Rev Mol Diagn. 2017;17:393–401.PubMedCrossRef
125.
go back to reference Sifrim A, Hitz M-P, Wilsdon A, Breckpot J, Al Turki SH, Thienpont B, McRae J, Fitzgerald TW, Singh T, Swaminathan GJ. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nat Genet. 2016;48:1060–5.PubMedPubMedCentralCrossRef Sifrim A, Hitz M-P, Wilsdon A, Breckpot J, Al Turki SH, Thienpont B, McRae J, Fitzgerald TW, Singh T, Swaminathan GJ. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nat Genet. 2016;48:1060–5.PubMedPubMedCentralCrossRef
126.
go back to reference Fu F, Li R, Li Y, Nie Z-Q, Lei T, Wang D, Yang X, Han J, Pan M, Zhen L. Whole exome sequencing as a diagnostic adjunct to clinical testing in fetuses with structural abnormalities. Ultrasound Obstet Gynecol. 2018;51:493–502.PubMedCrossRef Fu F, Li R, Li Y, Nie Z-Q, Lei T, Wang D, Yang X, Han J, Pan M, Zhen L. Whole exome sequencing as a diagnostic adjunct to clinical testing in fetuses with structural abnormalities. Ultrasound Obstet Gynecol. 2018;51:493–502.PubMedCrossRef
127.
go back to reference Drury S, Williams H, Trump N, Boustred C, GOSGene, Lench N, Scott RH, Chitty LS,. Exome sequencing for prenatal diagnosis of fetuses with sonographic abnormalities. Prenat Diagn. 2015;35:1010–7.PubMedCrossRef Drury S, Williams H, Trump N, Boustred C, GOSGene, Lench N, Scott RH, Chitty LS,. Exome sequencing for prenatal diagnosis of fetuses with sonographic abnormalities. Prenat Diagn. 2015;35:1010–7.PubMedCrossRef
128.
go back to reference Verma SK, Deshmukh V, Nutter CA, Jaworski E, Jin W, Wadhwa L, Abata J, Ricci M, Lincoln J, Martin JF. Rbfox2 function in RNA metabolism is impaired in hypoplastic left heart syndrome patient hearts. Sci Rep. 2016;6:1–10.CrossRef Verma SK, Deshmukh V, Nutter CA, Jaworski E, Jin W, Wadhwa L, Abata J, Ricci M, Lincoln J, Martin JF. Rbfox2 function in RNA metabolism is impaired in hypoplastic left heart syndrome patient hearts. Sci Rep. 2016;6:1–10.CrossRef
129.
go back to reference Homsy J, Zaidi S, Shen Y, Ware JS, Samocha KE, Karczewski KJ, DePalma SR, McKean D, Wakimoto H, Gorham J. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science. 2015;350:1262–6.PubMedPubMedCentralCrossRef Homsy J, Zaidi S, Shen Y, Ware JS, Samocha KE, Karczewski KJ, DePalma SR, McKean D, Wakimoto H, Gorham J. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science. 2015;350:1262–6.PubMedPubMedCentralCrossRef
130.
go back to reference Liu Y, Chang X, Glessner J, Qu H, Tian L, Li D, Nguyen K, Sleiman PM, Hakonarson H. Association of rare recurrent copy number variants with congenital heart defects based on next-generation sequencing data from family trios. Front Genet. 2019;10:819.PubMedPubMedCentralCrossRef Liu Y, Chang X, Glessner J, Qu H, Tian L, Li D, Nguyen K, Sleiman PM, Hakonarson H. Association of rare recurrent copy number variants with congenital heart defects based on next-generation sequencing data from family trios. Front Genet. 2019;10:819.PubMedPubMedCentralCrossRef
131.
go back to reference Wang W, Niu Z, Wang Y, Li Y, Zou H, Yang L, Meng M, Wei C, Li Q, Duan L. Comparative transcriptome analysis of atrial septal defect identifies dysregulated genes during heart septum morphogenesis. Gene. 2016;575:303–12.PubMedCrossRef Wang W, Niu Z, Wang Y, Li Y, Zou H, Yang L, Meng M, Wei C, Li Q, Duan L. Comparative transcriptome analysis of atrial septal defect identifies dysregulated genes during heart septum morphogenesis. Gene. 2016;575:303–12.PubMedCrossRef
132.
go back to reference Matos-Nieves A, Manivannan S, Majumdar U, McBride KL, White P, Garg V. A multi-omics approach using a mouse model of cardiac malformations for prioritization of human congenital heart disease contributing genes. Frontiers in cardiovascular medicine. 2021;8: 683074.PubMedPubMedCentralCrossRef Matos-Nieves A, Manivannan S, Majumdar U, McBride KL, White P, Garg V. A multi-omics approach using a mouse model of cardiac malformations for prioritization of human congenital heart disease contributing genes. Frontiers in cardiovascular medicine. 2021;8: 683074.PubMedPubMedCentralCrossRef
133.
go back to reference Silversides CK, Lionel AC, Costain G, Merico D, Migita O, Liu B, Yuen T, Rickaby J, Thiruvahindrapuram B, Marshall CR, Scherer SW. Rare copy number variations in adults with tetralogy of Fallot implicate novel risk gene pathways. Silversides CK, Lionel AC, Costain G, Merico D, Migita O, Liu B, Yuen T, Rickaby J, Thiruvahindrapuram B, Marshall CR, Scherer SW. Rare copy number variations in adults with tetralogy of Fallot implicate novel risk gene pathways.
134.
go back to reference Tomita-Mitchell A, Mahnke DK, Struble CA, Tuffnell ME, Stamm KD, Hidestrand M, Harris SE, Goetsch MA, Simpson PM, Bick DP. Human gene copy number spectra analysis in congenital heart malformations. Physiol Genomics. 2012;44:518–41.PubMedPubMedCentralCrossRef Tomita-Mitchell A, Mahnke DK, Struble CA, Tuffnell ME, Stamm KD, Hidestrand M, Harris SE, Goetsch MA, Simpson PM, Bick DP. Human gene copy number spectra analysis in congenital heart malformations. Physiol Genomics. 2012;44:518–41.PubMedPubMedCentralCrossRef
Metadata
Title
Understanding the Genetic and Non-genetic Interconnections in the Aetiology of Isolated Congenital Heart Disease: An Updated Review: Part 1
Authors
Jyoti Maddhesiya
Bhagyalaxmi Mohapatra
Publication date
28-03-2024
Publisher
Springer US
Published in
Current Cardiology Reports / Issue 3/2024
Print ISSN: 1523-3782
Electronic ISSN: 1534-3170
DOI
https://doi.org/10.1007/s11886-024-02022-9

Other articles of this Issue 3/2024

Current Cardiology Reports 3/2024 Go to the issue

Myocardial Disease (A Abbate and M Merlo, Section Editors)

Fulminant Myocarditis Temporally Associated with COVID-19 Vaccination

Hypertension (DS Geller and DL Cohen, Section Editors)

What role does our diet play in hypertension?