Skip to main content
Top
Published in: Current Atherosclerosis Reports 5/2015

01-05-2015 | Vascular Biology (T Hla, Section Editor)

Sphingosine-1-Phosphate Receptor Subtype 2 Signaling in Endothelial Senescence-Associated Functional Impairments and Inflammation

Authors: Jiawei Zhao, Dante Garcia, Allison Gartung, Menq-Jer Lee

Published in: Current Atherosclerosis Reports | Issue 5/2015

Login to get access

Abstract

Endothelial inflammation is an important risk factor in the initiation and development of vascular disease. Therefore, signaling cascades and patho-physiological outcomes of endothelial inflammation are important questions in vascular biology. Recent studies suggest that sphingosine-1-phosphate receptor subtype 2 (S1PR2) signaling in endothelial cells (ECs) play a critical role in endothelial inflammation. For example, ECs present in atherosclerotic plaques exhibit senescence phenotype. Levels of S1PR2 are markedly increased in cultured senescent ECs and in lesion regions of atherosclerotic endothelium. Also, inflammatory cytokines and mechanical flow stress profoundly increase S1PR2 levels in ECs. Inhibition of endothelial S1PR2 signaling diminishes endothelial senescence-associated functional impairments and atherogenic stimuli-induced endothelial activation. In contrast, activation of endothelial S1PR2 stimulates the production of pro-inflammatory chemokines/cytokines and lipid mediators in ECs. In this article, we will review signaling and functions of sphingosine-1-phosphate (S1P) receptors in endothelial biology, with particular focus on endothelial S1PR2 signaling-mediated endothelial inflammation.
Literature
1.
go back to reference Spiegel S, Milstien S. Sphingosine-1-phosphate: signaling inside and out. FEBS Lett. 2000;476(1–2):55–7.CrossRefPubMed Spiegel S, Milstien S. Sphingosine-1-phosphate: signaling inside and out. FEBS Lett. 2000;476(1–2):55–7.CrossRefPubMed
3.
go back to reference Lee MJ, Van Brocklyn JR, Thangada S, Liu CH, Hand AR, Menzeleev R, et al. Sphingosine-1-phosphate as a ligand for the G protein coupled receptor EDG-1. Science. 1998;279(5356):1552–5.CrossRefPubMed Lee MJ, Van Brocklyn JR, Thangada S, Liu CH, Hand AR, Menzeleev R, et al. Sphingosine-1-phosphate as a ligand for the G protein coupled receptor EDG-1. Science. 1998;279(5356):1552–5.CrossRefPubMed
4.
go back to reference An S, Bleu T, Huang W, Hallmark OG, Coughlin SR, Goetzl EJ. Identification of cDNAs encoding two G protein-coupled receptors for lysosphingolipids. FEBS Lett. 1997;417(3):279–82.CrossRefPubMed An S, Bleu T, Huang W, Hallmark OG, Coughlin SR, Goetzl EJ. Identification of cDNAs encoding two G protein-coupled receptors for lysosphingolipids. FEBS Lett. 1997;417(3):279–82.CrossRefPubMed
5.
go back to reference Zondag GC, Postma FR, Etten IV, Verlaan I, Moolenaar WH. Sphingosine 1-phosphate signalling through the G-protein-coupled receptor Edg-1. Biochem J. 1998;330(2):605–9.PubMedCentralPubMed Zondag GC, Postma FR, Etten IV, Verlaan I, Moolenaar WH. Sphingosine 1-phosphate signalling through the G-protein-coupled receptor Edg-1. Biochem J. 1998;330(2):605–9.PubMedCentralPubMed
7.
go back to reference Spiegel S. Sphingosine 1-phosphate: a prototype of a new class of second messengers. J Leukoc Biol. 1999;65(3):341–4.PubMed Spiegel S. Sphingosine 1-phosphate: a prototype of a new class of second messengers. J Leukoc Biol. 1999;65(3):341–4.PubMed
8.
go back to reference Moolenaar WH. Bioactive lysophospholipids and their G protein-coupled receptors. Exp Cell Res. 1999;253(1):230–8.CrossRefPubMed Moolenaar WH. Bioactive lysophospholipids and their G protein-coupled receptors. Exp Cell Res. 1999;253(1):230–8.CrossRefPubMed
9.
go back to reference Igarashi Y, Yatomi Y. Sphingosine 1-phosphate is a blood constituent released from activated platelets, possibly playing a variety of physiological and pathophysiological roles. Acta Biochim Pol. 1998;45(2):299–309.PubMed Igarashi Y, Yatomi Y. Sphingosine 1-phosphate is a blood constituent released from activated platelets, possibly playing a variety of physiological and pathophysiological roles. Acta Biochim Pol. 1998;45(2):299–309.PubMed
10.
go back to reference Hla T, Lee MJ, Ancellin N, Liu CH, Thangada S, Thompson BD, et al. Sphingosine-1-phosphate: extracellular mediator or intracellular second messenger? Biochem Pharmacol. 1999;58(2):201–7.CrossRefPubMed Hla T, Lee MJ, Ancellin N, Liu CH, Thangada S, Thompson BD, et al. Sphingosine-1-phosphate: extracellular mediator or intracellular second messenger? Biochem Pharmacol. 1999;58(2):201–7.CrossRefPubMed
13.
go back to reference An SZ, Goetz EJ, Lee HY. Signaling mechanisms and molecular characteristics of G protein-coupled receptors for lysophosphatidic acid and sphingosine 1-phosphate. J Cell Biochem. 1998;147–57. An SZ, Goetz EJ, Lee HY. Signaling mechanisms and molecular characteristics of G protein-coupled receptors for lysophosphatidic acid and sphingosine 1-phosphate. J Cell Biochem. 1998;147–57.
14.
go back to reference Chun J, Goetzl EJ, Hla T, Igarashi Y, Lynch KR, Moolenaar W, et al. International union of pharmacology. XXXIV. Lysophospholipid receptor nomenclature. Pharmacol Rev. 2002;54(2):265–9.CrossRefPubMed Chun J, Goetzl EJ, Hla T, Igarashi Y, Lynch KR, Moolenaar W, et al. International union of pharmacology. XXXIV. Lysophospholipid receptor nomenclature. Pharmacol Rev. 2002;54(2):265–9.CrossRefPubMed
15.
go back to reference Lee MJ, Thangada S, Claffey KP, Ancellin N, Liu CH, Kluk M, et al. Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell. 1999;99(3):301–12.CrossRefPubMed Lee MJ, Thangada S, Claffey KP, Ancellin N, Liu CH, Kluk M, et al. Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell. 1999;99(3):301–12.CrossRefPubMed
16.
go back to reference Estrada R, Zeng Q, Lu H, Sarojini H, Lee JF, Mathis SP, et al. Up-regulating sphingosine 1-phosphate receptor-2 signaling impairs chemotactic, wound-healing, and morphogenetic responses in senescent endothelial cells. J Biol Chem. 2008;283(44):30363–75. doi:10.1074/jbc.M804392200.CrossRefPubMedCentralPubMed Estrada R, Zeng Q, Lu H, Sarojini H, Lee JF, Mathis SP, et al. Up-regulating sphingosine 1-phosphate receptor-2 signaling impairs chemotactic, wound-healing, and morphogenetic responses in senescent endothelial cells. J Biol Chem. 2008;283(44):30363–75. doi:10.​1074/​jbc.​M804392200.CrossRefPubMedCentralPubMed
17.
go back to reference Eskan MA, Rose BG, Benakanakere MR, Lee MJ, Kinane DF. Sphingosine 1-phosphate 1 and TLR4 mediate IFN-beta expression in human gingival epithelial cells. J Immunol. 2008;180(3):1818–25.CrossRefPubMed Eskan MA, Rose BG, Benakanakere MR, Lee MJ, Kinane DF. Sphingosine 1-phosphate 1 and TLR4 mediate IFN-beta expression in human gingival epithelial cells. J Immunol. 2008;180(3):1818–25.CrossRefPubMed
18.
go back to reference Hsu A, Zhang W, Lee JF, An J, Ekambaram P, Liu J, et al. Sphingosine-1-phosphate receptor-3 signaling up-regulates epidermal growth factor receptor and enhances epidermal growth factor receptor-mediated carcinogenic activities in cultured lung adenocarcinoma cells. Int J Oncol. 2012;40(5):1619–26. doi:10.3892/ijo.2012.1379.PubMedCentralPubMed Hsu A, Zhang W, Lee JF, An J, Ekambaram P, Liu J, et al. Sphingosine-1-phosphate receptor-3 signaling up-regulates epidermal growth factor receptor and enhances epidermal growth factor receptor-mediated carcinogenic activities in cultured lung adenocarcinoma cells. Int J Oncol. 2012;40(5):1619–26. doi:10.​3892/​ijo.​2012.​1379.PubMedCentralPubMed
19.•
go back to reference Zhang W, Zhao J, Lee JF, Gartung A, Jawadi H, Lambiv WL, et al. ETS-1-mediated transcriptional up-regulation of CD44 is required for sphingosine-1-phosphate receptor subtype 3-stimulated chemotaxis. J Biol Chem. 2013;288(45):32126–37. doi:10.1074/jbc.M113.495218. This study characterized a novel ETS-1/CD44 pathway in S1P-stimulated chemotaxis.CrossRefPubMedCentralPubMed Zhang W, Zhao J, Lee JF, Gartung A, Jawadi H, Lambiv WL, et al. ETS-1-mediated transcriptional up-regulation of CD44 is required for sphingosine-1-phosphate receptor subtype 3-stimulated chemotaxis. J Biol Chem. 2013;288(45):32126–37. doi:10.​1074/​jbc.​M113.​495218. This study characterized a novel ETS-1/CD44 pathway in S1P-stimulated chemotaxis.CrossRefPubMedCentralPubMed
20.
go back to reference Lee MJ, Thangada S, Paik JH, Sapkota GP, Ancellin N, Chae SS, et al. Akt-mediated phosphorylation of the G protein-coupled receptor EDG-1 is required for endothelial cell chemotaxis. Mol Cell. 2001;8(3):693–704.CrossRefPubMed Lee MJ, Thangada S, Paik JH, Sapkota GP, Ancellin N, Chae SS, et al. Akt-mediated phosphorylation of the G protein-coupled receptor EDG-1 is required for endothelial cell chemotaxis. Mol Cell. 2001;8(3):693–704.CrossRefPubMed
22.
go back to reference Garcia JG, Liu F, Verin AD, Birukova A, Dechert MA, Gerthoffer WT, et al. Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement. J Clin Invest. 2001;108(5):689–701. doi:10.1172/jci12450.CrossRefPubMedCentralPubMed Garcia JG, Liu F, Verin AD, Birukova A, Dechert MA, Gerthoffer WT, et al. Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement. J Clin Invest. 2001;108(5):689–701. doi:10.​1172/​jci12450.CrossRefPubMedCentralPubMed
23.•
go back to reference Zhang W, An J, Jawadi H, Siow DL, Lee JF, Zhao J, et al. Sphingosine-1-phosphate receptor-2 mediated NFkappaB activation contributes to tumor necrosis factor-alpha induced VCAM-1 and ICAM-1 expression in endothelial cells. Prostaglandins Other Lipid Mediat. 2013;106:62–71. doi:10.1016/j.prostaglandins.2013.06.001. S1PR2 plays a key role in endothelial inflammation.CrossRefPubMed Zhang W, An J, Jawadi H, Siow DL, Lee JF, Zhao J, et al. Sphingosine-1-phosphate receptor-2 mediated NFkappaB activation contributes to tumor necrosis factor-alpha induced VCAM-1 and ICAM-1 expression in endothelial cells. Prostaglandins Other Lipid Mediat. 2013;106:62–71. doi:10.​1016/​j.​prostaglandins.​2013.​06.​001. S1PR2 plays a key role in endothelial inflammation.CrossRefPubMed
24.
go back to reference Van Brocklyn JR, Lee MJ, Menzeleev R, Olivera A, Edsall L, Cuvillier O, et al. Dual actions of sphingosine-1-phosphate: extracellular through the Gi-coupled receptor Edg-1 and intracellular to regulate proliferation and survival. J Cell Biol. 1998;142(1):229–40.CrossRefPubMedCentralPubMed Van Brocklyn JR, Lee MJ, Menzeleev R, Olivera A, Edsall L, Cuvillier O, et al. Dual actions of sphingosine-1-phosphate: extracellular through the Gi-coupled receptor Edg-1 and intracellular to regulate proliferation and survival. J Cell Biol. 1998;142(1):229–40.CrossRefPubMedCentralPubMed
25.
go back to reference Lee MJ, Evans M, Hla T. The inducible G protein-coupled receptor edg-1 signals via the G(i)/mitogen-activated protein kinase pathway. J Biol Chem. 1996;271(19):11272–9.CrossRefPubMed Lee MJ, Evans M, Hla T. The inducible G protein-coupled receptor edg-1 signals via the G(i)/mitogen-activated protein kinase pathway. J Biol Chem. 1996;271(19):11272–9.CrossRefPubMed
26.
go back to reference Hla T, Maciag T. An abundant transcript induced in differentiating human endothelial cells encodes a polypeptide with structural similarities to G-protein-coupled receptors. J Biol Chem. 1990;265(16):9308–13.PubMed Hla T, Maciag T. An abundant transcript induced in differentiating human endothelial cells encodes a polypeptide with structural similarities to G-protein-coupled receptors. J Biol Chem. 1990;265(16):9308–13.PubMed
27.
go back to reference Liu F, Verin AD, Wang P, Day R, Wersto RP, Chrest FJ, et al. Differential regulation of sphingosine-1-phosphate- and VEGF-induced endothelial cell chemotaxis. Involvement of G(ialpha2)-linked Rho kinase activity. Am J Respir Cell Mol Biol. 2001;24(6):711–9.CrossRefPubMed Liu F, Verin AD, Wang P, Day R, Wersto RP, Chrest FJ, et al. Differential regulation of sphingosine-1-phosphate- and VEGF-induced endothelial cell chemotaxis. Involvement of G(ialpha2)-linked Rho kinase activity. Am J Respir Cell Mol Biol. 2001;24(6):711–9.CrossRefPubMed
28.
go back to reference Paik JH, Chae S, Lee MJ, Thangada S, Hla T. Sphingosine 1-phosphate-induced endothelial cell migration requires the expression of EDG-1 and EDG-3 receptors and Rho-dependent activation of alpha vbeta3- and beta1-containing integrins. J Biol Chem. 2001;276(15):11830–7. doi:10.1074/jbc.M009422200.CrossRefPubMed Paik JH, Chae S, Lee MJ, Thangada S, Hla T. Sphingosine 1-phosphate-induced endothelial cell migration requires the expression of EDG-1 and EDG-3 receptors and Rho-dependent activation of alpha vbeta3- and beta1-containing integrins. J Biol Chem. 2001;276(15):11830–7. doi:10.​1074/​jbc.​M009422200.CrossRefPubMed
29.
go back to reference Morales-Ruiz M, Lee MJ, Zollner S, Gratton JP, Scotland R, Shiojima I, et al. Sphingosine 1-phosphate activates Akt, nitric oxide production, and chemotaxis through a Gi protein/phosphoinositide 3-kinase pathway in endothelial cells. J Biol Chem. 2001;276(22):19672–7. doi:10.1074/jbc.M009993200.CrossRefPubMed Morales-Ruiz M, Lee MJ, Zollner S, Gratton JP, Scotland R, Shiojima I, et al. Sphingosine 1-phosphate activates Akt, nitric oxide production, and chemotaxis through a Gi protein/phosphoinositide 3-kinase pathway in endothelial cells. J Biol Chem. 2001;276(22):19672–7. doi:10.​1074/​jbc.​M009993200.CrossRefPubMed
30.
go back to reference Lee JF, Zeng Q, Ozaki H, Wang L, Hand AR, Hla T, et al. Dual roles of tight junction-associated protein, zonula occludens-1, in sphingosine 1-phosphate-mediated endothelial chemotaxis and barrier integrity. J Biol Chem. 2006;281(39):29190–200. doi:10.1074/jbc.M604310200.CrossRefPubMed Lee JF, Zeng Q, Ozaki H, Wang L, Hand AR, Hla T, et al. Dual roles of tight junction-associated protein, zonula occludens-1, in sphingosine 1-phosphate-mediated endothelial chemotaxis and barrier integrity. J Biol Chem. 2006;281(39):29190–200. doi:10.​1074/​jbc.​M604310200.CrossRefPubMed
31.
go back to reference Lee JF, Ozaki H, Zhan X, Wang E, Hla T, Lee MJ. Sphingosine-1-phosphate signaling regulates lamellipodia localization of cortactin complexes in endothelial cells. Histochem Cell Biol. 2006;126(3):297–304. doi:10.1007/s00418-006-0143-z.CrossRefPubMed Lee JF, Ozaki H, Zhan X, Wang E, Hla T, Lee MJ. Sphingosine-1-phosphate signaling regulates lamellipodia localization of cortactin complexes in endothelial cells. Histochem Cell Biol. 2006;126(3):297–304. doi:10.​1007/​s00418-006-0143-z.CrossRefPubMed
32.
33.•
go back to reference Oo ML, Chang SH, Thangada S, Wu MT, Rezaul K, Blaho V, et al. Engagement of S1P(1)-degradative mechanisms leads to vascular leak in mice. J Clin Invest. 2011;121(6):2290–300. doi:10.1172/jci45403. This study used an animal model to show the role of S1PR1 in maintaining vascular permeability.CrossRefPubMedCentralPubMed Oo ML, Chang SH, Thangada S, Wu MT, Rezaul K, Blaho V, et al. Engagement of S1P(1)-degradative mechanisms leads to vascular leak in mice. J Clin Invest. 2011;121(6):2290–300. doi:10.​1172/​jci45403. This study used an animal model to show the role of S1PR1 in maintaining vascular permeability.CrossRefPubMedCentralPubMed
35.
go back to reference Sugimoto N, Takuwa N, Okamoto H, Sakurada S, Takuwa Y. Inhibitory and stimulatory regulation of Rac and cell motility by the G12/13-Rho and Gi pathways integrated downstream of a single G protein-coupled sphingosine-1-phosphate receptor isoform. Mol Cell Biol. 2003;23(5):1534–45.CrossRefPubMedCentralPubMed Sugimoto N, Takuwa N, Okamoto H, Sakurada S, Takuwa Y. Inhibitory and stimulatory regulation of Rac and cell motility by the G12/13-Rho and Gi pathways integrated downstream of a single G protein-coupled sphingosine-1-phosphate receptor isoform. Mol Cell Biol. 2003;23(5):1534–45.CrossRefPubMedCentralPubMed
36.
go back to reference Sanchez T, Skoura A, Wu MT, Casserly B, Harrington EO, Hla T. Induction of vascular permeability by the sphingosine-1-phosphate receptor-2 (S1P2R) and its downstream effectors ROCK and PTEN. Arterioscler Thromb Vasc Biol. 2007;27(6):1312–8. doi:10.1161/atvbaha.107.143735.CrossRefPubMed Sanchez T, Skoura A, Wu MT, Casserly B, Harrington EO, Hla T. Induction of vascular permeability by the sphingosine-1-phosphate receptor-2 (S1P2R) and its downstream effectors ROCK and PTEN. Arterioscler Thromb Vasc Biol. 2007;27(6):1312–8. doi:10.​1161/​atvbaha.​107.​143735.CrossRefPubMed
37.
go back to reference Sikora E, Bielak-Zmijewska A, Mosieniak G. Cellular senescence in ageing. Curr Vasc Pharmacol: Age-Related Disease and Longevity; 2013. Sikora E, Bielak-Zmijewska A, Mosieniak G. Cellular senescence in ageing. Curr Vasc Pharmacol: Age-Related Disease and Longevity; 2013.
38.
go back to reference Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H, Komuro I. Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation. 2002;105(13):1541–4.CrossRefPubMed Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H, Komuro I. Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation. 2002;105(13):1541–4.CrossRefPubMed
40.••
go back to reference Bai B, Liang Y, Xu C, Lee MY, Xu A, Wu D, et al. Cyclin-dependent kinase 5-mediated hyperphosphorylation of sirtuin-1 contributes to the development of endothelial senescence and atherosclerosis. Circulation. 2012;126(6):729–40. doi:10.1161/circulationaha.112.118778. This study identified SIRT1 being a target of CDK5, and characterized the critical role of CDK5/SIRT1 signaling axis in endothelial senescence and atherosclerosis.CrossRefPubMed Bai B, Liang Y, Xu C, Lee MY, Xu A, Wu D, et al. Cyclin-dependent kinase 5-mediated hyperphosphorylation of sirtuin-1 contributes to the development of endothelial senescence and atherosclerosis. Circulation. 2012;126(6):729–40. doi:10.​1161/​circulationaha.​112.​118778. This study identified SIRT1 being a target of CDK5, and characterized the critical role of CDK5/SIRT1 signaling axis in endothelial senescence and atherosclerosis.CrossRefPubMed
41.
go back to reference VASILE E, TOMITA Y, BROWN LF, KOCHER O, DVORAK HF. Differential expression of thymosin β-10 by early passage and senescent vascular endothelium is modulated by VPF/VEGF: evidence for senescent endothelial cells in vivo at sites of atherosclerosis. FASEB J. 2001;15(2):458–66. doi:10.1096/fj.00-0051com.CrossRefPubMed VASILE E, TOMITA Y, BROWN LF, KOCHER O, DVORAK HF. Differential expression of thymosin β-10 by early passage and senescent vascular endothelium is modulated by VPF/VEGF: evidence for senescent endothelial cells in vivo at sites of atherosclerosis. FASEB J. 2001;15(2):458–66. doi:10.​1096/​fj.​00-0051com.CrossRefPubMed
42.••
go back to reference Skoura A, Michaud J, Im DS, Thangada S, Xiong Y, Smith JD, et al. Sphingosine-1-phosphate receptor-2 function in myeloid cells regulates vascular inflammation and atherosclerosis. Arterioscler Thromb Vasc Biol. 2011;31(1):81–5. doi:10.1161/atvbaha.110.213496. This study demonstrated that S1PR2 signaling in myeloid cells plays a key role in atherosclerosis.CrossRefPubMedCentralPubMed Skoura A, Michaud J, Im DS, Thangada S, Xiong Y, Smith JD, et al. Sphingosine-1-phosphate receptor-2 function in myeloid cells regulates vascular inflammation and atherosclerosis. Arterioscler Thromb Vasc Biol. 2011;31(1):81–5. doi:10.​1161/​atvbaha.​110.​213496. This study demonstrated that S1PR2 signaling in myeloid cells plays a key role in atherosclerosis.CrossRefPubMedCentralPubMed
43.
go back to reference Fisher AB, Chien S, Barakat AI, Nerem RM. Endothelial cellular response to altered shear stress. Am J Physiol Lung Cell Mol Physiol. 2001;281(3):L529–33.PubMed Fisher AB, Chien S, Barakat AI, Nerem RM. Endothelial cellular response to altered shear stress. Am J Physiol Lung Cell Mol Physiol. 2001;281(3):L529–33.PubMed
44.
go back to reference Li Y-SJ, Haga JH, Chien S. Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech. 2005;38(10):1949–71.CrossRefPubMed Li Y-SJ, Haga JH, Chien S. Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech. 2005;38(10):1949–71.CrossRefPubMed
45.
go back to reference Estrada R, Giridharan GA, Nguyen M-D, Roussel TJ, Shakeri M, Parichehreh V. Endothelial cell culture model for replication of physiological profiles of pressure, flow, stretch, and shear stress in vitro. Anal Chem. 2011. doi:10.1021/ac2002998. null-null.PubMed Estrada R, Giridharan GA, Nguyen M-D, Roussel TJ, Shakeri M, Parichehreh V. Endothelial cell culture model for replication of physiological profiles of pressure, flow, stretch, and shear stress in vitro. Anal Chem. 2011. doi:10.​1021/​ac2002998. null-null.PubMed
46.
go back to reference Estrada R, Giridharan G, Prabhu SD, Sethu P. Endothelial cell culture model of carotid artery atherosclerosis. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:186–9.PubMed Estrada R, Giridharan G, Prabhu SD, Sethu P. Endothelial cell culture model of carotid artery atherosclerosis. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:186–9.PubMed
47.
go back to reference Estrada R, Giridharan GA, Nguyen M-D, Prabhu SD, Sethu P. Microfluidic endothelial cell culture model to replicate disturbed flow conditions seen in atherosclerosis susceptible regions. Biomicrofluidics. 2011;5(3):032006–11.CrossRefPubMedCentral Estrada R, Giridharan GA, Nguyen M-D, Prabhu SD, Sethu P. Microfluidic endothelial cell culture model to replicate disturbed flow conditions seen in atherosclerosis susceptible regions. Biomicrofluidics. 2011;5(3):032006–11.CrossRefPubMedCentral
48.
go back to reference Cantwell CA, Sterneck E, Johnson PF. Interleukin-6-specific activation of the C/EBPdelta gene in hepatocytes is mediated by Stat3 and Sp1. Mol Cell Biol. 1998;18(4):2108–17.PubMedCentralPubMed Cantwell CA, Sterneck E, Johnson PF. Interleukin-6-specific activation of the C/EBPdelta gene in hepatocytes is mediated by Stat3 and Sp1. Mol Cell Biol. 1998;18(4):2108–17.PubMedCentralPubMed
52.•
go back to reference Muradashvili N, Khundmiri SJ, Tyagi R, Gartung A, Dean WL, Lee MJ, et al. Sphingolipids affect fibrinogen-induced caveolar transcytosis and cerebrovascular permeability. Am J Physiol Cell Physiol. 2014;307(2):C169–79. doi:10.1152/ajpcell.00305.2013. This study demonstrated a novel role of sphingolipids in fibrinogen-mediated caveolar transcytosis, leading to increase cerebrovascular permeability.CrossRefPubMed Muradashvili N, Khundmiri SJ, Tyagi R, Gartung A, Dean WL, Lee MJ, et al. Sphingolipids affect fibrinogen-induced caveolar transcytosis and cerebrovascular permeability. Am J Physiol Cell Physiol. 2014;307(2):C169–79. doi:10.​1152/​ajpcell.​00305.​2013. This study demonstrated a novel role of sphingolipids in fibrinogen-mediated caveolar transcytosis, leading to increase cerebrovascular permeability.CrossRefPubMed
53.
go back to reference Zhang W, Mottillo EP, Zhao J, Gartung A, VanHecke GC, Lee JF, et al. Adipocyte lipolysis stimulated interleukin-6 production requires sphingosine kinase 1 activity. J Biol Chem. 2014. doi:10.1074/jbc.M114.601096. Sep 24. pii: jbc.M114.601096. [Epub ahead of print]. Zhang W, Mottillo EP, Zhao J, Gartung A, VanHecke GC, Lee JF, et al. Adipocyte lipolysis stimulated interleukin-6 production requires sphingosine kinase 1 activity. J Biol Chem. 2014. doi:10.​1074/​jbc.​M114.​601096. Sep 24. pii: jbc.M114.601096. [Epub ahead of print].
54.
go back to reference Paigen B, Morrow A, Brandon C, Mitchell D, Holmes P. Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis. 1985;57(1):65–73.CrossRefPubMed Paigen B, Morrow A, Brandon C, Mitchell D, Holmes P. Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis. 1985;57(1):65–73.CrossRefPubMed
56.
go back to reference Van Brocklyn JR, Williams JB. The control of the balance between ceramide and sphingosine-1-phosphate by sphingosine kinase: oxidative stress and the seesaw of cell survival and death. Comp Biochem Physiol B Biochem Mol Biol. 2012;163(1):26–36. doi:10.1016/j.cbpb.2012.05.006.CrossRefPubMed Van Brocklyn JR, Williams JB. The control of the balance between ceramide and sphingosine-1-phosphate by sphingosine kinase: oxidative stress and the seesaw of cell survival and death. Comp Biochem Physiol B Biochem Mol Biol. 2012;163(1):26–36. doi:10.​1016/​j.​cbpb.​2012.​05.​006.CrossRefPubMed
57.
go back to reference Hanada K. Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim Biophys Acta. 2003;1632(1–3):16–30.CrossRefPubMed Hanada K. Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim Biophys Acta. 2003;1632(1–3):16–30.CrossRefPubMed
58.
go back to reference Linn SC, Kim HS, Keane EM, Andras LM, Wang E, Merrill Jr AH. Regulation of de novo sphingolipid biosynthesis and the toxic consequences of its disruption. Biochem Soc Trans. 2001;29(Pt 6):831–5.CrossRefPubMed Linn SC, Kim HS, Keane EM, Andras LM, Wang E, Merrill Jr AH. Regulation of de novo sphingolipid biosynthesis and the toxic consequences of its disruption. Biochem Soc Trans. 2001;29(Pt 6):831–5.CrossRefPubMed
60.
go back to reference Lipid modification—cardiovascular risk assessment and the modification of blood lipids for the primary and secondary prevention of cardiovascular disease—quick reference guide. National Institute for Health and Clinical Excellence May 2008, reissued March 2010. Lipid modification—cardiovascular risk assessment and the modification of blood lipids for the primary and secondary prevention of cardiovascular disease—quick reference guide. National Institute for Health and Clinical Excellence May 2008, reissued March 2010.
62.
go back to reference Naci H, Brugts J, Ades T. Comparative tolerability and harms of individual statins: a study-level network meta-analysis of 246 955 participants from 135 randomized, controlled trials. Circ Cardiovasc Qual Outcome. 2013;6(4):390–9. doi:10.1161/circoutcomes.111.000071.CrossRef Naci H, Brugts J, Ades T. Comparative tolerability and harms of individual statins: a study-level network meta-analysis of 246 955 participants from 135 randomized, controlled trials. Circ Cardiovasc Qual Outcome. 2013;6(4):390–9. doi:10.​1161/​circoutcomes.​111.​000071.CrossRef
Metadata
Title
Sphingosine-1-Phosphate Receptor Subtype 2 Signaling in Endothelial Senescence-Associated Functional Impairments and Inflammation
Authors
Jiawei Zhao
Dante Garcia
Allison Gartung
Menq-Jer Lee
Publication date
01-05-2015
Publisher
Springer US
Published in
Current Atherosclerosis Reports / Issue 5/2015
Print ISSN: 1523-3804
Electronic ISSN: 1534-6242
DOI
https://doi.org/10.1007/s11883-015-0504-y

Other articles of this Issue 5/2015

Current Atherosclerosis Reports 5/2015 Go to the issue

Vascular Biology (T. Hla, Section Editor)

Nuclear Receptors in Vascular Biology

Nonstatin Drugs (EM deGoma, Section Editor)

Targeting Lipoprotein (a): an Evolving Therapeutic Landscape

Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine