Skip to main content
Top
Published in: Obesity Surgery 3/2009

01-03-2009 | Research Article

GLP-1 and Adiponectin: Effect of Weight Loss After Dietary Restriction and Gastric Bypass in Morbidly Obese Patients with Normal and Abnormal Glucose Metabolism

Authors: Camila Puzzi de Carvalho, Daniela Miguel Marin, Aglécio Luiz de Souza, José Carlos Pareja, Elintom Adami Chaim, Silvia de Barros Mazon, Conceição Aparecida da Silva, Bruno Geloneze, Elza Muscelli, Sarah Monte Alegre

Published in: Obesity Surgery | Issue 3/2009

Login to get access

Abstract

Background

It has been proposed that there is improvement in glucose and insulin metabolism after weight loss in patients who underwent diet restriction and bariatric surgery.

Methods

Eleven normal glucose tolerant (NGT) morbidly obese patients [body mass index (BMI), 46.1 ± 2.27 g/m2] and eight abnormal glucose metabolism (AGM) obese patients (BMI, 51.20 kg/m2) were submitted to diet-restriction and bariatric surgery. Prospective study on weight loss changes, over the glucose, insulin metabolism, glucagon-like peptide-1 (GLP-1), and adiponectin levels were evaluated by oral glucose tolerance test during three periods: T1 (first evaluation), T2 (pre-surgery), and T3 (9 months after surgery).

Results

Insulin levels improved after surgery. T1 was 131.1 ± 17.60 pmol/l in the NGT group and 197.57 ± 57.94 pmol/l in the AGM group, and T3 was 72.48 ± 3.67 pmol/l in the NGT group and 61.2 ± 9.33 pmol/l in the AGM group. The major reduction was at the first hour of the glucose load as well as fasting levels. At 9 months after surgery (T3), GLP-1 levels at 30 and 60 min had significantly increased in both groups. It was observed that the AGM group had higher levels of GLP-1 at 30 min (34.06 ± 6.18 pmol/l) when compared to the NGT group (22.69 ± 4.04 pmol/l). Homeostasis model assessment of insulin resistance from the NGT and AGM groups had a significant reduction at periods T3 in relation to T1 and T2. Adiponectin levels had increased concentration in both groups before and after surgical weight loss. However, it did not have any statistical difference between periods T1 vs. T2.

Conclusions

Weight loss by surgery leads to improvement in the metabolism of carbohydrates in relation to sensitivity to the insulin, contributing to the reduction of type 2 diabetes incidence. This improvement also was expressed by the improvement of the levels of adiponectin and GLP-1.
Literature
1.
go back to reference Bonadonna RC, Groop L, Kraemer N, et al. Obesity and insulin resistance in humans: a dose-response study. Metabolism 1990;39:452–9.CrossRef Bonadonna RC, Groop L, Kraemer N, et al. Obesity and insulin resistance in humans: a dose-response study. Metabolism 1990;39:452–9.CrossRef
2.
go back to reference Defronzo RA, Bonadonna RA, Ferranini E. A balanced overview. Diabetes Care. 1990;15:318–68.CrossRef Defronzo RA, Bonadonna RA, Ferranini E. A balanced overview. Diabetes Care. 1990;15:318–68.CrossRef
3.
go back to reference Hostamisligil GS. Molecular mechanisms of insulin resistance and the role of adipocyte. Int J Obes. 2000;24:S23–7.CrossRef Hostamisligil GS. Molecular mechanisms of insulin resistance and the role of adipocyte. Int J Obes. 2000;24:S23–7.CrossRef
4.
go back to reference Park YW, Zhu S, Palaniappan L, et al. The metabolic syndrome: prevalence and associate risk factor finding in the US population from the Third National Health and Nutrition Examination Survey. Arch Intern Med. 2003;163:427–36.CrossRef Park YW, Zhu S, Palaniappan L, et al. The metabolic syndrome: prevalence and associate risk factor finding in the US population from the Third National Health and Nutrition Examination Survey. Arch Intern Med. 2003;163:427–36.CrossRef
5.
go back to reference Colditz G, Willet W, Rotniztky A, et al. Weight as a risk factor for clinical diabetes in women. Am J Epidemiol. 1990;132:501–13.CrossRef Colditz G, Willet W, Rotniztky A, et al. Weight as a risk factor for clinical diabetes in women. Am J Epidemiol. 1990;132:501–13.CrossRef
6.
go back to reference Pories WJ, Macdonald KG Jr, Morgan EJ, et al. Surgical treatment of obesity and its effect on diabetes: 10-y follow-up. Am J Clin Nutr. 1992;55:582S–5.CrossRef Pories WJ, Macdonald KG Jr, Morgan EJ, et al. Surgical treatment of obesity and its effect on diabetes: 10-y follow-up. Am J Clin Nutr. 1992;55:582S–5.CrossRef
7.
go back to reference Residori L, Garcia-Lorda P, Flancbaum L, et al. Prevalence of co-morbidities in obese patients before bariatric surgery: effect of race. Obes Surg. 2003;13:333–40.CrossRef Residori L, Garcia-Lorda P, Flancbaum L, et al. Prevalence of co-morbidities in obese patients before bariatric surgery: effect of race. Obes Surg. 2003;13:333–40.CrossRef
8.
go back to reference Buchwald H, Avidor Y, Brawnwald E, et al. Bariatric surgery: a systemic review and meta-analysis. JAMA 2004;2992:1724–37.CrossRef Buchwald H, Avidor Y, Brawnwald E, et al. Bariatric surgery: a systemic review and meta-analysis. JAMA 2004;2992:1724–37.CrossRef
9.
go back to reference Blandine L, Stanley H, Krystle W, et al. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care. 2007;30:1709–16.CrossRef Blandine L, Stanley H, Krystle W, et al. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care. 2007;30:1709–16.CrossRef
10.
go back to reference MacDonald PE, El-kholy W, Riedel MJ, et al. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes 2002;51:S434–42.CrossRef MacDonald PE, El-kholy W, Riedel MJ, et al. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes 2002;51:S434–42.CrossRef
11.
go back to reference Creutzfedt W. The entero-insulinar axis in type 2 diabetes. Incretins as therapeutic agents. Exp Clin Endocrinol Diabetes. 2001;109:S288–303.CrossRef Creutzfedt W. The entero-insulinar axis in type 2 diabetes. Incretins as therapeutic agents. Exp Clin Endocrinol Diabetes. 2001;109:S288–303.CrossRef
12.
go back to reference Egan JM, Meneilly GS, Haberner JF, et al. Glucagon-like peptide augments insulin-mediated glucose uptake in obese state. J Clin Endocrinol Metab. 2002;87:3768–73.CrossRef Egan JM, Meneilly GS, Haberner JF, et al. Glucagon-like peptide augments insulin-mediated glucose uptake in obese state. J Clin Endocrinol Metab. 2002;87:3768–73.CrossRef
13.
go back to reference Valverde I, Villanueva-Penacarrillo ML, Malaisse WJ. Pancreatic and extrapancreatic effects of GLP-1. Diabetes Metab. 2002;28:3S85–9.PubMed Valverde I, Villanueva-Penacarrillo ML, Malaisse WJ. Pancreatic and extrapancreatic effects of GLP-1. Diabetes Metab. 2002;28:3S85–9.PubMed
14.
go back to reference Villanueva-Penacarrillo ML, Puente J, Redondo A, et al. Effect of GLP-1 treatment on GLUT2 and GLUT4 expression in NDDM and IDDM rats. Endocrine 2001;15:241–8.CrossRef Villanueva-Penacarrillo ML, Puente J, Redondo A, et al. Effect of GLP-1 treatment on GLUT2 and GLUT4 expression in NDDM and IDDM rats. Endocrine 2001;15:241–8.CrossRef
15.
go back to reference Acitores A, Gonzáles N, Sancho V, et al. Participation of protein kinases in the stimulant action of GLP-1 upon 2-deoxy-D-glucose uptake by normal rat skeletal muscle. Horm Metab Res. 2005;37:275–80.CrossRef Acitores A, Gonzáles N, Sancho V, et al. Participation of protein kinases in the stimulant action of GLP-1 upon 2-deoxy-D-glucose uptake by normal rat skeletal muscle. Horm Metab Res. 2005;37:275–80.CrossRef
16.
go back to reference Sancho V, Trigo MV, González N, et al. Effects of GLP-1 and exendins on kinase activity, 2-deoxy-D-glucose transport, lipolysis and lipogenesis in adipocytes from normal and streptozotocin-induced type 2 diabetic rats. J Mol Endocrinol. 2005;35:27–38.CrossRef Sancho V, Trigo MV, González N, et al. Effects of GLP-1 and exendins on kinase activity, 2-deoxy-D-glucose transport, lipolysis and lipogenesis in adipocytes from normal and streptozotocin-induced type 2 diabetic rats. J Mol Endocrinol. 2005;35:27–38.CrossRef
17.
go back to reference Ruiz-Grande C, Alarcón C, Mérida E, et al. Lipolytic action of glucagon-like peptides in isolated rat adipocytes. Peptides 1992;13:13–6.CrossRef Ruiz-Grande C, Alarcón C, Mérida E, et al. Lipolytic action of glucagon-like peptides in isolated rat adipocytes. Peptides 1992;13:13–6.CrossRef
18.
go back to reference Perea A, Vinambres C, Clement F, et al. GLP-1 (7–36) amide effects on glucose transport and metabolism in rat adipose tissue. Horm Metab Res. 1997;9:417–21.CrossRef Perea A, Vinambres C, Clement F, et al. GLP-1 (7–36) amide effects on glucose transport and metabolism in rat adipose tissue. Horm Metab Res. 1997;9:417–21.CrossRef
19.
go back to reference Villanueva-Penacarrillo ML, Márquez L, González N, et al. Effect of GLP-1 on lipid metabolism in human adipocytes. Horm Metab Res. 2001;33:73–7.CrossRef Villanueva-Penacarrillo ML, Márquez L, González N, et al. Effect of GLP-1 on lipid metabolism in human adipocytes. Horm Metab Res. 2001;33:73–7.CrossRef
20.
go back to reference Nauck A, Heinesaat MM, Orskov C, et al. Preserved incretin activity of synthetic human gastric inhibitory polypeptide in patients with type 2 diabetes. J Clin Invest. 1993;91:301–7.CrossRef Nauck A, Heinesaat MM, Orskov C, et al. Preserved incretin activity of synthetic human gastric inhibitory polypeptide in patients with type 2 diabetes. J Clin Invest. 1993;91:301–7.CrossRef
21.
go back to reference Blandine L, Stanley H, Krystle W, et al. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care. 2007;30:1709–16.CrossRef Blandine L, Stanley H, Krystle W, et al. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care. 2007;30:1709–16.CrossRef
22.
go back to reference Maeda K, Okubo K, Simomura J, et al. c-DNA cloning and expression of a novel adipose-specific collagen-like factor, ap M1 (adipose most abundant gene transcript 1). Biochem Biophys Res Commun. 1996;221:286–9.CrossRef Maeda K, Okubo K, Simomura J, et al. c-DNA cloning and expression of a novel adipose-specific collagen-like factor, ap M1 (adipose most abundant gene transcript 1). Biochem Biophys Res Commun. 1996;221:286–9.CrossRef
23.
go back to reference Scherer PE, Williams S, Fogliano M, et al. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem. 1995;270:26746–9.CrossRef Scherer PE, Williams S, Fogliano M, et al. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem. 1995;270:26746–9.CrossRef
24.
go back to reference Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem. 1996;18:10697–730.CrossRef Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem. 1996;18:10697–730.CrossRef
25.
go back to reference Takahashi M, Arita Y, Yamagata K, et al. Genomic structure and mutations in adipose-specific gene, adiponectin. Int J Obes. 2000;24:861–8.CrossRef Takahashi M, Arita Y, Yamagata K, et al. Genomic structure and mutations in adipose-specific gene, adiponectin. Int J Obes. 2000;24:861–8.CrossRef
26.
go back to reference Okamoto Y, Arita Y Nishida M, et al. An adipocyte-derived plasma protein, adiponectin, adheres to injured vascular walls. Horm Metab Res. 2000;32:47–50.CrossRef Okamoto Y, Arita Y Nishida M, et al. An adipocyte-derived plasma protein, adiponectin, adheres to injured vascular walls. Horm Metab Res. 2000;32:47–50.CrossRef
27.
go back to reference Ouchi N, Kihara S, Arita T, et al. Novel modulator of endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 1999;100:2473–6.CrossRef Ouchi N, Kihara S, Arita T, et al. Novel modulator of endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 1999;100:2473–6.CrossRef
28.
go back to reference Ouchi N, Kihara S, Arita T, et al. Adiponectin, and adipocyte-derived plasma protein, inhibits NF-kb signaling through a cAMP-dependent pathway. Circulation 2000;102:1296–301.CrossRef Ouchi N, Kihara S, Arita T, et al. Adiponectin, and adipocyte-derived plasma protein, inhibits NF-kb signaling through a cAMP-dependent pathway. Circulation 2000;102:1296–301.CrossRef
29.
go back to reference Yokota T, Oritani K, Takahashi I, et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the function of macrophages. Blood 2000;96:1723–32. Yokota T, Oritani K, Takahashi I, et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the function of macrophages. Blood 2000;96:1723–32.
30.
go back to reference Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinemia in obesity and type 2 diabetes: Close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001;86:1930–5.CrossRef Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinemia in obesity and type 2 diabetes: Close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001;86:1930–5.CrossRef
31.
go back to reference Yang WS, Lee WJ, Funahashi T, et al. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory, adiponectin. J Clin Endocrinol Metab. 2001;86:3815–9.CrossRef Yang WS, Lee WJ, Funahashi T, et al. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory, adiponectin. J Clin Endocrinol Metab. 2001;86:3815–9.CrossRef
32.
go back to reference Hotta K, Funahashi T, Arita Y, et al. Plasma concentrations of a novel, adipose–specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol. 2000;20:1595–9.CrossRef Hotta K, Funahashi T, Arita Y, et al. Plasma concentrations of a novel, adipose–specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol. 2000;20:1595–9.CrossRef
33.
go back to reference Stefan N, Vozarova B, Funahashi T, et al. Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation, and low plasma concentration precedes a decrease in whole-body insulin sensitvity in humans. Diabetes 2002;51:1884–8.CrossRef Stefan N, Vozarova B, Funahashi T, et al. Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation, and low plasma concentration precedes a decrease in whole-body insulin sensitvity in humans. Diabetes 2002;51:1884–8.CrossRef
34.
go back to reference National Institutes of Health. The Seventh Report of Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure (JNC VII). NIH Publication no. 03-5233. EUA, 2003; p. 2–3. National Institutes of Health. The Seventh Report of Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure (JNC VII). NIH Publication no. 03-5233. EUA, 2003; p. 2–3.
35.
go back to reference Fobi MAL, Lee H, Igwe D, et al. Revision on failed gastric bypass to distal Roux-en-Y gastric bypass: a review of 65 cases. Obes Surg. 2001;11:190–5.CrossRef Fobi MAL, Lee H, Igwe D, et al. Revision on failed gastric bypass to distal Roux-en-Y gastric bypass: a review of 65 cases. Obes Surg. 2001;11:190–5.CrossRef
36.
go back to reference Fulcher GR, Farrer M, Walker M, et al. A comparison of measurements of lean body mass derived by bioelectrical impedance, skinfold thickness and total body potassium. A study in obese and non-obese normal subjects. Scand J Lab Invest. 1991;51:245–53.CrossRef Fulcher GR, Farrer M, Walker M, et al. A comparison of measurements of lean body mass derived by bioelectrical impedance, skinfold thickness and total body potassium. A study in obese and non-obese normal subjects. Scand J Lab Invest. 1991;51:245–53.CrossRef
37.
go back to reference American Diabetes Association. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Clinical practice recommendations 2003: committee report. The expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 2003;26(1):S4–20. American Diabetes Association. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Clinical practice recommendations 2003: committee report. The expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 2003;26(1):S4–20.
38.
go back to reference Potteiger JA, Jacobsen DJ, Donnelly JE. A comparison of methods for analyzing glucose and insulin areas under the curve following nine months of exercise in overweight adults. Int J Obes. 2002;26:87–9.CrossRef Potteiger JA, Jacobsen DJ, Donnelly JE. A comparison of methods for analyzing glucose and insulin areas under the curve following nine months of exercise in overweight adults. Int J Obes. 2002;26:87–9.CrossRef
39.
go back to reference Mcauley KA, Williams SM, Mann JI, et al. Diagnosing insulin resistance in the general population. Diabetes Care. 2001;24:460–4.CrossRef Mcauley KA, Williams SM, Mann JI, et al. Diagnosing insulin resistance in the general population. Diabetes Care. 2001;24:460–4.CrossRef
40.
go back to reference Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment, insulin resistance and beta cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412–9.CrossRef Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment, insulin resistance and beta cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412–9.CrossRef
41.
go back to reference Sjostrom CD, Peltonem M, Wedel H, et al. Differentiated long-term effects of intentional weight loss on diabetes and hypertension. Hypertension 2000;36:20–5.CrossRef Sjostrom CD, Peltonem M, Wedel H, et al. Differentiated long-term effects of intentional weight loss on diabetes and hypertension. Hypertension 2000;36:20–5.CrossRef
42.
go back to reference Marin, D. Resistência à insulina e função da célula beta: Efeito da perda de peso após bypass gástrico. PhD Thesis, Universidade Estadual de Campinas. Faculdade de Ciências Médicas; 2007. Marin, D. Resistência à insulina e função da célula beta: Efeito da perda de peso após bypass gástrico. PhD Thesis, Universidade Estadual de Campinas. Faculdade de Ciências Médicas; 2007.
43.
go back to reference Matsuzawa Y, Funahashi T, Nakamura T. Molecular mechanism of metabolic syndrome X: contribution of adipocytokines adipocyte-derived bioactive Substances. Ann NY Acad Sci. 1999;892:146–54.CrossRef Matsuzawa Y, Funahashi T, Nakamura T. Molecular mechanism of metabolic syndrome X: contribution of adipocytokines adipocyte-derived bioactive Substances. Ann NY Acad Sci. 1999;892:146–54.CrossRef
44.
go back to reference Tomas E, Tsao TS, Saha AK, et al. Enhanced muscle fat oxidation and glucose transport by ACRP 30 globular domain: a domain: acetyl- CoaA carboxylase inhibition and AMP- activated protein kinase activation. Proc Natl Acad Sci USA. 2002;99:16309–13.CrossRef Tomas E, Tsao TS, Saha AK, et al. Enhanced muscle fat oxidation and glucose transport by ACRP 30 globular domain: a domain: acetyl- CoaA carboxylase inhibition and AMP- activated protein kinase activation. Proc Natl Acad Sci USA. 2002;99:16309–13.CrossRef
45.
go back to reference Yamauchi T, Kamon J, Minokashi Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002;8:1288–95.CrossRef Yamauchi T, Kamon J, Minokashi Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002;8:1288–95.CrossRef
46.
go back to reference Yokota T, Oritani K, Takahashi I, et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and function of the macrofages. Blood 2000;96:1723–32. Yokota T, Oritani K, Takahashi I, et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and function of the macrofages. Blood 2000;96:1723–32.
47.
go back to reference Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001;86:1930–5.CrossRef Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001;86:1930–5.CrossRef
48.
go back to reference Fruebis J, Tsao TS, Javorschi S, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci USA. 2001;98:2005–10.CrossRef Fruebis J, Tsao TS, Javorschi S, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci USA. 2001;98:2005–10.CrossRef
49.
go back to reference Host JJ. On the physiology of GIP and GLP-1. Horm Metab Res. 2004;34:747–54.CrossRef Host JJ. On the physiology of GIP and GLP-1. Horm Metab Res. 2004;34:747–54.CrossRef
50.
go back to reference Vilsboll T, Host JJ. Incretins, insulin secretion and type 2 diabetes mellitus. Diabetologia 2004;47:357–66.CrossRef Vilsboll T, Host JJ. Incretins, insulin secretion and type 2 diabetes mellitus. Diabetologia 2004;47:357–66.CrossRef
51.
go back to reference Greenway SE, Greenway F, Klein S. Effects of obesity surgery on non-insulin-dependent diabetes mellitus. Arch Surg. 2002;137:1109–77.CrossRef Greenway SE, Greenway F, Klein S. Effects of obesity surgery on non-insulin-dependent diabetes mellitus. Arch Surg. 2002;137:1109–77.CrossRef
52.
go back to reference Drucker DJ. Glucagon-like peptide-1 and the islet ß-cell: augmentation of cell proliferation and inhibition of apoptosis. Endocrinology 2003;144:5145–8.CrossRef Drucker DJ. Glucagon-like peptide-1 and the islet ß-cell: augmentation of cell proliferation and inhibition of apoptosis. Endocrinology 2003;144:5145–8.CrossRef
53.
go back to reference Zander M, Masdbad S, Madsen JL, et al. Effect of 6-week course of glucagon-like peptide 1 on glycemic control, insulin sensitivity, and ß-cell function in type 2 diabetes: a parallel-group study. Lancet 2002;359:824–30.CrossRef Zander M, Masdbad S, Madsen JL, et al. Effect of 6-week course of glucagon-like peptide 1 on glycemic control, insulin sensitivity, and ß-cell function in type 2 diabetes: a parallel-group study. Lancet 2002;359:824–30.CrossRef
54.
go back to reference Drucker DJ. Enhancing incretin action for treatment of type 2 diabetes. Diabetes Care. 2003;26:2929–40.CrossRef Drucker DJ. Enhancing incretin action for treatment of type 2 diabetes. Diabetes Care. 2003;26:2929–40.CrossRef
55.
go back to reference Cummings DA, Overduin J, Fosyrt-Schubert K. Gastric bypass for obesity: mechanism of weight loss and diabetes resolution. J Clin Encrinol Metab. 2004;89:2608–15.CrossRef Cummings DA, Overduin J, Fosyrt-Schubert K. Gastric bypass for obesity: mechanism of weight loss and diabetes resolution. J Clin Encrinol Metab. 2004;89:2608–15.CrossRef
Metadata
Title
GLP-1 and Adiponectin: Effect of Weight Loss After Dietary Restriction and Gastric Bypass in Morbidly Obese Patients with Normal and Abnormal Glucose Metabolism
Authors
Camila Puzzi de Carvalho
Daniela Miguel Marin
Aglécio Luiz de Souza
José Carlos Pareja
Elintom Adami Chaim
Silvia de Barros Mazon
Conceição Aparecida da Silva
Bruno Geloneze
Elza Muscelli
Sarah Monte Alegre
Publication date
01-03-2009
Publisher
Springer New York
Published in
Obesity Surgery / Issue 3/2009
Print ISSN: 0960-8923
Electronic ISSN: 1708-0428
DOI
https://doi.org/10.1007/s11695-008-9678-5

Other articles of this Issue 3/2009

Obesity Surgery 3/2009 Go to the issue