Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 4/2024

Open Access 22-02-2024 | Original Article

Path tracking control of a steerable catheter in transcatheter cardiology interventions

Authors: Xiu Zhang, Aditya Sridhar, Xuan Thao Ha, Syed Zain Mehdi, Andrea Fortuna, Mattia Magro, Angela Peloso, Anna Bicchi, Mouloud Ourak, Andrea Aliverti, Emiliano Votta, Emmanuel Vander Poorten, Elena De Momi

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 4/2024

Login to get access

Abstract

Purpose

Intracardiac transcatheter interventions allow for reducing trauma and hospitalization stays as compared to standard surgery. In the treatment of mitral regurgitation, the most widely adopted transcatheter approach consists in deploying a clip on the mitral valve leaflets by means of a catheter that is run through veins from a peripheral access to the left atrium. However, precise manipulation of the catheter from outside the body while copying with the path constraints imposed by the vessels remains challenging.

Methods

We proposed a path tracking control framework that provides adequate motion commands to the robotic steerable catheter for autonomous navigation through vascular lumens. The proposed work implements a catheter kinematic model featuring nonholonomic constraints. Relying on the real-time measurements from an electromagnetic sensor and a fiber Bragg grating sensor, a two-level feedback controller was designed to control the catheter.

Results

The proposed method was tested in a patient-specific vessel phantom. A median position error between the center line of the vessel and the catheter tip trajectory was found to be below 2 mm, with a maximum error below 3 mm. Statistical testing confirmed that the performance of the proposed method exhibited no significant difference in both free space and the contact region.

Conclusion

The preliminary in vitro studies presented in this paper showed promising accuracy in navigating the catheter within the vessel. The proposed approach enables autonomous control of a steerable catheter for transcatheter cardiology interventions without the request of calibrating the intuitive parameters or acquiring a training dataset.
Literature
1.
go back to reference Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M (2006) Burden of valvular heart diseases: a population-based study. The Lancet 368(9540):1005–1011CrossRef Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M (2006) Burden of valvular heart diseases: a population-based study. The Lancet 368(9540):1005–1011CrossRef
2.
go back to reference Mirabel M, Iung B, Baron G, Messika-Zeitoun D, Détaint D, Vanoverschelde J-L, Butchart EG, Ravaud P, Vahanian A (2007) What are the characteristics of patients with severe, symptomatic, mitral regurgitation who are denied surgery? Eur Heart J 28(11):1358–1365CrossRefPubMed Mirabel M, Iung B, Baron G, Messika-Zeitoun D, Détaint D, Vanoverschelde J-L, Butchart EG, Ravaud P, Vahanian A (2007) What are the characteristics of patients with severe, symptomatic, mitral regurgitation who are denied surgery? Eur Heart J 28(11):1358–1365CrossRefPubMed
3.
go back to reference Isaac YW, Matthew BB, Rebecca TH (2018) The mitraclip procedure–a comprehensive review for the cardiac anesthesiologist. J Cardiothorac Vasc Anesth 32(6):2746–2759CrossRef Isaac YW, Matthew BB, Rebecca TH (2018) The mitraclip procedure–a comprehensive review for the cardiac anesthesiologist. J Cardiothorac Vasc Anesth 32(6):2746–2759CrossRef
4.
go back to reference Simon HS, Patric B, Jürg G, Michael G, Christian F, Christian F, Volkmar F, Roberto C (2014) Safety and feasibility of novel technology fusing echocardiography and fluoroscopy images during mitraclip interventions. EuroIntervention 9(10):1210–1216CrossRef Simon HS, Patric B, Jürg G, Michael G, Christian F, Christian F, Volkmar F, Roberto C (2014) Safety and feasibility of novel technology fusing echocardiography and fluoroscopy images during mitraclip interventions. EuroIntervention 9(10):1210–1216CrossRef
5.
go back to reference Chhatriwalla AK, Vemulapalli S, Holmes DRJ, Dai D, Li Z, Ailawadi G, Glower D, Kar S, Mack MJ, Rymer J, Kosinski AS, Sorajja P (2019) Institutional experience with transcatheter mitral valve repair and clinical outcomes: insights from the TVT registry. JACC Cardiovasc Interv 12(14):1342–1352CrossRefPubMed Chhatriwalla AK, Vemulapalli S, Holmes DRJ, Dai D, Li Z, Ailawadi G, Glower D, Kar S, Mack MJ, Rymer J, Kosinski AS, Sorajja P (2019) Institutional experience with transcatheter mitral valve repair and clinical outcomes: insights from the TVT registry. JACC Cardiovasc Interv 12(14):1342–1352CrossRefPubMed
6.
go back to reference Granada JF, Delgado JA, Uribe MP, Fernandez A, Blanco G, Leon MB, Weisz G (2011) First-in-human evaluation of a novel robotic-assisted coronary angioplasty system. JACC Cardiovasc Interv 4(4):460–465CrossRefPubMed Granada JF, Delgado JA, Uribe MP, Fernandez A, Blanco G, Leon MB, Weisz G (2011) First-in-human evaluation of a novel robotic-assisted coronary angioplasty system. JACC Cardiovasc Interv 4(4):460–465CrossRefPubMed
7.
go back to reference Rillig A, Schmidt B, Di Biase L, Lin T, Scholz L, Heeger CH, Metzner A, Steven D, Wohlmuth P, Willems S, Trivedi C, Galllinghouse JG, Natale A, Ouyang F, Kuck K-H, Tilz RR (2017) Manual versus robotic catheter ablation for the treatment of atrial fibrillation: the man and machine trial. JACC: Clin Electrophys 3(8):875–883 Rillig A, Schmidt B, Di Biase L, Lin T, Scholz L, Heeger CH, Metzner A, Steven D, Wohlmuth P, Willems S, Trivedi C, Galllinghouse JG, Natale A, Ouyang F, Kuck K-H, Tilz RR (2017) Manual versus robotic catheter ablation for the treatment of atrial fibrillation: the man and machine trial. JACC: Clin Electrophys 3(8):875–883
8.
go back to reference Valderrábano M, Dave AS, Báez-Escudero JL, Rami T (2011) Robotic catheter ablation of left ventricular tachycardia: initial experience. Heart Rhythm 8(12):1837–1846CrossRefPubMedPubMedCentral Valderrábano M, Dave AS, Báez-Escudero JL, Rami T (2011) Robotic catheter ablation of left ventricular tachycardia: initial experience. Heart Rhythm 8(12):1837–1846CrossRefPubMedPubMedCentral
9.
go back to reference Bassil G, Markowitz SM, Liu CF, Thomas G, Ip JE, Lerman BB, Cheung JW (2020) Robotics for catheter ablation of cardiac arrhythmias: current technologies and practical approaches. J Cardiovasc Electrophysiol 31(3):739–752CrossRefPubMed Bassil G, Markowitz SM, Liu CF, Thomas G, Ip JE, Lerman BB, Cheung JW (2020) Robotics for catheter ablation of cardiac arrhythmias: current technologies and practical approaches. J Cardiovasc Electrophysiol 31(3):739–752CrossRefPubMed
10.
go back to reference Shi P, Guo S, Zhang L, Jin X, Hirata H, Tamiya T, Kawanishi M (2021) Design and evaluation of a haptic robot-assisted catheter operating system with collision protection function. IEEE Sens J 21(18):20807–20816CrossRef Shi P, Guo S, Zhang L, Jin X, Hirata H, Tamiya T, Kawanishi M (2021) Design and evaluation of a haptic robot-assisted catheter operating system with collision protection function. IEEE Sens J 21(18):20807–20816CrossRef
11.
go back to reference Woo J, Song H-S, Cha H-J, Yi B-J (2019) Advantage of steerable catheter and haptic feedback for a 5-dof vascular intervention robot system. Appl Sci 9(20):4305CrossRef Woo J, Song H-S, Cha H-J, Yi B-J (2019) Advantage of steerable catheter and haptic feedback for a 5-dof vascular intervention robot system. Appl Sci 9(20):4305CrossRef
12.
go back to reference Zhang L, Guo S, Yu H, Song Y, Tamiya T, Hirata H, Ishihara H (2018) Design and performance evaluation of collision protection-based safety operation for a haptic robot-assisted catheter operating system. Biomed Microdevice 20(2):1–14CrossRef Zhang L, Guo S, Yu H, Song Y, Tamiya T, Hirata H, Ishihara H (2018) Design and performance evaluation of collision protection-based safety operation for a haptic robot-assisted catheter operating system. Biomed Microdevice 20(2):1–14CrossRef
13.
go back to reference Dupont PE, Nelson BJ, Goldfarb M, Hannaford B, Menciassi A, O’Malley MK, Simaan N, Valdastri P, Yang G-Z (2021) A decade retrospective of medical robotics research from 2010 to 2020. Sci Robot 6(60):8017CrossRef Dupont PE, Nelson BJ, Goldfarb M, Hannaford B, Menciassi A, O’Malley MK, Simaan N, Valdastri P, Yang G-Z (2021) A decade retrospective of medical robotics research from 2010 to 2020. Sci Robot 6(60):8017CrossRef
14.
go back to reference Yang G-Z, Cambias J, Cleary K, Daimler E, Drake J, Dupont PE, Hata N, Kazanzides P, Martel S, Patel RV, Santos VJ, Taylor RH (2017) Medical robotics—Regulatory, ethical, and legal considerations for increasing levels of autonomy. American Association for the Advancement of Science Yang G-Z, Cambias J, Cleary K, Daimler E, Drake J, Dupont PE, Hata N, Kazanzides P, Martel S, Patel RV, Santos VJ, Taylor RH (2017) Medical robotics—Regulatory, ethical, and legal considerations for increasing levels of autonomy. American Association for the Advancement of Science
15.
go back to reference Fagogenis G, Mencattelli M, Machaidze Z, Rosa B, Price K, Wu F, Weixler V, Saeed M, Mayer JE, Dupont PE (2019) Autonomous robotic intracardiac catheter navigation using haptic vision. Sci Robot 4(29):1977CrossRef Fagogenis G, Mencattelli M, Machaidze Z, Rosa B, Price K, Wu F, Weixler V, Saeed M, Mayer JE, Dupont PE (2019) Autonomous robotic intracardiac catheter navigation using haptic vision. Sci Robot 4(29):1977CrossRef
16.
go back to reference Sganga J, Eng D, Graetzel C, Camarillo DB (2019) Autonomous driving in the lung using deep learning for localization. arXiv preprint arXiv:1907.08136 Sganga J, Eng D, Graetzel C, Camarillo DB (2019) Autonomous driving in the lung using deep learning for localization. arXiv preprint arXiv:​1907.​08136
17.
go back to reference Yang Z, Yang L, Zhang L (2021) Autonomous navigation of magnetic microrobots in a large workspace using mobile-coil system. IEEE/ASME Trans Mechatron 26(6):3163–3174CrossRef Yang Z, Yang L, Zhang L (2021) Autonomous navigation of magnetic microrobots in a large workspace using mobile-coil system. IEEE/ASME Trans Mechatron 26(6):3163–3174CrossRef
18.
go back to reference Ganji Y, Janabi-Sharifi F (2009) Catheter kinematics for intracardiac navigation. IEEE Trans Biomed Eng 56(3):621–632CrossRefPubMed Ganji Y, Janabi-Sharifi F (2009) Catheter kinematics for intracardiac navigation. IEEE Trans Biomed Eng 56(3):621–632CrossRefPubMed
19.
go back to reference Greigarn T, Poirot NL, Xu X, Çavuşoğlu MC (2018) Jacobian-based task-space motion planning for MRI-actuated continuum robots. IEEE Robot Automat Lett 4(1):145–152CrossRef Greigarn T, Poirot NL, Xu X, Çavuşoğlu MC (2018) Jacobian-based task-space motion planning for MRI-actuated continuum robots. IEEE Robot Automat Lett 4(1):145–152CrossRef
20.
go back to reference Rucker DC, Webster RJ (2011) Computing jacobians and compliance matrices for externally loaded continuum robots. In: 2011 IEEE international conference on robotics and automation, pp. 945–950. IEEE Rucker DC, Webster RJ (2011) Computing jacobians and compliance matrices for externally loaded continuum robots. In: 2011 IEEE international conference on robotics and automation, pp. 945–950. IEEE
21.
go back to reference Greigarn T, Jackson R, Liu T, Çavuşoğlu MC (2017) Experimental validation of the pseudo-rigid-body model of the mri-actuated catheter. In: 2017 IEEE International conference on robotics and automation (ICRA). IEEE, pp. 3600–3605 Greigarn T, Jackson R, Liu T, Çavuşoğlu MC (2017) Experimental validation of the pseudo-rigid-body model of the mri-actuated catheter. In: 2017 IEEE International conference on robotics and automation (ICRA). IEEE, pp. 3600–3605
22.
go back to reference Bailly Y, Amirat Y, Fried G (2011) Modeling and control of a continuum style microrobot for endovascular surgery. IEEE Trans Rob 27(5):1024–1030CrossRef Bailly Y, Amirat Y, Fried G (2011) Modeling and control of a continuum style microrobot for endovascular surgery. IEEE Trans Rob 27(5):1024–1030CrossRef
23.
go back to reference Coevoet E, Escande A, Duriez C (2017) Optimization-based inverse model of soft robots with contact handling. IEEE Robot Autom Lett 2(3):1413–1419CrossRef Coevoet E, Escande A, Duriez C (2017) Optimization-based inverse model of soft robots with contact handling. IEEE Robot Autom Lett 2(3):1413–1419CrossRef
24.
go back to reference Yip MC, Camarillo DB (2014) Model-less feedback control of continuum manipulators in constrained environments. IEEE Trans Rob 30(4):880–889CrossRef Yip MC, Camarillo DB (2014) Model-less feedback control of continuum manipulators in constrained environments. IEEE Trans Rob 30(4):880–889CrossRef
25.
go back to reference Wu D, Ha XT, Zhang Y, Ourak M, Borghesan G, Niu K, Trauzettel F, Dankelman J, Menciassi A, Vander Poorten E (2022) Deep-learning-based compliant motion control of a pneumatically-driven robotic catheter. IEEE Robot Autom Lett 7(4):8853–8860CrossRef Wu D, Ha XT, Zhang Y, Ourak M, Borghesan G, Niu K, Trauzettel F, Dankelman J, Menciassi A, Vander Poorten E (2022) Deep-learning-based compliant motion control of a pneumatically-driven robotic catheter. IEEE Robot Autom Lett 7(4):8853–8860CrossRef
26.
go back to reference Chikhaoui MT, Burgner-Kahrs J (2018) Control of continuum robots for medical applications: State of the art. In: ACTUATOR 2018; 16th International conference on new actuators. VDE, pp. 1–11 Chikhaoui MT, Burgner-Kahrs J (2018) Control of continuum robots for medical applications: State of the art. In: ACTUATOR 2018; 16th International conference on new actuators. VDE, pp. 1–11
27.
go back to reference Shi C, Luo X, Qi P, Li T, Song S, Najdovski Z, Fukuda T, Ren H (2016) Shape sensing techniques for continuum robots in minimally invasive surgery: a survey. IEEE Trans Biomed Eng 64(8):1665–1678CrossRefPubMed Shi C, Luo X, Qi P, Li T, Song S, Najdovski Z, Fukuda T, Ren H (2016) Shape sensing techniques for continuum robots in minimally invasive surgery: a survey. IEEE Trans Biomed Eng 64(8):1665–1678CrossRefPubMed
28.
go back to reference Dore A, Smoljkic G, Vander Poorten E, Sette M, Vander Sloten J, Yang G-Z (2012) Catheter navigation based on probabilistic fusion of electromagnetic tracking and physically-based simulation. In: 2012 IEEE/RSJ International conference on intelligent robots and systems. IEEE, pp. 3806–3811 Dore A, Smoljkic G, Vander Poorten E, Sette M, Vander Sloten J, Yang G-Z (2012) Catheter navigation based on probabilistic fusion of electromagnetic tracking and physically-based simulation. In: 2012 IEEE/RSJ International conference on intelligent robots and systems. IEEE, pp. 3806–3811
29.
go back to reference Loschak PM, Brattain LJ, Howe RD (2016) Algorithms for automatically pointing ultrasound imaging catheters. IEEE Trans Rob 33(1):81–91CrossRef Loschak PM, Brattain LJ, Howe RD (2016) Algorithms for automatically pointing ultrasound imaging catheters. IEEE Trans Rob 33(1):81–91CrossRef
30.
go back to reference Omisore OM, Han SP, Ren LX, Wang GS, Ou FL, Li H, Wang L (2018) Towards characterization and adaptive compensation of backlash in a novel robotic catheter system for cardiovascular interventions. IEEE Trans Biomed Circuits Syst 12(4):824–838CrossRefPubMed Omisore OM, Han SP, Ren LX, Wang GS, Ou FL, Li H, Wang L (2018) Towards characterization and adaptive compensation of backlash in a novel robotic catheter system for cardiovascular interventions. IEEE Trans Biomed Circuits Syst 12(4):824–838CrossRefPubMed
31.
go back to reference Sefati S, Murphy RJ, Alambeigi F, Pozin M, Iordachita I, Taylor RH, Armand M (2018) Fbg-based control of a continuum manipulator interacting with obstacles. In: 2018 IEEE/RSJ International conference on intelligent robots and systems (IROS). IEEE, pp. 6477–6483 Sefati S, Murphy RJ, Alambeigi F, Pozin M, Iordachita I, Taylor RH, Armand M (2018) Fbg-based control of a continuum manipulator interacting with obstacles. In: 2018 IEEE/RSJ International conference on intelligent robots and systems (IROS). IEEE, pp. 6477–6483
32.
go back to reference Al-Ahmad O, Ourak M, Smits J, Jeanquart S, Deserranno N, Bernhard F, Kassahun Y, Yu B, Vander Poorten E (2018) Development of an innovative sleeve-based robotic catheter driver. In: Joint workshop on new technologies for computer/robot assisted surgery, Date: 2018/09/10-2018/09/11, Location: London Al-Ahmad O, Ourak M, Smits J, Jeanquart S, Deserranno N, Bernhard F, Kassahun Y, Yu B, Vander Poorten E (2018) Development of an innovative sleeve-based robotic catheter driver. In: Joint workshop on new technologies for computer/robot assisted surgery, Date: 2018/09/10-2018/09/11, Location: London
33.
go back to reference Webster RJ III, Kim JS, Cowan NJ, Chirikjian GS, Okamura AM (2006) Nonholonomic modeling of needle steering. Int J Robot Res 25(5–6):509–525CrossRef Webster RJ III, Kim JS, Cowan NJ, Chirikjian GS, Okamura AM (2006) Nonholonomic modeling of needle steering. Int J Robot Res 25(5–6):509–525CrossRef
34.
go back to reference Thrun S, Montemerlo M, Dahlkamp H, Stavens D, Aron A, Diebel J, Fong P, Gale J, Halpenny M, Hoffmann G, Lau K, Oakley C, Palatucci M, Pratt V, Stang P (2006) Stanley: The robot that won the darpa grand challenge. J Field Robot 23(9):661–692 Thrun S, Montemerlo M, Dahlkamp H, Stavens D, Aron A, Diebel J, Fong P, Gale J, Halpenny M, Hoffmann G, Lau K, Oakley C, Palatucci M, Pratt V, Stang P (2006) Stanley: The robot that won the darpa grand challenge. J Field Robot 23(9):661–692
35.
go back to reference Fallahi B, Khadem M, Rossa C, Sloboda R, Usmani N, Tavakoli M (2015) Extended bicycle model for needle steering in soft tissue. In: 2015 IEEE/RSJ International conference on intelligent robots and systems (IROS). IEEE, pp. 4375–4380 Fallahi B, Khadem M, Rossa C, Sloboda R, Usmani N, Tavakoli M (2015) Extended bicycle model for needle steering in soft tissue. In: 2015 IEEE/RSJ International conference on intelligent robots and systems (IROS). IEEE, pp. 4375–4380
36.
go back to reference Boles M, Fu J, Iovene E, Francesco C, Ferrigno G, De Momi E (2022) Augmented reality and robotic navigation system for spinal surgery. In: Proceeding of the 11th joint workshop on new technologies for computer/robot assisted surgery, pp. 96–97 Boles M, Fu J, Iovene E, Francesco C, Ferrigno G, De Momi E (2022) Augmented reality and robotic navigation system for spinal surgery. In: Proceeding of the 11th joint workshop on new technologies for computer/robot assisted surgery, pp. 96–97
37.
go back to reference Al-Ahmad O, Ourak M, Van Roosbroeck J, Vlekken J, Vander Poorten E (2020) Improved fbg-based shape sensing methods for vascular catheterization treatment. IEEE Robot Automat Lett 5(3):4687–4694 Al-Ahmad O, Ourak M, Van Roosbroeck J, Vlekken J, Vander Poorten E (2020) Improved fbg-based shape sensing methods for vascular catheterization treatment. IEEE Robot Automat Lett 5(3):4687–4694
38.
go back to reference Nijland H, Gerbers J, Bulstra S, Overbosch J, Stevens M, Jutte P (2017) Evaluation of accuracy and precision of ct-guidance in radiofrequency ablation for osteoid osteoma in 86 patients. PLoS ONE 12(4):0169171CrossRef Nijland H, Gerbers J, Bulstra S, Overbosch J, Stevens M, Jutte P (2017) Evaluation of accuracy and precision of ct-guidance in radiofrequency ablation for osteoid osteoma in 86 patients. PLoS ONE 12(4):0169171CrossRef
39.
go back to reference Bourier F, Reents T, Ammar-Busch S, Buiatti A, Grebmer C, Telishevska M, Brkic A, Semmler V, Lennerz C, Kaess B, Kottmaier M, Kolb C, Deisenhofer I, Hessling G (2015) Sensor-based electromagnetic navigation (mediguide®): how accurate is it? a phantom model study. J Cardiovascul Electrophys 26(10):1140–1145CrossRef Bourier F, Reents T, Ammar-Busch S, Buiatti A, Grebmer C, Telishevska M, Brkic A, Semmler V, Lennerz C, Kaess B, Kottmaier M, Kolb C, Deisenhofer I, Hessling G (2015) Sensor-based electromagnetic navigation (mediguide®): how accurate is it? a phantom model study. J Cardiovascul Electrophys 26(10):1140–1145CrossRef
Metadata
Title
Path tracking control of a steerable catheter in transcatheter cardiology interventions
Authors
Xiu Zhang
Aditya Sridhar
Xuan Thao Ha
Syed Zain Mehdi
Andrea Fortuna
Mattia Magro
Angela Peloso
Anna Bicchi
Mouloud Ourak
Andrea Aliverti
Emiliano Votta
Emmanuel Vander Poorten
Elena De Momi
Publication date
22-02-2024
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 4/2024
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-024-03069-3

Other articles of this Issue 4/2024

International Journal of Computer Assisted Radiology and Surgery 4/2024 Go to the issue