Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 6/2016

Open Access 01-06-2016 | Original Article

Estimating \({\hbox {FLE}}_\mathrm{image}\) distributions of manual fiducial localization in CT images

Authors: Zoltan Bardosi, Wolfgang Freysinger

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 6/2016

Login to get access

Abstract

Purpose

The fiducial localization error distribution (FLE) and fiducial configuration govern the application accuracy of point-based registration and drive target registration error (TRE) prediction models. The error of physically localizing patient fiducials (\({\hbox {FLE}}_\mathrm{patient}\)) is negligible when a registration probe matches the implanted screws with mechanical precision. Reliable trackers provide an unbiased estimate of the positional error (\({\hbox {FLE}}_\mathrm{tracker}\)) with cheap repetitions. FLE further contains the localization error in the imaging data (\({\hbox {FLE}}_\mathrm{image}\)), sampling of which in general is expensive and possibly biased. Finding the best techniques for estimating \({\hbox {FLE}}_\mathrm{image}\) is crucial for the applicability of the TRE prediction methods.

Methods

We built a ground-truth (gt)-based unbiased estimator (\(\widehat{{\hbox {FLE}}_\mathrm{gt}}\)) of \({\hbox {FLE}}_\mathrm{image}\) from the samples collected in a virtual CT dataset in which the true locations of image fiducials are known by definition. Replacing true locations in \({\hbox {FLE}}_\mathrm{gt}\) by the sample mean creates a practical difference-to-mean (dtm)-based estimator (\(\widehat{{\hbox {FLE}}_\mathrm{dtm}}\)) that is applicable on any dataset. To check the practical validity of the dtm estimator, ten persons manually localized nine fiducials ten times in the virtual CT and the resulting \({\hbox {FLE}}_\mathrm{dtm}\) and \({\hbox {FLE}}_\mathrm{gt}\) distributions were tested for statistical equality with a kernel-based two-sample test using the maximum mean discrepancy (MMD) (Gretton in J Mach Learn Res 13:723–773, 2012) statistics at \(\alpha =0.05\).

Results

\({\hbox {FLE}}_\mathrm{dtm}\) and \({\hbox {FLE}}_\mathrm{gt}\) were found (for most of the cases) not to be statistically significantly different; conditioning them on persons and/or screws however yielded statistically significant differences much more often.

Conclusions

We conclude that \(\widehat{{\hbox {FLE}}_\mathrm{dtm}}\) is the best candidate (within our model) for estimating \({\hbox {FLE}}_\mathrm{image}\) in homogeneous TRE prediction models. The presented approach also allows ground-truth-based numerical validation of \({\hbox {FLE}}_\mathrm{image}\) estimators and (manual/automatic) image fiducial localization methods in phantoms with parameters similar to clinical datasets.
Literature
1.
go back to reference Gretton A, Borgwardt KM, Rasch MJ, Schoelkopf B, Smola A (2012) A kernel two-sample test. J Mach Learn Res 13:723–773 Gretton A, Borgwardt KM, Rasch MJ, Schoelkopf B, Smola A (2012) A kernel two-sample test. J Mach Learn Res 13:723–773
2.
go back to reference Fitzpatrick JM, West JB, Maurer CR Jr (1998) Predicting error in rigid-body point-based registration. IEEE Trans Med Imaging 17(5):694–702CrossRefPubMed Fitzpatrick JM, West JB, Maurer CR Jr (1998) Predicting error in rigid-body point-based registration. IEEE Trans Med Imaging 17(5):694–702CrossRefPubMed
3.
go back to reference Fitzpatrick JM, West JB (2001) The distribution of target registration error in rigid-body point-based registration. IEEE Trans Med Imaging 20(9):917–927CrossRefPubMed Fitzpatrick JM, West JB (2001) The distribution of target registration error in rigid-body point-based registration. IEEE Trans Med Imaging 20(9):917–927CrossRefPubMed
4.
go back to reference Wiles AD, Likholyot A, Frantz DD, Peters TM (2008) A statistical model for point-based target registration error with anisotropic fiducial localizer error. IEEE Trans Med Imaging 27(3):378–390CrossRefPubMed Wiles AD, Likholyot A, Frantz DD, Peters TM (2008) A statistical model for point-based target registration error with anisotropic fiducial localizer error. IEEE Trans Med Imaging 27(3):378–390CrossRefPubMed
5.
go back to reference Danilchenko A, Fitzpatrick JM (2011) General approach to first-order error prediction in rigid point registration. IEEE Trans Med Imaging 30(3):679–693CrossRefPubMedPubMedCentral Danilchenko A, Fitzpatrick JM (2011) General approach to first-order error prediction in rigid point registration. IEEE Trans Med Imaging 30(3):679–693CrossRefPubMedPubMedCentral
6.
go back to reference Moghari M, Abolmaesumi P (2010) Understanding the effect of bias in fiducial localization error on point-based rigid-body registration. IEEE Trans Med Imaging 29(10):1730–1738CrossRefPubMed Moghari M, Abolmaesumi P (2010) Understanding the effect of bias in fiducial localization error on point-based rigid-body registration. IEEE Trans Med Imaging 29(10):1730–1738CrossRefPubMed
7.
go back to reference Wiles AD, Peters TM (2009) Real-time estimation of FLE statistics for 3-D tracking with point-based registration. IEEE Trans Med Imaging 28(9):1384–1398CrossRefPubMed Wiles AD, Peters TM (2009) Real-time estimation of FLE statistics for 3-D tracking with point-based registration. IEEE Trans Med Imaging 28(9):1384–1398CrossRefPubMed
8.
go back to reference Kobler J, Diaz J, Fitzpatrick JM, Lexow GJ, Majdani O, Ortmaier T (2014) Localization accuracy of sphere fiducials in computed tomography images. In: Proc. SPIE medical imaging 2014: image-guided procedures, robotic interventions, and modeling (9036):90360Z Kobler J, Diaz J, Fitzpatrick JM, Lexow GJ, Majdani O, Ortmaier T (2014) Localization accuracy of sphere fiducials in computed tomography images. In: Proc. SPIE medical imaging 2014: image-guided procedures, robotic interventions, and modeling (9036):90360Z
9.
go back to reference Lie W, Ding H, Han H, Xue Q, Sun Z, Wang G (2009) The study of fiducial localization error of image in point-based registration. Conf Proc IEEE Med Biol Soc 2009(2009):5088–5091 Lie W, Ding H, Han H, Xue Q, Sun Z, Wang G (2009) The study of fiducial localization error of image in point-based registration. Conf Proc IEEE Med Biol Soc 2009(2009):5088–5091
10.
go back to reference Maier A, Hofmann HG, Berger M, Fischer P, Schwemmer C, Wu H, Mller K, Hornegger J, Choi JH, Riess C, Keil A, Fahrig R (2013) CONRAD—a software framework for cone-beam imaging in radiology. Med Phys 40(11):111914CrossRefPubMedPubMedCentral Maier A, Hofmann HG, Berger M, Fischer P, Schwemmer C, Wu H, Mller K, Hornegger J, Choi JH, Riess C, Keil A, Fahrig R (2013) CONRAD—a software framework for cone-beam imaging in radiology. Med Phys 40(11):111914CrossRefPubMedPubMedCentral
11.
go back to reference Guler O, Perwog M, Kral F, Schwarm F, Bardosi ZR, Gobel G, Freysinger W (2013) Quantitative error analysis for computer assisted navigation: a feasibility study. Med Phys 40(2):02910CrossRef Guler O, Perwog M, Kral F, Schwarm F, Bardosi ZR, Gobel G, Freysinger W (2013) Quantitative error analysis for computer assisted navigation: a feasibility study. Med Phys 40(2):02910CrossRef
12.
go back to reference Pieper S, Halle M, Kikinis R (2004) 3D Slicer. Proc IEEE Int Symp Biomed Imaging 632–635 Pieper S, Halle M, Kikinis R (2004) 3D Slicer. Proc IEEE Int Symp Biomed Imaging 632–635
Metadata
Title
Estimating distributions of manual fiducial localization in CT images
Authors
Zoltan Bardosi
Wolfgang Freysinger
Publication date
01-06-2016
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 6/2016
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-016-1389-0

Other articles of this Issue 6/2016

International Journal of Computer Assisted Radiology and Surgery 6/2016 Go to the issue