Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 5/2013

01-09-2013 | Original Article

Force-detecting gripper and force feedback system for neurosurgery applications

Authors: Takeshi Yoneyama, Tetsuyou Watanabe, Hiroyuki Kagawa, Junichiro Hamada, Yutaka Hayashi, Mitsutoshi Nakada

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 5/2013

Login to get access

Abstract

Purpose For the application of less invasive robotic neurosurgery to the resection of deep-seated tumors, a prototype system of a force-detecting gripper with a flexible micromanipulator and force feedback to the operating unit will be developed.
Methods Gripping force applied on the gripper is detected by strain gauges attached to the gripper clip. The signal is transmitted to the amplifier by wires running through the inner tube of the manipulator. Proportional force is applied on the finger lever of the operating unit by the surgeon using a bilateral control program. A pulling force experienced by the gripper is also detected at the gripper clip. The signal for the pulling force is transmitted in a manner identical to that mentioned previously, and the proportional torque is applied on the touching roller of the finger lever of the operating unit. The surgeon can feel the gripping force as the resistance of the operating force of the finger and can feel the pulling force as the friction at the finger surface.
Results A basic operation test showed that both the gripping force and pulling force were clearly detected in the gripping of soft material and that the operator could feel the gripping force and pulling force at the finger lever of the operating unit.
Conclusions A prototype of the force feedback in the microgripping manipulator system has been developed. The system will be useful for removing deep-seated brain tumors in future master–slave-type robotic neurosurgery.
Literature
1.
go back to reference Gutt CN, Onui T, Schemmer P, Schemmer MW (2004) Robot -assisted abdominal surgery. Br J Surg 91:1390–1397PubMedCrossRef Gutt CN, Onui T, Schemmer P, Schemmer MW (2004) Robot -assisted abdominal surgery. Br J Surg 91:1390–1397PubMedCrossRef
2.
go back to reference Jacobs S, Falk V (2001) Pearls and pitfalls: lesions learned in endoscopic robotic surgery-the da Vinci experience. Heart Surg Forum 4:307–310PubMed Jacobs S, Falk V (2001) Pearls and pitfalls: lesions learned in endoscopic robotic surgery-the da Vinci experience. Heart Surg Forum 4:307–310PubMed
3.
go back to reference Thiel DD, Winfield HN (2008) Robotics in urology: past, present, and future. J Endourol 22:825–830PubMedCrossRef Thiel DD, Winfield HN (2008) Robotics in urology: past, present, and future. J Endourol 22:825–830PubMedCrossRef
4.
go back to reference Haidegger T, Kovacs L, Fordos G, Bnyo Z, Kazanzides P (2008) Future trends in robotic neurosurgery. 14th Nordic-Baltic conference on biomedical engineering and, medical physics. pp 229–233 Haidegger T, Kovacs L, Fordos G, Bnyo Z, Kazanzides P (2008) Future trends in robotic neurosurgery. 14th Nordic-Baltic conference on biomedical engineering and, medical physics. pp 229–233
5.
go back to reference Hongo K, Kakizawa Y, Koyama J, Nishizawa K, Tajima F, Fujie MG, Kobayashi S (2001) Microscopic-manipulator system for minimally invasive neurosurgery. Computer assisted radiology and surgery, Amsterdam, excerpta medica, pp 265–269 Hongo K, Kakizawa Y, Koyama J, Nishizawa K, Tajima F, Fujie MG, Kobayashi S (2001) Microscopic-manipulator system for minimally invasive neurosurgery. Computer assisted radiology and surgery, Amsterdam, excerpta medica, pp 265–269
6.
go back to reference Hongo K, Kobayashi S, Kakizawa Y, Koyama J, Goto T, Okudera H, Kan K, Fujie MG, Iseki H, Takakura K (2002) Neurobot: telecontrolled micromanipulator system for minimally invasive microneurosurgery. Neurosurgery 51:985–988PubMed Hongo K, Kobayashi S, Kakizawa Y, Koyama J, Goto T, Okudera H, Kan K, Fujie MG, Iseki H, Takakura K (2002) Neurobot: telecontrolled micromanipulator system for minimally invasive microneurosurgery. Neurosurgery 51:985–988PubMed
7.
go back to reference Hongo K, Goto T, Kakizawa Y, Koyama J, Kawai T, Kan K, Tanaka Y, Kobayashi S (2003) Micromanipulator system (NeuRobot): clinical application in neurosurgery. Int Congr Ser 1256:509–513CrossRef Hongo K, Goto T, Kakizawa Y, Koyama J, Kawai T, Kan K, Tanaka Y, Kobayashi S (2003) Micromanipulator system (NeuRobot): clinical application in neurosurgery. Int Congr Ser 1256:509–513CrossRef
8.
go back to reference Goto T, Hongo K, Kakizawa Y, Muraoka H, Miyairi Y, Tanaka Y, Kobayashi S (2003) Clinical application of robotic telemanipulation system in neurosurgery. J. Neurosurg 99:1082–1084PubMedCrossRef Goto T, Hongo K, Kakizawa Y, Muraoka H, Miyairi Y, Tanaka Y, Kobayashi S (2003) Clinical application of robotic telemanipulation system in neurosurgery. J. Neurosurg 99:1082–1084PubMedCrossRef
9.
go back to reference Hongo K, Goto T, Kakizawa Y, Koyama J (2011) Microsurgery-assisting robotics (NeuRobot): current status and future perspective. Jpn J Neurosurg 20(4):270–274 (in Japanese) Hongo K, Goto T, Kakizawa Y, Koyama J (2011) Microsurgery-assisting robotics (NeuRobot): current status and future perspective. Jpn J Neurosurg 20(4):270–274 (in Japanese)
10.
go back to reference Kan K, Fujie MG, Tajima F, Nishizawa K, Kawai T, Shose A, Takakura K, Kobayashi S, Dohi T (2001) Development of HUMAN system with the three micro manipulator for minimally invasive neurosurgery. Computer assisted radiology and surgery, Amsterdam, excerpta medica. pp 144–149 Kan K, Fujie MG, Tajima F, Nishizawa K, Kawai T, Shose A, Takakura K, Kobayashi S, Dohi T (2001) Development of HUMAN system with the three micro manipulator for minimally invasive neurosurgery. Computer assisted radiology and surgery, Amsterdam, excerpta medica. pp 144–149
11.
go back to reference Nishizawa K, Fujie MG, Hongo K, Dohi T, Iseki H (2006) Development of surgical manipulator system “HUMAN” for clinical neurosurgery. JMAJ 49(11–12):335–344 Nishizawa K, Fujie MG, Hongo K, Dohi T, Iseki H (2006) Development of surgical manipulator system “HUMAN” for clinical neurosurgery. JMAJ 49(11–12):335–344
12.
go back to reference Morita A, Sora S, Mitsuishi M, Warisawa S, Suruman K, Asai D, Arata J, Baba S, Takahashi H, Mochizuki R, Kirino T (2005) Microsurgical robotic system for the deep surgical field: development of a prototype and feasibility studies in animal and cadaveric models. J Neurosurg 103:320–327PubMedCrossRef Morita A, Sora S, Mitsuishi M, Warisawa S, Suruman K, Asai D, Arata J, Baba S, Takahashi H, Mochizuki R, Kirino T (2005) Microsurgical robotic system for the deep surgical field: development of a prototype and feasibility studies in animal and cadaveric models. J Neurosurg 103:320–327PubMedCrossRef
13.
go back to reference Okayasu H, Okamoto J, Iseki M, Fujie MG (2005) Development of a hydraulically-driven flexible manipulator for neurosurgery. J Robotics Mechatron 17(2):149–157 Okayasu H, Okamoto J, Iseki M, Fujie MG (2005) Development of a hydraulically-driven flexible manipulator for neurosurgery. J Robotics Mechatron 17(2):149–157
14.
go back to reference Arata J, Fischer GS, Papademetris X et al (2009) Open GTLink: an open network protocol for image-guided therapy environment. Int J Med Robotics Comput Assist Surg (2009) doi:10.1002/rcs.274 Arata J, Fischer GS, Papademetris X et al (2009) Open GTLink: an open network protocol for image-guided therapy environment. Int J Med Robotics Comput Assist Surg (2009) doi:10.​1002/​rcs.​274
15.
go back to reference Arata J, Tada Y, Kozuka H, Wada T, Saito Y, Ikedo N, Hayashi Y, Fujii M, Kajita Y, Mizuno M, Wakabayashi T, Fujimoto H (2011) Neurosurgical robotic system for brain tumor removal. Int J Comput Assist Radiol Surg 6:375–385PubMedCrossRef Arata J, Tada Y, Kozuka H, Wada T, Saito Y, Ikedo N, Hayashi Y, Fujii M, Kajita Y, Mizuno M, Wakabayashi T, Fujimoto H (2011) Neurosurgical robotic system for brain tumor removal. Int J Comput Assist Radiol Surg 6:375–385PubMedCrossRef
16.
go back to reference Tavakoli M, Patel RV, Moallem M (2004) Design issues in a haptics-based master-slave system for minimally invasive surgery. 2004 IEEE international conference on robotics and automation pp 371–376 Tavakoli M, Patel RV, Moallem M (2004) Design issues in a haptics-based master-slave system for minimally invasive surgery. 2004 IEEE international conference on robotics and automation pp 371–376
17.
go back to reference Takahashi H, Warisawa M, Mitsuishi M, Arata J, Hashizume M (2006) Development of high dexterity minimally invasive surgical system with augmented force feedback capability. The first IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics. pp 284–289 Takahashi H, Warisawa M, Mitsuishi M, Arata J, Hashizume M (2006) Development of high dexterity minimally invasive surgical system with augmented force feedback capability. The first IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics. pp 284–289
18.
go back to reference Thielmann S, Seibold U, Hslinger R, Passig G, Bahls T, Joerg S, Nickl M, Nothhelfer A, Hagn U, Hirzinger G (2010) MICA-A new generation of versatile instruments in robotic surgery. The 2010 IEEE/RSJ international conference on intelligent robots and systems, pp 871–878 Thielmann S, Seibold U, Hslinger R, Passig G, Bahls T, Joerg S, Nickl M, Nothhelfer A, Hagn U, Hirzinger G (2010) MICA-A new generation of versatile instruments in robotic surgery. The 2010 IEEE/RSJ international conference on intelligent robots and systems, pp 871–878
19.
go back to reference Tholey G, Desai JP (2007) A modular, automated laparoscopic grasper with three-dimensional force measurement capability. IEEE international conference on robotics and automation pp 250–255 Tholey G, Desai JP (2007) A modular, automated laparoscopic grasper with three-dimensional force measurement capability. IEEE international conference on robotics and automation pp 250–255
20.
go back to reference Hashiguchi D, Tadano K, Kawashima K (2011) A prototype of pneumatically-driven forceps manipulator with force sensing capability using a simple flexible joint. 2011 IEEE/RSJ international conference on intelligent robots and systems. pp 931–936 Hashiguchi D, Tadano K, Kawashima K (2011) A prototype of pneumatically-driven forceps manipulator with force sensing capability using a simple flexible joint. 2011 IEEE/RSJ international conference on intelligent robots and systems. pp 931–936
21.
go back to reference Yoneyama T, Watanabe T, Kagawa H, Hamada J, Hayashi Y, Nakada M (2011) Force detecting gripper and flexible micro manipulator for neurosurgery. 33rd annual international conference of the IEEE EMBS pp 6695–6699 Yoneyama T, Watanabe T, Kagawa H, Hamada J, Hayashi Y, Nakada M (2011) Force detecting gripper and flexible micro manipulator for neurosurgery. 33rd annual international conference of the IEEE EMBS pp 6695–6699
23.
go back to reference Ohara N, Nakazawa K, Morikawa Y, Kitajima M (2010) Bilateral control considering interference with environment for microsurgery. Trans Jpn Soc Mech Eng Ser C 76(766):78–83 Ohara N, Nakazawa K, Morikawa Y, Kitajima M (2010) Bilateral control considering interference with environment for microsurgery. Trans Jpn Soc Mech Eng Ser C 76(766):78–83
24.
go back to reference Soza G, Grosso R, Mimsky C, Hastreiter P, Fahlbusch R, Greiner G (2005) Determination of the elasticity parameters of brain tissue with combined simulation and registration. Int J Med Robotics Comput Assist Surg 1(3):87–95 Soza G, Grosso R, Mimsky C, Hastreiter P, Fahlbusch R, Greiner G (2005) Determination of the elasticity parameters of brain tissue with combined simulation and registration. Int J Med Robotics Comput Assist Surg 1(3):87–95
25.
go back to reference Colgate JE (1993) Robust impedance shaping telemanipulation. IEEE Trans Robotics Autom 9(4):374–384 Colgate JE (1993) Robust impedance shaping telemanipulation. IEEE Trans Robotics Autom 9(4):374–384
26.
go back to reference Provancher WR, Sylvester ND (2009) Fingerpad skin stretch increases the perception of virtual friction. IEEE Trans Haptics 2(4):212–223 Provancher WR, Sylvester ND (2009) Fingerpad skin stretch increases the perception of virtual friction. IEEE Trans Haptics 2(4):212–223
27.
go back to reference Konyo M, Yamada H, Okamoto S, Tadokoro S (2008) Alternative display of friction represented by tactile stimulation without tangential force, haptics: perception, devices and scenarios. Lect Notes Comput Sci 5024:619–629CrossRef Konyo M, Yamada H, Okamoto S, Tadokoro S (2008) Alternative display of friction represented by tactile stimulation without tangential force, haptics: perception, devices and scenarios. Lect Notes Comput Sci 5024:619–629CrossRef
Metadata
Title
Force-detecting gripper and force feedback system for neurosurgery applications
Authors
Takeshi Yoneyama
Tetsuyou Watanabe
Hiroyuki Kagawa
Junichiro Hamada
Yutaka Hayashi
Mitsutoshi Nakada
Publication date
01-09-2013
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 5/2013
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-012-0807-1

Other articles of this Issue 5/2013

International Journal of Computer Assisted Radiology and Surgery 5/2013 Go to the issue