Skip to main content
Top
Published in: Targeted Oncology 1/2011

01-03-2011 | Review

Mammalian target of rapamycin as a target in hematological malignancies

Authors: Kevin R. Kelly, Julie H. Rowe, Swaminathan Padmanabhan, Steffan T. Nawrocki, Jennifer S. Carew

Published in: Targeted Oncology | Issue 1/2011

Login to get access

Abstract

The mammalian target of rapamycin (mTOR) regulates protein synthesis in addition to cell growth and cell proliferation. Elucidation of the roles of the phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR pathway in the regulation of the pathogenesis of hematological neoplasms has led to the development and clinical evaluation of agents targeting this pathway for the treatment of leukemia and lymphomas. Clinical trials conducted to date have shown modest responses to mTOR inhibition in patients with various hematological malignancies. Novel agents that simultaneously target mTOR complex 2 (mTORC2) or AKT in addition to mTOR complex 1 (mTORC1) may offer an opportunity to improve therapeutic efficacy.
Literature
1.
go back to reference Brown EJ et al (1994) A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369(6483):756–758PubMedCrossRef Brown EJ et al (1994) A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369(6483):756–758PubMedCrossRef
2.
go back to reference Hardwick JS et al (1999) Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc Natl Acad Sci USA 96(26):14866–14870PubMedCrossRef Hardwick JS et al (1999) Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc Natl Acad Sci USA 96(26):14866–14870PubMedCrossRef
3.
go back to reference Powers T, Walter P (1999) Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol Biol Cell 10(4):987–1000PubMed Powers T, Walter P (1999) Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol Biol Cell 10(4):987–1000PubMed
4.
go back to reference Jacinto E, Hall MN (2003) Tor signalling in bugs, brain and brawn. Nat Rev Mol Cell Biol 4(2):117–126PubMedCrossRef Jacinto E, Hall MN (2003) Tor signalling in bugs, brain and brawn. Nat Rev Mol Cell Biol 4(2):117–126PubMedCrossRef
5.
go back to reference Hentges KE et al (2001) FRAP/mTOR is required for proliferation and patterning during embryonic development in the mouse. Proc Natl Acad Sci USA 98(24):13796–13801PubMedCrossRef Hentges KE et al (2001) FRAP/mTOR is required for proliferation and patterning during embryonic development in the mouse. Proc Natl Acad Sci USA 98(24):13796–13801PubMedCrossRef
6.
go back to reference WullschlegerS LR, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484CrossRef WullschlegerS LR, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484CrossRef
7.
go back to reference Hara K et al (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110(2):177–189PubMedCrossRef Hara K et al (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110(2):177–189PubMedCrossRef
8.
go back to reference Bjornsti MA, Houghton P (2004) The TOR pathway: a target for cancer therapy. Nat Rev Cancer 4(5):335–348PubMedCrossRef Bjornsti MA, Houghton P (2004) The TOR pathway: a target for cancer therapy. Nat Rev Cancer 4(5):335–348PubMedCrossRef
10.
go back to reference Pullen N, Thomas G (1997) The modular phosphorylation and activation of p70s6k. FEBS Lett 410(1):78–82PubMedCrossRef Pullen N, Thomas G (1997) The modular phosphorylation and activation of p70s6k. FEBS Lett 410(1):78–82PubMedCrossRef
11.
go back to reference Pause A et al (1994) Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 371(6500):762–767PubMedCrossRef Pause A et al (1994) Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 371(6500):762–767PubMedCrossRef
12.
go back to reference Frias MA et al (2006) mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol 16(18):1865–1870PubMedCrossRef Frias MA et al (2006) mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol 16(18):1865–1870PubMedCrossRef
13.
go back to reference Sarbassov DD et al (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14(14):1296–1302PubMedCrossRef Sarbassov DD et al (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14(14):1296–1302PubMedCrossRef
14.
go back to reference Sarbassov DD et al (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22(2):159–168PubMedCrossRef Sarbassov DD et al (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22(2):159–168PubMedCrossRef
15.
go back to reference Pullen N et al (1998) Phosphorylation and activation of p70s6k by PDK1. Science 279(5351):707–710PubMedCrossRef Pullen N et al (1998) Phosphorylation and activation of p70s6k by PDK1. Science 279(5351):707–710PubMedCrossRef
16.
go back to reference Sarbassov DD et al (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101PubMedCrossRef Sarbassov DD et al (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101PubMedCrossRef
17.
18.
go back to reference Chapuis N et al (2010) Perspectives on inhibiting mTOR as a future treatment strategy for hematological malignancies. Leukemia 24(10):1686–1699PubMedCrossRef Chapuis N et al (2010) Perspectives on inhibiting mTOR as a future treatment strategy for hematological malignancies. Leukemia 24(10):1686–1699PubMedCrossRef
19.
go back to reference Nicklin P et al (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136(3):521–534PubMedCrossRef Nicklin P et al (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136(3):521–534PubMedCrossRef
20.
go back to reference Inoki K et al (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126(5):955–968PubMedCrossRef Inoki K et al (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126(5):955–968PubMedCrossRef
21.
go back to reference Shayesteh L et al (1999) PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 21(1):99–102PubMedCrossRef Shayesteh L et al (1999) PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 21(1):99–102PubMedCrossRef
22.
go back to reference Mirza AM et al (2000) Oncogenic transformation of cells by a conditionally active form of the protein kinase Akt/PKB. Cell Growth Differ 11(6):279–292PubMed Mirza AM et al (2000) Oncogenic transformation of cells by a conditionally active form of the protein kinase Akt/PKB. Cell Growth Differ 11(6):279–292PubMed
23.
go back to reference Chu EC, Tarnawski AS (2004) PTEN regulatory functions in tumor suppression and cell biology. Med Sci Monit 10(10):RA235–241PubMed Chu EC, Tarnawski AS (2004) PTEN regulatory functions in tumor suppression and cell biology. Med Sci Monit 10(10):RA235–241PubMed
24.
go back to reference Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2(7):489–501PubMedCrossRef Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2(7):489–501PubMedCrossRef
25.
go back to reference Chen W et al (2010) mTOR signaling is activated by FLT3 kinase and promotes survival of FLT3-mutated acute myeloid leukemia cells. Mol Cancer 9:292PubMedCrossRef Chen W et al (2010) mTOR signaling is activated by FLT3 kinase and promotes survival of FLT3-mutated acute myeloid leukemia cells. Mol Cancer 9:292PubMedCrossRef
26.
go back to reference Kharas MG et al (2004) Phosphoinositide 3-kinase signaling is essential for ABL oncogene-mediated transformation of B-lineage cells. Blood 103(11):4268–4275PubMedCrossRef Kharas MG et al (2004) Phosphoinositide 3-kinase signaling is essential for ABL oncogene-mediated transformation of B-lineage cells. Blood 103(11):4268–4275PubMedCrossRef
27.
go back to reference Hu L et al (2003) Downstream effectors of oncogenic ras in multiple myeloma cells. Blood 101(8):3126–3135PubMedCrossRef Hu L et al (2003) Downstream effectors of oncogenic ras in multiple myeloma cells. Blood 101(8):3126–3135PubMedCrossRef
28.
go back to reference Hyun T et al (2000) Loss of PTEN expression leading to high Akt activation in human multiple myelomas. Blood 96(10):3560–3568PubMed Hyun T et al (2000) Loss of PTEN expression leading to high Akt activation in human multiple myelomas. Blood 96(10):3560–3568PubMed
29.
go back to reference Siekierka JJ et al (1989) A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. Nature 341(6244):755–757PubMedCrossRef Siekierka JJ et al (1989) A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. Nature 341(6244):755–757PubMedCrossRef
30.
go back to reference Eng CP, Sehgal SN, Vezina C (1984) Activity of rapamycin (AY-22,989) against transplanted tumors. J Antibiot (Tokyo) 37(10):1231–1237 Eng CP, Sehgal SN, Vezina C (1984) Activity of rapamycin (AY-22,989) against transplanted tumors. J Antibiot (Tokyo) 37(10):1231–1237
31.
go back to reference Hidalgo M et al (2006) A phase I and pharmacokinetic study of temsirolimus (CCI-779) administered intravenously daily for 5 days every 2 weeks to patients with advanced cancer. Clin Cancer Res 12(19):5755–5763PubMedCrossRef Hidalgo M et al (2006) A phase I and pharmacokinetic study of temsirolimus (CCI-779) administered intravenously daily for 5 days every 2 weeks to patients with advanced cancer. Clin Cancer Res 12(19):5755–5763PubMedCrossRef
32.
go back to reference Schuler W et al (1997) SDZ RAD, a new rapamycin derivative: pharmacological properties in vitro and in vivo. Transplantation 64(1):36–42PubMedCrossRef Schuler W et al (1997) SDZ RAD, a new rapamycin derivative: pharmacological properties in vitro and in vivo. Transplantation 64(1):36–42PubMedCrossRef
33.
go back to reference O’Donnell A et al (2008) Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol 26(10):1588–1595PubMedCrossRef O’Donnell A et al (2008) Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol 26(10):1588–1595PubMedCrossRef
34.
go back to reference Mahalingam D et al (2009) Targeting the mTOR pathway using deforolimus in cancer therapy. Future Oncol 5(3):291–303PubMedCrossRef Mahalingam D et al (2009) Targeting the mTOR pathway using deforolimus in cancer therapy. Future Oncol 5(3):291–303PubMedCrossRef
35.
go back to reference Mita MM et al (2008) Phase I trial of the novel mammalian target of rapamycin inhibitor deforolimus (AP23573; MK-8669) administered intravenously daily for 5 days every 2 weeks to patients with advanced malignancies. J Clin Oncol 26(3):361–367PubMedCrossRef Mita MM et al (2008) Phase I trial of the novel mammalian target of rapamycin inhibitor deforolimus (AP23573; MK-8669) administered intravenously daily for 5 days every 2 weeks to patients with advanced malignancies. J Clin Oncol 26(3):361–367PubMedCrossRef
37.
go back to reference Feldman ME et al (2009) Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol 7(2):e38PubMedCrossRef Feldman ME et al (2009) Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol 7(2):e38PubMedCrossRef
38.
go back to reference Garcia-Martinez JM et al (2009) Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem J421(1):29–42CrossRef Garcia-Martinez JM et al (2009) Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem J421(1):29–42CrossRef
39.
go back to reference Thoreen CC et al (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284(12):8023–8032PubMedCrossRef Thoreen CC et al (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284(12):8023–8032PubMedCrossRef
40.
go back to reference Yu K et al (2009) Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res 69(15):6232–6240PubMedCrossRef Yu K et al (2009) Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res 69(15):6232–6240PubMedCrossRef
41.
go back to reference Chresta CM et al (2010) AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res 70(1):288–298PubMedCrossRef Chresta CM et al (2010) AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res 70(1):288–298PubMedCrossRef
42.
go back to reference Chapuis N et al (2010) Dual inhibition of PI3K and mTORC1/2 signaling by NVP-BEZ235 as a new therapeutic strategy for acute myeloid leukemia. Clin Cancer Res 16(22):5424–5435PubMedCrossRef Chapuis N et al (2010) Dual inhibition of PI3K and mTORC1/2 signaling by NVP-BEZ235 as a new therapeutic strategy for acute myeloid leukemia. Clin Cancer Res 16(22):5424–5435PubMedCrossRef
43.
go back to reference Cho DC et al (2010) The efficacy of the novel dual PI3-kinase/mTOR inhibitor NVP-BEZ235 compared with rapamycin in renal cell carcinoma. Clin Cancer Res 16(14):3628–3638PubMedCrossRef Cho DC et al (2010) The efficacy of the novel dual PI3-kinase/mTOR inhibitor NVP-BEZ235 compared with rapamycin in renal cell carcinoma. Clin Cancer Res 16(14):3628–3638PubMedCrossRef
44.
go back to reference Care RS et al (2003) Incidence and prognosis of c-KIT and FLT3 mutations in core binding factor (CBF) acute myeloid leukaemias. Br J Haematol 121(5):775–777PubMedCrossRef Care RS et al (2003) Incidence and prognosis of c-KIT and FLT3 mutations in core binding factor (CBF) acute myeloid leukaemias. Br J Haematol 121(5):775–777PubMedCrossRef
45.
go back to reference Recher C et al (2005) mTOR, a new therapeutic target in acute myeloid leukemia. Cell Cycle 4(11):1540–1549PubMedCrossRef Recher C et al (2005) mTOR, a new therapeutic target in acute myeloid leukemia. Cell Cycle 4(11):1540–1549PubMedCrossRef
46.
go back to reference Xu Q et al (2003) Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 102(3):972–980PubMedCrossRef Xu Q et al (2003) Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 102(3):972–980PubMedCrossRef
47.
go back to reference Xu Q, Thompson JE, Carroll M (2005) mTOR regulates cell survival after etoposide treatment in primary AML cells. Blood 106(13):4261–4268PubMedCrossRef Xu Q, Thompson JE, Carroll M (2005) mTOR regulates cell survival after etoposide treatment in primary AML cells. Blood 106(13):4261–4268PubMedCrossRef
48.
go back to reference Chen W et al (2010) mTOR signaling is activated by FLT3 kinase and promotes survival of FLT3-mutated acute myeloid leukemia cells. Mol Cancer 9:292PubMedCrossRef Chen W et al (2010) mTOR signaling is activated by FLT3 kinase and promotes survival of FLT3-mutated acute myeloid leukemia cells. Mol Cancer 9:292PubMedCrossRef
49.
go back to reference Recher C et al (2005) Antileukemic activity of rapamycin in acute myeloid leukemia. Blood 105(6):2527–2534PubMedCrossRef Recher C et al (2005) Antileukemic activity of rapamycin in acute myeloid leukemia. Blood 105(6):2527–2534PubMedCrossRef
50.
go back to reference Zeng Z et al (2007) Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood 109(8):3509–3512PubMedCrossRef Zeng Z et al (2007) Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood 109(8):3509–3512PubMedCrossRef
51.
go back to reference Perl AE et al (2009) A phase I study of the mammalian target of rapamycin inhibitor sirolimus and MEC chemotherapy in relapsed and refractory acute myelogenous leukemia. Clin Cancer Res 15(21):6732–6739PubMedCrossRef Perl AE et al (2009) A phase I study of the mammalian target of rapamycin inhibitor sirolimus and MEC chemotherapy in relapsed and refractory acute myelogenous leukemia. Clin Cancer Res 15(21):6732–6739PubMedCrossRef
52.
go back to reference Guzman ML et al (2001) Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 98(8):2301–2307PubMedCrossRef Guzman ML et al (2001) Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 98(8):2301–2307PubMedCrossRef
53.
go back to reference Nyakern M et al (2006) Frequent elevation of Akt kinase phosphorylation in blood marrow and peripheral blood mononuclear cells from high-risk myelodysplastic syndrome patients. Leukemia 20(2):230–238PubMedCrossRef Nyakern M et al (2006) Frequent elevation of Akt kinase phosphorylation in blood marrow and peripheral blood mononuclear cells from high-risk myelodysplastic syndrome patients. Leukemia 20(2):230–238PubMedCrossRef
54.
go back to reference Follo MY et al (2007) The Akt/mammalian target of rapamycin signal transduction pathway is activated in high-risk myelodysplastic syndromes and influences cell survival and proliferation. Cancer Res 67(9):4287–4294PubMedCrossRef Follo MY et al (2007) The Akt/mammalian target of rapamycin signal transduction pathway is activated in high-risk myelodysplastic syndromes and influences cell survival and proliferation. Cancer Res 67(9):4287–4294PubMedCrossRef
55.
go back to reference Yee KW et al (2006) Phase I/II study of the mammalian target of rapamycin inhibitor everolimus (RAD001) in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res 12(17):5165–5173PubMedCrossRef Yee KW et al (2006) Phase I/II study of the mammalian target of rapamycin inhibitor everolimus (RAD001) in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res 12(17):5165–5173PubMedCrossRef
56.
go back to reference Younes H et al (2007) Targeting the phosphatidylinositol 3-kinase pathway in multiple myeloma. Clin Cancer Res 13(13):3771–3775PubMedCrossRef Younes H et al (2007) Targeting the phosphatidylinositol 3-kinase pathway in multiple myeloma. Clin Cancer Res 13(13):3771–3775PubMedCrossRef
57.
go back to reference Hsu J et al (2001) The AKT kinase is activated in multiple myeloma tumor cells. Blood 98(9):2853–2855PubMedCrossRef Hsu J et al (2001) The AKT kinase is activated in multiple myeloma tumor cells. Blood 98(9):2853–2855PubMedCrossRef
58.
go back to reference Frost P et al (2004) In vivo antitumor effects of the mTOR inhibitor CCI-779 against human multiple myeloma cells in a xenograft model. Blood 104(13):4181–4187PubMedCrossRef Frost P et al (2004) In vivo antitumor effects of the mTOR inhibitor CCI-779 against human multiple myeloma cells in a xenograft model. Blood 104(13):4181–4187PubMedCrossRef
59.
go back to reference Stromberg T et al (2004) Rapamycin sensitizes multiple myeloma cells to apoptosis induced by dexamethasone. Blood 103(8):3138–3147PubMedCrossRef Stromberg T et al (2004) Rapamycin sensitizes multiple myeloma cells to apoptosis induced by dexamethasone. Blood 103(8):3138–3147PubMedCrossRef
60.
go back to reference Wan X et al (2007) Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene 26(13):1932–1940PubMedCrossRef Wan X et al (2007) Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene 26(13):1932–1940PubMedCrossRef
61.
go back to reference Hoang B et al (2010) Targeting TORC2 in multiple myeloma with a new mTOR kinase inhibitor. Blood 116(22):4560–4568PubMedCrossRef Hoang B et al (2010) Targeting TORC2 in multiple myeloma with a new mTOR kinase inhibitor. Blood 116(22):4560–4568PubMedCrossRef
63.
go back to reference Mayerhofer M et al (2002) BCR/ABL induces expression of vascular endothelial growth factor and its transcriptional activator, hypoxia inducible factor-1alpha, through a pathway involving phosphoinositide 3-kinase and the mammalian target of rapamycin. Blood 100(10):3767–3775PubMedCrossRef Mayerhofer M et al (2002) BCR/ABL induces expression of vascular endothelial growth factor and its transcriptional activator, hypoxia inducible factor-1alpha, through a pathway involving phosphoinositide 3-kinase and the mammalian target of rapamycin. Blood 100(10):3767–3775PubMedCrossRef
64.
go back to reference Ly C et al (2003) Bcr-Abl kinase modulates the translation regulators ribosomal protein S6 and 4E-BP1 in chronic myelogenous leukemia cells via the mammalian target of rapamycin. Cancer Res 63(18):5716–5722PubMed Ly C et al (2003) Bcr-Abl kinase modulates the translation regulators ribosomal protein S6 and 4E-BP1 in chronic myelogenous leukemia cells via the mammalian target of rapamycin. Cancer Res 63(18):5716–5722PubMed
65.
go back to reference Kim JH et al (2005) Activation of the PI3K/mTOR pathway by BCR-ABL contributes to increased production of reactive oxygen species. Blood 105(4):1717–1723PubMedCrossRef Kim JH et al (2005) Activation of the PI3K/mTOR pathway by BCR-ABL contributes to increased production of reactive oxygen species. Blood 105(4):1717–1723PubMedCrossRef
66.
go back to reference Carayol N et al (2008) Suppression of programmed cell death 4 (PDCD4) protein expression by BCR-ABL-regulated engagement of the mTOR/p70 S6 kinase pathway. J Biol Chem 283(13):8601–8610PubMedCrossRef Carayol N et al (2008) Suppression of programmed cell death 4 (PDCD4) protein expression by BCR-ABL-regulated engagement of the mTOR/p70 S6 kinase pathway. J Biol Chem 283(13):8601–8610PubMedCrossRef
67.
go back to reference Burchert A et al (2005) Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development. Leukemia 19(10):1774–1782PubMedCrossRef Burchert A et al (2005) Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development. Leukemia 19(10):1774–1782PubMedCrossRef
68.
go back to reference Mohi MG et al (2004) Combination of rapamycin and protein tyrosine kinase (PTK) inhibitors for the treatment of leukemias caused by oncogenic PTKs. Proc Natl Acad Sci USA 101(9):3130–3135PubMedCrossRef Mohi MG et al (2004) Combination of rapamycin and protein tyrosine kinase (PTK) inhibitors for the treatment of leukemias caused by oncogenic PTKs. Proc Natl Acad Sci USA 101(9):3130–3135PubMedCrossRef
69.
go back to reference Mancini M et al (2010) mTOR inhibitor RAD001 (Everolimus) enhances the effects of imatinib in chronic myeloid leukemia by raising the nuclear expression of c-ABL protein. Leuk Res 34(5):641–648PubMedCrossRef Mancini M et al (2010) mTOR inhibitor RAD001 (Everolimus) enhances the effects of imatinib in chronic myeloid leukemia by raising the nuclear expression of c-ABL protein. Leuk Res 34(5):641–648PubMedCrossRef
70.
go back to reference Carayol N et al (2010) Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells. Proc Natl Acad Sci USA 107(28):12469–12474PubMedCrossRef Carayol N et al (2010) Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells. Proc Natl Acad Sci USA 107(28):12469–12474PubMedCrossRef
71.
go back to reference Ringshausen I, Peschel DT (2005) Mammalian target of rapamycin (mTOR) inhibition in chronic lymphocytic B-cell leukemia: a new therapeutic option. Leuk Lymphoma 46(1):11–19PubMedCrossRef Ringshausen I, Peschel DT (2005) Mammalian target of rapamycin (mTOR) inhibition in chronic lymphocytic B-cell leukemia: a new therapeutic option. Leuk Lymphoma 46(1):11–19PubMedCrossRef
72.
go back to reference Decker T et al (2003) Rapamycin-induced G1 arrest in cycling B-CLL cells is associated with reduced expression of cyclin D3, cyclin E, cyclin A, and survivin. Blood 101(1):278–285PubMedCrossRef Decker T et al (2003) Rapamycin-induced G1 arrest in cycling B-CLL cells is associated with reduced expression of cyclin D3, cyclin E, cyclin A, and survivin. Blood 101(1):278–285PubMedCrossRef
73.
go back to reference Zanesi N et al (2006) Effect of rapamycin on mouse chronic lymphocytic leukemia and the development of nonhematopoietic malignancies in Emu-TCL1 transgenic mice. Cancer Res 66(2):915–920PubMedCrossRef Zanesi N et al (2006) Effect of rapamycin on mouse chronic lymphocytic leukemia and the development of nonhematopoietic malignancies in Emu-TCL1 transgenic mice. Cancer Res 66(2):915–920PubMedCrossRef
74.
go back to reference Decker T et al (2009) A pilot trial of the mTOR (mammalian target of rapamycin) inhibitor RAD001 in patients with advanced B-CLL. Ann Hematol 88(3):221–227PubMedCrossRef Decker T et al (2009) A pilot trial of the mTOR (mammalian target of rapamycin) inhibitor RAD001 in patients with advanced B-CLL. Ann Hematol 88(3):221–227PubMedCrossRef
75.
go back to reference Zent CS et al (2010) The treatment of recurrent/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL) with everolimus results in clinical responses and mobilization of CLL cells into the circulation. Cancer 116(9):2201–2207PubMed Zent CS et al (2010) The treatment of recurrent/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL) with everolimus results in clinical responses and mobilization of CLL cells into the circulation. Cancer 116(9):2201–2207PubMed
76.
go back to reference Ansell SM et al (2008) Low-dose, single-agent temsirolimus for relapsed mantle cell lymphoma: a phase 2 trial in the North Central Cancer Treatment Group. Cancer 113(3):508–514PubMedCrossRef Ansell SM et al (2008) Low-dose, single-agent temsirolimus for relapsed mantle cell lymphoma: a phase 2 trial in the North Central Cancer Treatment Group. Cancer 113(3):508–514PubMedCrossRef
77.
go back to reference Witzig TE et al (2005) Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma. J Clin Oncol 23(23):5347–5356PubMedCrossRef Witzig TE et al (2005) Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma. J Clin Oncol 23(23):5347–5356PubMedCrossRef
78.
go back to reference Hess G et al (2009) Phase III study to evaluate temsirolimus compared with investigator’s choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J Clin Oncol 27(23):3822–3829PubMedCrossRef Hess G et al (2009) Phase III study to evaluate temsirolimus compared with investigator’s choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J Clin Oncol 27(23):3822–3829PubMedCrossRef
79.
go back to reference Leseux L et al (2006) Syk-dependent mTOR activation in follicular lymphoma cells. Blood 108(13):4156–4162PubMedCrossRef Leseux L et al (2006) Syk-dependent mTOR activation in follicular lymphoma cells. Blood 108(13):4156–4162PubMedCrossRef
80.
go back to reference Ruggero D et al (2004) The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med 10(5):484–486PubMedCrossRef Ruggero D et al (2004) The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med 10(5):484–486PubMedCrossRef
81.
go back to reference Wanner K et al (2006) Mammalian target of rapamycin inhibition induces cell cycle arrest in diffuse large B cell lymphoma (DLBCL) cells and sensitises DLBCL cells to rituximab. Br J Haematol 134(5):475–484PubMedCrossRef Wanner K et al (2006) Mammalian target of rapamycin inhibition induces cell cycle arrest in diffuse large B cell lymphoma (DLBCL) cells and sensitises DLBCL cells to rituximab. Br J Haematol 134(5):475–484PubMedCrossRef
82.
go back to reference Smith SM et al (2010) Temsirolimus has activity in non-mantle cell non-Hodgkin’s lymphoma subtypes: The University of Chicago phase II consortium. J Clin Oncol 28(31):4740–4746PubMedCrossRef Smith SM et al (2010) Temsirolimus has activity in non-mantle cell non-Hodgkin’s lymphoma subtypes: The University of Chicago phase II consortium. J Clin Oncol 28(31):4740–4746PubMedCrossRef
83.
go back to reference Armand P et al (2008) Improved survival in lymphoma patients receiving sirolimus for graft-versus-host disease prophylaxis after allogeneic hematopoietic stem-cell transplantation with reduced-intensity conditioning. J Clin Oncol 26(35):5767–5774PubMedCrossRef Armand P et al (2008) Improved survival in lymphoma patients receiving sirolimus for graft-versus-host disease prophylaxis after allogeneic hematopoietic stem-cell transplantation with reduced-intensity conditioning. J Clin Oncol 26(35):5767–5774PubMedCrossRef
84.
go back to reference Witzig TE et al (2011) A phase II trial of the oral mTOR inhibitor everolimus in relapsed aggressive lymphoma. Leukemia 25(2):341–347PubMedCrossRef Witzig TE et al (2011) A phase II trial of the oral mTOR inhibitor everolimus in relapsed aggressive lymphoma. Leukemia 25(2):341–347PubMedCrossRef
85.
go back to reference Johnston PB et al (2010) A Phase II trial of the oral mTOR inhibitor everolimus in relapsed Hodgkin lymphoma. Am J Hematol 85(5):320–324PubMed Johnston PB et al (2010) A Phase II trial of the oral mTOR inhibitor everolimus in relapsed Hodgkin lymphoma. Am J Hematol 85(5):320–324PubMed
86.
go back to reference Zent CS et al (2010) The treatment of recurrent/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL) with everolimus results in clinical responses and mobilization of CLL cells into the circulation. Cancer 116(9):2201–2207PubMed Zent CS et al (2010) The treatment of recurrent/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL) with everolimus results in clinical responses and mobilization of CLL cells into the circulation. Cancer 116(9):2201–2207PubMed
87.
go back to reference Smith SM et al (2010) Temsirolimus has activity in non-mantle cell non-Hodgkin’s lymphoma subtypes: The University of Chicago phase II consortium. J Clin Oncol 28(31):4740–4746PubMedCrossRef Smith SM et al (2010) Temsirolimus has activity in non-mantle cell non-Hodgkin’s lymphoma subtypes: The University of Chicago phase II consortium. J Clin Oncol 28(31):4740–4746PubMedCrossRef
88.
go back to reference Rizzieri DA et al (2008) A phase 2 clinical trial of deforolimus (AP23573, MK-8669), a novel mammalian target of rapamycin inhibitor, in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res 14(9):2756–2762PubMedCrossRef Rizzieri DA et al (2008) A phase 2 clinical trial of deforolimus (AP23573, MK-8669), a novel mammalian target of rapamycin inhibitor, in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res 14(9):2756–2762PubMedCrossRef
Metadata
Title
Mammalian target of rapamycin as a target in hematological malignancies
Authors
Kevin R. Kelly
Julie H. Rowe
Swaminathan Padmanabhan
Steffan T. Nawrocki
Jennifer S. Carew
Publication date
01-03-2011
Publisher
Springer-Verlag
Published in
Targeted Oncology / Issue 1/2011
Print ISSN: 1776-2596
Electronic ISSN: 1776-260X
DOI
https://doi.org/10.1007/s11523-011-0175-8

Other articles of this Issue 1/2011

Targeted Oncology 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine