Skip to main content
Top
Published in: HSS Journal ® 1/2011

01-02-2011 | ORIGINAL ARTICLE

The Accuracy of an Automasking Algorithm in Plantar Pressure Measurements

Authors: Scott J. Ellis, MD, Hill Stoecklein, BS, Joseph C. Yu, BS, Grisha Syrkin, BS, Howard Hillstrom, PhD, Jonathan T. Deland, MD

Published in: HSS Journal ® | Issue 1/2011

Login to get access

Abstract

Masking algorithms provide a way to analyze plantar pressure parameters based on distinct anatomical regions of the foot. No study has addressed their accuracy. The purpose of this study was to determine the accuracy of the Novel® ten-region standard masking algorithm in both dynamic and static measurements in normal feet. Static and dynamic plantar pressure measurements were collected from ten normal subjects (20 ft) with and without 10-mm radiopaque markers placed under the first through fifth metatarsal heads, fifth metatarsal base, and first proximal phalanx. The automask was then applied to subdivide the foot into distinct anatomical areas. Weight-bearing AP radiographs were obtained with and without markers. Plantar pressures and radiographs were overlaid. The percent accuracy of each marker within its appropriate mask region was calculated. The average accuracies of the automasking algorithm regions for dynamic and static measurements, respectively, were 98.8% and 90.4% (1MH), 89.9% and 80.6% (2MH), 98.6% and 81.4% (3MH), 96.8% and 82.3% (4MH), 93.1% and 80.8% (5MH), 97.3% and 92.5% (5MB), and 91.2% and 64.2% (1PPH). Marker presence did not alter foot structure or function as determined by intermetatarsal angles (range, p = 0.361 to p = 0.649) and the center of pressure excursion index (p = 0.727), respectively. The automasking algorithm accurately identifies most foot regions in normal feet, particularly in gait. Such accuracy may be reduced in the setting of foot deformity. Understanding the accuracy of masking algorithms may help guide the interpretation of plantar pressure measurements and ultimately both conservative and operative treatment decisions.
Literature
1.
go back to reference Bertsch C, Unger H, Winkelmann W, Rosenbaum D. Evaluation of early walking patterns from plantar pressure distribution measurements. First year results of 42 children. Gait Posture. 2004;3:235–242.CrossRef Bertsch C, Unger H, Winkelmann W, Rosenbaum D. Evaluation of early walking patterns from plantar pressure distribution measurements. First year results of 42 children. Gait Posture. 2004;3:235–242.CrossRef
2.
go back to reference Brophy RH, Gamradt SC, Ellis SJ, Barnes RP, Rodeo SA, Warren RF, Hillstrom H. Effect of turf toe on foot contact pressures in professional American football players. Foot Ankle Int. 2009;5:405–409.CrossRef Brophy RH, Gamradt SC, Ellis SJ, Barnes RP, Rodeo SA, Warren RF, Hillstrom H. Effect of turf toe on foot contact pressures in professional American football players. Foot Ankle Int. 2009;5:405–409.CrossRef
3.
go back to reference Bryant A, Singer K, Tinley P. Comparison of the reliability of plantar pressure measurements using the two-step and midgait methods of data collection. Foot Ankle Int. 1999;10:646–650. Bryant A, Singer K, Tinley P. Comparison of the reliability of plantar pressure measurements using the two-step and midgait methods of data collection. Foot Ankle Int. 1999;10:646–650.
4.
go back to reference Burns J, Crosbie J, Hunt A, Ouvrier R. The effect of pes cavus on foot pain and plantar pressure. Clin Biomech (Bristol, Avon). 2005;9:877–882.CrossRef Burns J, Crosbie J, Hunt A, Ouvrier R. The effect of pes cavus on foot pain and plantar pressure. Clin Biomech (Bristol, Avon). 2005;9:877–882.CrossRef
5.
go back to reference Bus SA, de Lange A. A comparison of the 1-step, 2-step, and 3-step protocols for obtaining barefoot plantar pressure data in the diabetic neuropathic foot. Clin Biomech (Bristol, Avon). 2005;9:892–899.CrossRef Bus SA, de Lange A. A comparison of the 1-step, 2-step, and 3-step protocols for obtaining barefoot plantar pressure data in the diabetic neuropathic foot. Clin Biomech (Bristol, Avon). 2005;9:892–899.CrossRef
6.
go back to reference Cavanagh PR, Rodgers MM, Iiboshi A. Pressure distribution under symptom-free feet during barefoot standing. Foot Ankle. 1987;5:262–276. Cavanagh PR, Rodgers MM, Iiboshi A. Pressure distribution under symptom-free feet during barefoot standing. Foot Ankle. 1987;5:262–276.
7.
go back to reference Cavanagh PR, Ulbrecht JS. Clinical plantar pressure measurement in diabetes; rationale and methodology. Foot. 1994:123–135. Cavanagh PR, Ulbrecht JS. Clinical plantar pressure measurement in diabetes; rationale and methodology. Foot. 1994:123–135.
8.
go back to reference Chang CH, Miller F, Schuyler J. Dynamic pedobarograph in evaluation of varus and valgus foot deformities. J Pediatr Orthop. 2002;6:813–818.CrossRef Chang CH, Miller F, Schuyler J. Dynamic pedobarograph in evaluation of varus and valgus foot deformities. J Pediatr Orthop. 2002;6:813–818.CrossRef
9.
go back to reference Davitt JS, MacWilliams BA, Armstrong PF. Plantar pressure and radiographic changes after distal calcaneal lengthening in children and adolescents. J Pediatr Orthop. 2001;1:70–75. Davitt JS, MacWilliams BA, Armstrong PF. Plantar pressure and radiographic changes after distal calcaneal lengthening in children and adolescents. J Pediatr Orthop. 2001;1:70–75.
10.
go back to reference Ellis SJ, Hillstrom H, Cheng R, Lipman J, Garrison G, Deland JT. The development of an intraoperative plantar pressure assessment device. Foot Ankle Int. 2009;4:333–340.CrossRef Ellis SJ, Hillstrom H, Cheng R, Lipman J, Garrison G, Deland JT. The development of an intraoperative plantar pressure assessment device. Foot Ankle Int. 2009;4:333–340.CrossRef
11.
go back to reference Firth J, Turner D, Smith W, Woodburn J, Helliwell P. The validity and reliability of PressureStat for measuring plantar foot pressures in patients with rheumatoid arthritis. Clin Biomech (Bristol, Avon). 2007;5:603–606.CrossRef Firth J, Turner D, Smith W, Woodburn J, Helliwell P. The validity and reliability of PressureStat for measuring plantar foot pressures in patients with rheumatoid arthritis. Clin Biomech (Bristol, Avon). 2007;5:603–606.CrossRef
12.
go back to reference Gurney JK, Kersting UG, Rosenbaum D. Between-day reliability of repeated plantar pressure distribution measurements in a normal population. Gait Posture. 2008;4:706–709.CrossRef Gurney JK, Kersting UG, Rosenbaum D. Between-day reliability of repeated plantar pressure distribution measurements in a normal population. Gait Posture. 2008;4:706–709.CrossRef
13.
go back to reference Kanatli U, Yetkin H, Simsek A, Besli K, Ozturk A. The relationship of the heel pad compressibility and plantar pressure distribution. Foot Ankle Int. 2001;8:662–665. Kanatli U, Yetkin H, Simsek A, Besli K, Ozturk A. The relationship of the heel pad compressibility and plantar pressure distribution. Foot Ankle Int. 2001;8:662–665.
14.
go back to reference Keenan AM, Bach TM. Clinicians' assessment of the hindfoot: A study of reliability. Foot Ankle Int. 2006;6:451–60. Keenan AM, Bach TM. Clinicians' assessment of the hindfoot: A study of reliability. Foot Ankle Int. 2006;6:451–60.
15.
go back to reference Kernozek TW, LaMott EE, Dancisak MJ. Reliability of an in-shoe pressure measurement system during treadmill walking. Foot Ankle Int. 1996;4:204–209. Kernozek TW, LaMott EE, Dancisak MJ. Reliability of an in-shoe pressure measurement system during treadmill walking. Foot Ankle Int. 1996;4:204–209.
16.
go back to reference Kernozek TW, Zimmer KA. Reliability and running speed effects of in-shoe loading measurements during slow treadmill running. Foot Ankle Int. 2000;9:749–752. Kernozek TW, Zimmer KA. Reliability and running speed effects of in-shoe loading measurements during slow treadmill running. Foot Ankle Int. 2000;9:749–752.
17.
go back to reference Ledoux WR, Hillstrom HJ. The distributed plantar vertical force of neutrally aligned and pes planus feet. Gait Posture. 2002;1:1–9.CrossRef Ledoux WR, Hillstrom HJ. The distributed plantar vertical force of neutrally aligned and pes planus feet. Gait Posture. 2002;1:1–9.CrossRef
18.
go back to reference Murphy DF, Beynnon BD, Michelson JD, Vacek PM. Efficacy of plantar loading parameters during gait in terms of reliability, variability, effect of gender and relationship between contact area and plantar pressure. Foot Ankle Int. 2005;2:171–179. Murphy DF, Beynnon BD, Michelson JD, Vacek PM. Efficacy of plantar loading parameters during gait in terms of reliability, variability, effect of gender and relationship between contact area and plantar pressure. Foot Ankle Int. 2005;2:171–179.
19.
go back to reference Nagel A, Fernholz F, Kibele C, Rosenbaum D. Long distance running increases plantar pressures beneath the metatarsal heads: A barefoot walking investigation of 200 marathon runners. Gait Posture. 2008;1:152–155.CrossRef Nagel A, Fernholz F, Kibele C, Rosenbaum D. Long distance running increases plantar pressures beneath the metatarsal heads: A barefoot walking investigation of 200 marathon runners. Gait Posture. 2008;1:152–155.CrossRef
20.
go back to reference Nicol K, Hennig EM. Measurement of pressure distribution by means of a flexible large surface mat. In: Asmussen E, Jorgenson K, eds. Biomechanics. IVA ed. Baltimore: University Park Press; 1978:374–380. Nicol K, Hennig EM. Measurement of pressure distribution by means of a flexible large surface mat. In: Asmussen E, Jorgenson K, eds. Biomechanics. IVA ed. Baltimore: University Park Press; 1978:374–380.
21.
go back to reference Novel gmbh. Novel Scientific Manual. 12.3rd ed. Munich, Germany: Novel gmbh; May 2004. Novel gmbh. Novel Scientific Manual. 12.3rd ed. Munich, Germany: Novel gmbh; May 2004.
22.
go back to reference Oeffinger DJ, Pectol RW,Jr, Tylkowski CM. Foot pressure and radiographic outcome measures of lateral column lengthening for pes planovalgus deformity. Gait Posture. 2000;3:189–195.CrossRef Oeffinger DJ, Pectol RW,Jr, Tylkowski CM. Foot pressure and radiographic outcome measures of lateral column lengthening for pes planovalgus deformity. Gait Posture. 2000;3:189–195.CrossRef
23.
go back to reference Richter M, Frink M, Zech S, Vanin N, Geerling J, Droste P, Krettek C. Intraoperative pedography: A validated method for static intraoperative biomechanical assessment. Foot Ankle Int. 2006;10:833–842. Richter M, Frink M, Zech S, Vanin N, Geerling J, Droste P, Krettek C. Intraoperative pedography: A validated method for static intraoperative biomechanical assessment. Foot Ankle Int. 2006;10:833–842.
24.
go back to reference Segal A, Rohr E, Orendurff M, Shofer J, O’Brien M, Sangeorzan B. The effect of walking speed on peak plantar pressure. Foot Ankle Int. 2004;12:926–933. Segal A, Rohr E, Orendurff M, Shofer J, O’Brien M, Sangeorzan B. The effect of walking speed on peak plantar pressure. Foot Ankle Int. 2004;12:926–933.
25.
go back to reference Singh N, Armstrong DG, Lipsky BA. Preventing foot ulcers in patients with diabetes. JAMA. 2005;2:217–228.CrossRef Singh N, Armstrong DG, Lipsky BA. Preventing foot ulcers in patients with diabetes. JAMA. 2005;2:217–228.CrossRef
26.
go back to reference Song J, Hillstrom HJ, Secord D, Levitt J. Foot type biomechanics. comparison of planus and rectus foot types. J Am Podiatr Med Assoc. 1996;1:16–23. Song J, Hillstrom HJ, Secord D, Levitt J. Foot type biomechanics. comparison of planus and rectus foot types. J Am Podiatr Med Assoc. 1996;1:16–23.
27.
go back to reference Stebbins JA, Harrington ME, Giacomozzi C, Thompson N, Zavatsky A, Theologis TN. Assessment of sub-division of plantar pressure measurement in children. Gait Posture. 2005;4:372–376.CrossRef Stebbins JA, Harrington ME, Giacomozzi C, Thompson N, Zavatsky A, Theologis TN. Assessment of sub-division of plantar pressure measurement in children. Gait Posture. 2005;4:372–376.CrossRef
28.
go back to reference van der Leeden M, Dekker JH, Siemonsma PC, Lek-Westerhof SS, Steultjens MP. Reproducibility of plantar pressure measurements in patients with chronic arthritis: A comparison of one-step, two-step, and three-step protocols and an estimate of the number of measurements required. Foot Ankle Int. 2004;10:739–744. van der Leeden M, Dekker JH, Siemonsma PC, Lek-Westerhof SS, Steultjens MP. Reproducibility of plantar pressure measurements in patients with chronic arthritis: A comparison of one-step, two-step, and three-step protocols and an estimate of the number of measurements required. Foot Ankle Int. 2004;10:739–744.
29.
go back to reference Wearing SC, Urry SR, Smeathers JE. Ground reaction forces at discrete sites of the foot derived from pressure plate measurements. Foot Ankle Int. 2001;8:653–661. Wearing SC, Urry SR, Smeathers JE. Ground reaction forces at discrete sites of the foot derived from pressure plate measurements. Foot Ankle Int. 2001;8:653–661.
Metadata
Title
The Accuracy of an Automasking Algorithm in Plantar Pressure Measurements
Authors
Scott J. Ellis, MD
Hill Stoecklein, BS
Joseph C. Yu, BS
Grisha Syrkin, BS
Howard Hillstrom, PhD
Jonathan T. Deland, MD
Publication date
01-02-2011
Publisher
Springer-Verlag
Published in
HSS Journal ® / Issue 1/2011
Print ISSN: 1556-3316
Electronic ISSN: 1556-3324
DOI
https://doi.org/10.1007/s11420-010-9185-9

Other articles of this Issue 1/2011

HSS Journal ® 1/2011 Go to the issue