Skip to main content
Top
Published in: Molecular Imaging and Biology 5/2020

Open Access 01-10-2020 | Checkpoint Inhibitors | Research Article

Granzyme B PET Imaging of Immune Checkpoint Inhibitor Combinations in Colon Cancer Phenotypes

Authors: J. L. Goggi, Y. X. Tan, S. V. Hartimath, B. Jieu, Y. Y. Hwang, L. Jiang, R. Boominathan, P. Cheng, T. Y. Yuen, H. X. Chin, J. R. Tang, A. Larbi, A. M. Chacko, L. Renia, C. Johannes, Edward G. Robins

Published in: Molecular Imaging and Biology | Issue 5/2020

Login to get access

Abstract

Purpose

Immune checkpoint inhibitor (ICI) monotherapy and combination regimens are being actively pursued as strategies to improve durable response rates in cancer patients. However, the biology surrounding combination therapies is not well understood and may increase the likelihood of immune-mediated adverse events. Accurate stratification of ICI response by non-invasive PET imaging may help ensure safe therapy management across a wide number of cancer phenotypes.

Procedures

We have assessed the ability of a fluorine-labelled peptide, [18F]AlF-mNOTA-GZP, targeting granzyme B, to stratify ICI response in two syngeneic models of colon cancer, CT26 and MC38. In vivo tumour uptake of [18F]AlF-mNOTA-GZP following ICI monotherapy, or in combination with PD-1 was characterised and correlated with changes in tumour-associated immune cell populations.

Results

[18F]AlF-mNOTA-GZP showed good predictive ability and correlated well with changes in tumour-associated T cells, especially CD8+ T cells; however, overall uptake and response to monotherapy or combination therapies was very different in the CT26 and MC38 tumours, likely due to the immunostimulatory environment imbued by the MSI-high phenotype in MC38 tumours.

Conclusions

[18F]AlF-mNOTA-GZP uptake correlates well with changes in CD8+ T cell populations and is able to stratify tumour response to a range of ICIs administered as monotherapies or in combination. However, tracer uptake can be significantly affected by preexisting phenotypic abnormalities potentially confusing data interpretation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Brahmer JR, Pardoll DM (2013) Immune checkpoint inhibitors: making immunotherapy a reality for the treatment of lung cancer. Cancer Immunol Res 1(2):85–91CrossRef Brahmer JR, Pardoll DM (2013) Immune checkpoint inhibitors: making immunotherapy a reality for the treatment of lung cancer. Cancer Immunol Res 1(2):85–91CrossRef
2.
go back to reference Llosa NJ, Luber B, Siegel N, Awan AH, Oke T, Zhu Q, Bartlett BR, Aulakh LK, Thompson ED, Jaffee EM, Durham JN, Sears CL, Le DT, Diaz Jr LA, Pardoll DM, Wang H, Housseau F and Anders RA (2019) Immunopathologic stratification of colorectal cancer for checkpoint blockade immunotherapy. Cancer Immunol Res. https://doi.org/10.1158/2326-6066.CIR-18-0927 Llosa NJ, Luber B, Siegel N, Awan AH, Oke T, Zhu Q, Bartlett BR, Aulakh LK, Thompson ED, Jaffee EM, Durham JN, Sears CL, Le DT, Diaz Jr LA, Pardoll DM,  Wang H, Housseau F and Anders RA (2019) Immunopathologic stratification of colorectal cancer for checkpoint blockade immunotherapy. Cancer Immunol Res. https://​doi.​org/​10.​1158/​2326-6066.​CIR-18-0927
3.
go back to reference Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264CrossRef Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264CrossRef
4.
go back to reference Yang Y (2015) Cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Invest 125(9):3335–3337CrossRef Yang Y (2015) Cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Invest 125(9):3335–3337CrossRef
5.
go back to reference Khair DO, Bax HJ, Mele S, Crescioli S, Pellizzari G, Khiabany A, Nakamura M, Harris RJ, French E, Hoffmann RM, Williams IP, Cheung A, Thair B, Beales CT, Touizer E, Signell AW, Tasnova NL, Spicer JF, Josephs DH, Geh JL, MacKenzie Ross A, Healy C, Papa S, Lacy KE, Karagiannis SN (2019) Combining immune checkpoint inhibitors: established and emerging targets and strategies to improve outcomes in melanoma. Front Immunol 10:453CrossRef Khair DO, Bax HJ, Mele S, Crescioli S, Pellizzari G, Khiabany A, Nakamura M, Harris RJ, French E, Hoffmann RM, Williams IP, Cheung A, Thair B, Beales CT, Touizer E, Signell AW, Tasnova NL, Spicer JF, Josephs DH, Geh JL, MacKenzie Ross A, Healy C, Papa S, Lacy KE, Karagiannis SN (2019) Combining immune checkpoint inhibitors: established and emerging targets and strategies to improve outcomes in melanoma. Front Immunol 10:453CrossRef
6.
go back to reference Michel L, Rassaf T, Totzeck M (2019) Cardiotoxicity from immune checkpoint inhibitors. Int J Cardiol Heart Vasc 25:100420PubMedPubMedCentral Michel L, Rassaf T, Totzeck M (2019) Cardiotoxicity from immune checkpoint inhibitors. Int J Cardiol Heart Vasc 25:100420PubMedPubMedCentral
7.
go back to reference Puhr HC, Ilhan-Mutlu A (2019) New emerging targets in cancer immunotherapy: the role of LAG3. ESMO Open 4(2):e000482CrossRef Puhr HC, Ilhan-Mutlu A (2019) New emerging targets in cancer immunotherapy: the role of LAG3. ESMO Open 4(2):e000482CrossRef
8.
go back to reference He Y, Cao J, Zhao C, Li X, Zhou C, Hirsch FR (2018) TIM-3, a promising target for cancer immunotherapy. OncoTargets Ther 11:7005–7009CrossRef He Y, Cao J, Zhao C, Li X, Zhou C, Hirsch FR (2018) TIM-3, a promising target for cancer immunotherapy. OncoTargets Ther 11:7005–7009CrossRef
9.
go back to reference Solinas C, Migliori E, De Silva P, Willard-Gallo K (2019) LAG3: The biological processes that motivate targeting this immune checkpoint molecule in human cancer. Cancers 11(8):1213 Solinas C, Migliori E, De Silva P, Willard-Gallo K (2019) LAG3: The biological processes that motivate targeting this immune checkpoint molecule in human cancer. Cancers 11(8):1213
10.
go back to reference Gagliani N, Magnani CF, Huber S, Gianolini ME, Pala M, Licona-Limon P, Guo B, Herbert D'BR, Bulfone A, Trentini F, di Serio C, Bacchetta R, Andreani M, Brockmann L, Gregori S, Flavell RA, Roncarolo MG (2013) Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat Med 19(6):739–746CrossRef Gagliani N, Magnani CF, Huber S, Gianolini ME, Pala M, Licona-Limon P, Guo B, Herbert D'BR, Bulfone A, Trentini F, di Serio C, Bacchetta R, Andreani M, Brockmann L, Gregori S, Flavell RA, Roncarolo MG (2013) Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat Med 19(6):739–746CrossRef
11.
go back to reference Linch SN, McNamara MJ, Redmond WL (2015) OX40 agonists and combination immunotherapy: putting the pedal to the metal. Front Oncol 5:34CrossRef Linch SN, McNamara MJ, Redmond WL (2015) OX40 agonists and combination immunotherapy: putting the pedal to the metal. Front Oncol 5:34CrossRef
12.
go back to reference Catalano I, Grassi E, Bertotti A, Trusolino L (2019) Immunogenomics of colorectal tumors: facts and hypotheses on an evolving saga. Trends Cancer 5(12):779–788CrossRef Catalano I, Grassi E, Bertotti A, Trusolino L (2019) Immunogenomics of colorectal tumors: facts and hypotheses on an evolving saga. Trends Cancer 5(12):779–788CrossRef
13.
go back to reference Farhood B, Najafi M, Mortezaee K (2019) CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: a review. J Cell Physiol 234(6):8509–8521CrossRef Farhood B, Najafi M, Mortezaee K (2019) CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: a review. J Cell Physiol 234(6):8509–8521CrossRef
14.
go back to reference Seo JW, Tavare R, Mahakian LM, Silvestrini MT, Tam S, Ingham ES, Salazar FB, Borowsky AD, Wu AM, Ferrara KW (2018) CD8(+) T-cell density imaging with (64)cu-labeled Cys-diabody informs immunotherapy protocols. Clin Cancer Res 24(20):4976–4987 Seo JW, Tavare R, Mahakian LM, Silvestrini MT, Tam S, Ingham ES, Salazar FB, Borowsky AD, Wu AM, Ferrara KW (2018) CD8(+) T-cell density imaging with (64)cu-labeled Cys-diabody informs immunotherapy protocols. Clin Cancer Res 24(20):4976–4987
15.
go back to reference Larimer BM, Wehrenberg-Klee E, Caraballo A, Mahmood U (2016) Quantitative CD3 PET imaging predicts tumor growth response to anti-CTLA-4 therapy. J Nucl Med 57(10):1607–1611CrossRef Larimer BM, Wehrenberg-Klee E, Caraballo A, Mahmood U (2016) Quantitative CD3 PET imaging predicts tumor growth response to anti-CTLA-4 therapy. J Nucl Med 57(10):1607–1611CrossRef
16.
go back to reference Larimer BM, Bloch E, Nesti S, Austin EE, Wehrenberg-Klee E, Boland G, Mahmood U (2019) The effectiveness of checkpoint inhibitor combinations and administration timing can be measured by granzyme B PET imaging. Clin Cancer Res 25(4):1196–1205CrossRef Larimer BM, Bloch E, Nesti S, Austin EE, Wehrenberg-Klee E, Boland G, Mahmood U (2019) The effectiveness of checkpoint inhibitor combinations and administration timing can be measured by granzyme B PET imaging. Clin Cancer Res 25(4):1196–1205CrossRef
17.
go back to reference Larimer BM, Wehrenberg-Klee E, Dubois F, Mehta A, Kalomeris T, Flaherty K, Boland G, Mahmood U (2017) Granzyme B PET imaging as a predictive biomarker of immunotherapy response. Cancer Res 77(9):2318–2327CrossRef Larimer BM, Wehrenberg-Klee E, Dubois F, Mehta A, Kalomeris T, Flaherty K, Boland G, Mahmood U (2017) Granzyme B PET imaging as a predictive biomarker of immunotherapy response. Cancer Res 77(9):2318–2327CrossRef
18.
go back to reference Goggi JL, Hartimath SV, Hwang Y, Tan YX, Khanapur S, Ramasamy B, Jiang L, Yong FF, Cheng P, Tan PW, Husaini MAR, Yuen TY, Jieu B, Chacko AM, Larbi A, Renia L, Johannes C, Robins EG (2020) Examining immunotherapy response using multiple radiotracers. Mol Imaging Biol 22:993–1002 Goggi JL, Hartimath SV, Hwang Y, Tan YX, Khanapur S, Ramasamy B, Jiang L, Yong FF, Cheng P, Tan PW, Husaini MAR, Yuen TY, Jieu B, Chacko AM, Larbi A, Renia L, Johannes C, Robins EG (2020) Examining immunotherapy response using multiple radiotracers. Mol Imaging Biol 22:993–1002
19.
go back to reference Fersing C, Bouhlel A, Cantelli C, Garrigue P, Lisowski V, Guillet B (2019) A comprehensive review of non-covalent radiofluorination approaches using aluminum [(18)F]fluoride: will [(18)F]AlF replace (68)Ga for metal chelate labeling? Molecules 24(16):2866 Fersing C, Bouhlel A, Cantelli C, Garrigue P, Lisowski V, Guillet B (2019) A comprehensive review of non-covalent radiofluorination approaches using aluminum [(18)F]fluoride: will [(18)F]AlF replace (68)Ga for metal chelate labeling? Molecules 24(16):2866
20.
go back to reference Evrard C, Tachon G, Randrian V, Karayan-Tapon L, Tougeron D (2019) Microsatellite instability: diagnosis, heterogeneity, discordance, and clinical impact in colorectal cancer. Cancers 11(10):1567 Evrard C, Tachon G, Randrian V, Karayan-Tapon L, Tougeron D (2019) Microsatellite instability: diagnosis, heterogeneity, discordance, and clinical impact in colorectal cancer. Cancers 11(10):1567
21.
go back to reference Tomayko MM, Reynolds CP (1989) Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol 24(3):148–154CrossRef Tomayko MM, Reynolds CP (1989) Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol 24(3):148–154CrossRef
22.
go back to reference McBride WJ, Sharkey RM, Karacay H, D'Souza CA, Rossi EA, Laverman P, Chang C-H, Boerman OC and Goldenberg DM (2009) A novel method of 18F radiolabeling for PET. J Nucl Med 50(6):991–998 McBride WJ, Sharkey RM, Karacay H, D'Souza CA, Rossi EA, Laverman P, Chang C-H, Boerman OC and Goldenberg DM (2009) A novel method of 18F radiolabeling for PET. J Nucl Med 50(6):991–998
23.
go back to reference Kumar D, Lisok A, Dahmane E, McCoy M, Shelake S, Chatterjee S, Allaj V, Sysa-Shah P, Wharram B, Lesniak WG, Tully E, Gabrielson E, Jaffee EM, Poirier JT, Rudin CM, Gobburu JVS, Pomper MG, Nimmagadda S (2019) Peptide-based PET quantifies target engagement of PD-L1 therapeutics. J Clin Invest 129(2):616–630CrossRef Kumar D, Lisok A, Dahmane E, McCoy M, Shelake S, Chatterjee S, Allaj V, Sysa-Shah P, Wharram B, Lesniak WG, Tully E, Gabrielson E, Jaffee EM, Poirier JT, Rudin CM, Gobburu JVS, Pomper MG, Nimmagadda S (2019) Peptide-based PET quantifies target engagement of PD-L1 therapeutics. J Clin Invest 129(2):616–630CrossRef
24.
go back to reference Lesniak WG, Mease RC, Chatterjee S, Kumar D, Lisok A, Wharram B, Kalagadda VR, Emens LA, Pomper MG, Nimmagadda S (2019) Development of [(18)F]FPy-WL12 as a PD-L1 specific PET imaging peptide. Mol Imaging 18:1536012119852189 Lesniak WG, Mease RC, Chatterjee S, Kumar D, Lisok A, Wharram B, Kalagadda VR, Emens LA, Pomper MG, Nimmagadda S (2019) Development of [(18)F]FPy-WL12 as a PD-L1 specific PET imaging peptide. Mol Imaging 18:1536012119852189
25.
go back to reference Fritz JM, Lenardo MJ (2019) Development of immune checkpoint therapy for cancer. J Exp Med 216(6):1244–1254CrossRef Fritz JM, Lenardo MJ (2019) Development of immune checkpoint therapy for cancer. J Exp Med 216(6):1244–1254CrossRef
26.
go back to reference Sawant DV, Yano H, Chikina M, Zhang Q, Liao M, Liu C, Callahan DJ, Sun Z, Sun T, Tabib T, Pennathur A, Corry DB, Luketich JD, Lafyatis R, Chen W, Poholek AC, Bruno TC, Workman CJ, Vignali DAA (2019) Adaptive plasticity of IL-10(+) and IL-35(+) Treg cells cooperatively promotes tumor T cell exhaustion. Nat Immunol 20(6):724–735CrossRef Sawant DV, Yano H, Chikina M, Zhang Q, Liao M, Liu C, Callahan DJ, Sun Z, Sun T, Tabib T, Pennathur A, Corry DB, Luketich JD, Lafyatis R, Chen W, Poholek AC, Bruno TC, Workman CJ, Vignali DAA (2019) Adaptive plasticity of IL-10(+) and IL-35(+) Treg cells cooperatively promotes tumor T cell exhaustion. Nat Immunol 20(6):724–735CrossRef
27.
go back to reference Mlecnik B, Van den Eynde M, Bindea G, Church SE, Vasaturo A, Fredriksen T, et al. Comprehensive intrametastatic immune quantification and major impact of immunoscore on survival. J Natl Cancer Instit. 2018;110(1) Mlecnik B, Van den Eynde M, Bindea G, Church SE, Vasaturo A, Fredriksen T, et al. Comprehensive intrametastatic immune quantification and major impact of immunoscore on survival. J Natl Cancer Instit. 2018;110(1)
28.
go back to reference Yarchoan M, Hopkins A, Jaffee EM (2017) Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med 377(25):2500–2501CrossRef Yarchoan M, Hopkins A, Jaffee EM (2017) Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med 377(25):2500–2501CrossRef
29.
go back to reference Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N (2015) Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160(1–2):48–61CrossRef Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N (2015) Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160(1–2):48–61CrossRef
30.
go back to reference Kang CW, Dutta A, Chang LY, Mahalingam J, Lin YC, Chiang JM, Hsu CY, Huang CT, Su WT, Chu YY, Lin CY (2015) Apoptosis of tumor infiltrating effector TIM-3+CD8+ T cells in colon cancer. Sci Rep 5:15659CrossRef Kang CW, Dutta A, Chang LY, Mahalingam J, Lin YC, Chiang JM, Hsu CY, Huang CT, Su WT, Chu YY, Lin CY (2015) Apoptosis of tumor infiltrating effector TIM-3+CD8+ T cells in colon cancer. Sci Rep 5:15659CrossRef
Metadata
Title
Granzyme B PET Imaging of Immune Checkpoint Inhibitor Combinations in Colon Cancer Phenotypes
Authors
J. L. Goggi
Y. X. Tan
S. V. Hartimath
B. Jieu
Y. Y. Hwang
L. Jiang
R. Boominathan
P. Cheng
T. Y. Yuen
H. X. Chin
J. R. Tang
A. Larbi
A. M. Chacko
L. Renia
C. Johannes
Edward G. Robins
Publication date
01-10-2020
Publisher
Springer International Publishing
Published in
Molecular Imaging and Biology / Issue 5/2020
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-020-01519-3

Other articles of this Issue 5/2020

Molecular Imaging and Biology 5/2020 Go to the issue