Skip to main content
Top
Published in: Molecular Imaging and Biology 5/2020

01-10-2020 | Diabetic Retinopathy | Research Article

PET Imaging of Vesicular Monoamine Transporter 2 in Early Diabetic Retinopathy Using [18F]FP-(+)-DTBZ

Authors: Jun Li, Ping Chen, Yong Bao, Yu Sun, Jiang He, Xingdang Liu

Published in: Molecular Imaging and Biology | Issue 5/2020

Login to get access

Abstract

Purpose

Diabetic retinopathy (DR) is characterized by dopaminergic neuron loss in the retina of the eyes. [18F]fluoropropyl-(+)-dihydrotetrabenazine ([18F]FP-(+)-DTBZ) positron emission tomography (PET) has been shown to detect dopaminergic neuron loss. The study is to investigate the feasibility of PET imaging with [18F]FP-(+)-DTBZ for early diagnosis of diabetic retinopathy (DR) in diabetes mellitus (DM) rat models.

Methods

The DM rat model was established by a single intraperitoneal injection of streptozotocin (STZ) (65 mg/kg). After 4 weeks, 8 weeks, and 12 weeks of STZ injection, the retinas of the rats were evaluated by electroretinogram (ERG), color fundus photography (CFP), fundus fluorescein angiography (FFA), and small animal PET scan with [18F]FP-(+)-DTBZ by targeting vesicular monoamine transporter 2 (VMAT2). [18F]FP-(+)-DTBZ uptake in retina was quantified as standardized uptake value (SUV). Immunofluorescence staining and Western blot were also performed to confirm the expression level of VMAT2 in retina.

Results

ERG dysfunction was observed at 8 weeks in STZ-diabetic rats, evidenced by smaller amplitudes of oscillatory potentials (OPs) when compared with OPs in normal rats. CFP and FFA showed no significant difference in vascular leakage and neovascularization between STZ-diabetic retinas and normal ones until 8 weeks. PET imaging revealed that the SUV of [18F]FP-(+)-DTBZ was significantly lower in the STZ-diabetic retinas compared with the normal ones as early as of week 4. The results from immunofluorescence staining and Western blots confirmed the early findings in PET imaging studies.

Conclusions

Early DR can be non-invasively detected with PET imaging using [18F]FP-(+)-DTBZ targeting VMAT2. The expression level of VMAT2 in retina may act as a new biomarker for early DR diagnosis.
Literature
1.
go back to reference Cheung N, Mitchell P, Wong TY (2010) Diabetic retinopathy. Lancet 9735:124–136CrossRef Cheung N, Mitchell P, Wong TY (2010) Diabetic retinopathy. Lancet 9735:124–136CrossRef
2.
go back to reference Hendrick AM, Gibson MV, Kulshreshtha A (2015) Diabetic retinopathy. Prim Care 3:451–464CrossRef Hendrick AM, Gibson MV, Kulshreshtha A (2015) Diabetic retinopathy. Prim Care 3:451–464CrossRef
3.
go back to reference Glover SJ, Burgess PI, Cohen DB et al (2012) Prevalence of diabetic retinopathy, cataract and visual impairment in patients with diabetes in sub-Saharan Africa. Br J Ophthalmol 2:156–161CrossRef Glover SJ, Burgess PI, Cohen DB et al (2012) Prevalence of diabetic retinopathy, cataract and visual impairment in patients with diabetes in sub-Saharan Africa. Br J Ophthalmol 2:156–161CrossRef
4.
go back to reference Sundling V, Platou CG, Jansson RW et al (2012) Retinopathy and visual impairment in diabetes, impaired glucose tolerance and normal glucose tolerance: the Nord-Trondelag Health Study (the HUNT study). Acta Ophthalmol 3:237–243CrossRef Sundling V, Platou CG, Jansson RW et al (2012) Retinopathy and visual impairment in diabetes, impaired glucose tolerance and normal glucose tolerance: the Nord-Trondelag Health Study (the HUNT study). Acta Ophthalmol 3:237–243CrossRef
5.
go back to reference Antonetti DA, Barber AJ, Bronson SK et al (2006) Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. Diabetes 9:2401–2411CrossRef Antonetti DA, Barber AJ, Bronson SK et al (2006) Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. Diabetes 9:2401–2411CrossRef
6.
go back to reference Curtis TM, Gardiner TA, Stitt AW (2009) Microvascular lesions of diabetic retinopathy: clues towards understanding pathogenesis? Eye (Lond) 7:1496–1508CrossRef Curtis TM, Gardiner TA, Stitt AW (2009) Microvascular lesions of diabetic retinopathy: clues towards understanding pathogenesis? Eye (Lond) 7:1496–1508CrossRef
7.
go back to reference Barber AJ, Gardner TW, Abcouwer SF (2011) The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Invest Ophthalmol Vis Sci 2:1156–1163CrossRef Barber AJ, Gardner TW, Abcouwer SF (2011) The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Invest Ophthalmol Vis Sci 2:1156–1163CrossRef
8.
go back to reference Ozawa Y, Kurihara T, Sasaki M et al (2011) Neural degeneration in the retina of the streptozotocin-induced type 1 diabetes model. Exp Diabetes Res 2011:108328CrossRef Ozawa Y, Kurihara T, Sasaki M et al (2011) Neural degeneration in the retina of the streptozotocin-induced type 1 diabetes model. Exp Diabetes Res 2011:108328CrossRef
9.
go back to reference Villarroel M, Ciudin A, Hernandez C, Simo R (2010) Neurodegeneration: an early event of diabetic retinopathy. World J Diabetes 2:57–64CrossRef Villarroel M, Ciudin A, Hernandez C, Simo R (2010) Neurodegeneration: an early event of diabetic retinopathy. World J Diabetes 2:57–64CrossRef
10.
go back to reference Barber AJ, Baccouche B (2017) Neurodegeneration in diabetic retinopathy: potential for novel therapies. Vis Res 139:82–92CrossRef Barber AJ, Baccouche B (2017) Neurodegeneration in diabetic retinopathy: potential for novel therapies. Vis Res 139:82–92CrossRef
11.
go back to reference Kizawa J, Machida S, Kobayashi T et al (2006) Changes of oscillatory potentials and photopic negative response in patients with early diabetic retinopathy. Jpn J Ophthalmol 4:367–373CrossRef Kizawa J, Machida S, Kobayashi T et al (2006) Changes of oscillatory potentials and photopic negative response in patients with early diabetic retinopathy. Jpn J Ophthalmol 4:367–373CrossRef
12.
go back to reference Sohn EH, van Dijk HW, Jiao C et al (2016) Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci U S A 19:E2655–E2664CrossRef Sohn EH, van Dijk HW, Jiao C et al (2016) Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci U S A 19:E2655–E2664CrossRef
13.
go back to reference Verma A, Raman R, Vaitheeswaran K et al (2012) Does neuronal damage precede vascular damage in subjects with type 2 diabetes mellitus and having no clinical diabetic retinopathy? Ophthalmic Res 4:202–207CrossRef Verma A, Raman R, Vaitheeswaran K et al (2012) Does neuronal damage precede vascular damage in subjects with type 2 diabetes mellitus and having no clinical diabetic retinopathy? Ophthalmic Res 4:202–207CrossRef
14.
go back to reference Barber AJ (2015) Diabetic retinopathy: recent advances towards understanding neurodegeneration and vision loss. Sci China Life Sci 6:541–549CrossRef Barber AJ (2015) Diabetic retinopathy: recent advances towards understanding neurodegeneration and vision loss. Sci China Life Sci 6:541–549CrossRef
15.
go back to reference Lecleire-Collet A, Audo I, Aout M et al (2011) Evaluation of retinal function and flicker light-induced retinal vascular response in normotensive patients with diabetes without retinopathy. Invest Ophthalmol Vis Sci 6:2861–2867CrossRef Lecleire-Collet A, Audo I, Aout M et al (2011) Evaluation of retinal function and flicker light-induced retinal vascular response in normotensive patients with diabetes without retinopathy. Invest Ophthalmol Vis Sci 6:2861–2867CrossRef
16.
17.
go back to reference Lahouaoui H, Coutanson C, Cooper HM, Bennis M, Dkhissi-Benyahya O (2016) Diabetic retinopathy alters light-induced clock gene expression and dopamine levels in the mouse retina. Mol Vis 22:959–969PubMedPubMedCentral Lahouaoui H, Coutanson C, Cooper HM, Bennis M, Dkhissi-Benyahya O (2016) Diabetic retinopathy alters light-induced clock gene expression and dopamine levels in the mouse retina. Mol Vis 22:959–969PubMedPubMedCentral
18.
go back to reference Moore-Dotson JM, Beckman JJ, Mazade RE et al (2016) Early retinal neuronal dysfunction in diabetic mice: reduced light-evoked inhibition increases rod pathway signaling. Invest Ophthalmol Vis Sci 3:1418–1430CrossRef Moore-Dotson JM, Beckman JJ, Mazade RE et al (2016) Early retinal neuronal dysfunction in diabetic mice: reduced light-evoked inhibition increases rod pathway signaling. Invest Ophthalmol Vis Sci 3:1418–1430CrossRef
19.
go back to reference Witkovsky P, Veisenberger E, Haycock JW et al (2004) Activity-dependent phosphorylation of tyrosine hydroxylase in dopaminergic neurons of the rat retina. J Neurosci 17:4242–4249CrossRef Witkovsky P, Veisenberger E, Haycock JW et al (2004) Activity-dependent phosphorylation of tyrosine hydroxylase in dopaminergic neurons of the rat retina. J Neurosci 17:4242–4249CrossRef
20.
go back to reference Kim MK, Aung MH, Mees L et al (2018) Dopamine deficiency mediates early rod-driven inner retinal dysfunction in diabetic mice. Invest Ophthalmol Vis Sci 1:572–581CrossRef Kim MK, Aung MH, Mees L et al (2018) Dopamine deficiency mediates early rod-driven inner retinal dysfunction in diabetic mice. Invest Ophthalmol Vis Sci 1:572–581CrossRef
21.
go back to reference Gastinger MJ, Singh RS, Barber AJ (2006) Loss of cholinergic and dopaminergic amacrine cells in streptozotocin-diabetic rat and Ins2Akita-diabetic mouse retinas. Invest Ophthalmol Vis Sci 7:3143–3150CrossRef Gastinger MJ, Singh RS, Barber AJ (2006) Loss of cholinergic and dopaminergic amacrine cells in streptozotocin-diabetic rat and Ins2Akita-diabetic mouse retinas. Invest Ophthalmol Vis Sci 7:3143–3150CrossRef
22.
go back to reference Aung MH, Park HN, Han MK et al (2014) Dopamine deficiency contributes to early visual dysfunction in a rodent model of type 1 diabetes. J Neurosci 3:726–736CrossRef Aung MH, Park HN, Han MK et al (2014) Dopamine deficiency contributes to early visual dysfunction in a rodent model of type 1 diabetes. J Neurosci 3:726–736CrossRef
23.
go back to reference Eiden LE, Weihe E (2011) VMAT2: a dynamic regulator of brain monoaminergic neuronal function interacting with drugs of abuse. Ann N Y Acad Sci 1216:86–98CrossRef Eiden LE, Weihe E (2011) VMAT2: a dynamic regulator of brain monoaminergic neuronal function interacting with drugs of abuse. Ann N Y Acad Sci 1216:86–98CrossRef
24.
go back to reference German CL, Baladi MG, McFadden LM et al (2015) Regulation of the dopamine and vesicular monoamine transporters: pharmacological targets and implications for disease. Pharmacol Rev 4:1005–1024CrossRef German CL, Baladi MG, McFadden LM et al (2015) Regulation of the dopamine and vesicular monoamine transporters: pharmacological targets and implications for disease. Pharmacol Rev 4:1005–1024CrossRef
25.
go back to reference Sun Y, Zhao N, Liu W et al (2018) Study of vesicular monoamine transporter 2 in myopic retina using [18F]FP-(+)-DTBZ. Mol Imaging Biol 5:771–779CrossRef Sun Y, Zhao N, Liu W et al (2018) Study of vesicular monoamine transporter 2 in myopic retina using [18F]FP-(+)-DTBZ. Mol Imaging Biol 5:771–779CrossRef
26.
go back to reference Blodgett TM, Meltzer CC, Townsend DW (2007) PET/CT: form and function. Radiology 2:360–385CrossRef Blodgett TM, Meltzer CC, Townsend DW (2007) PET/CT: form and function. Radiology 2:360–385CrossRef
27.
go back to reference Wood H (2014) Parkinson disease: 18F-DTBZ PET tracks dopaminergic degeneration in patients with Parkinson disease. Nat Rev Neurol 6:305CrossRef Wood H (2014) Parkinson disease: 18F-DTBZ PET tracks dopaminergic degeneration in patients with Parkinson disease. Nat Rev Neurol 6:305CrossRef
28.
go back to reference Normandin MD, Petersen KF, Ding YS et al (2012) In vivo imaging of endogenous pancreatic beta-cell mass in healthy and type 1 diabetic subjects using 18F-fluoropropyl-dihydrotetrabenazine and PET. J Nucl Med 6:908–916CrossRef Normandin MD, Petersen KF, Ding YS et al (2012) In vivo imaging of endogenous pancreatic beta-cell mass in healthy and type 1 diabetic subjects using 18F-fluoropropyl-dihydrotetrabenazine and PET. J Nucl Med 6:908–916CrossRef
29.
go back to reference Kung MP, Hou C, Goswami R et al (2007) Characterization of optically resolved 9-fluoropropyl-dihydrotetrabenazine as a potential PET imaging agent targeting vesicular monoamine transporters. Nucl Med Biol 3:239–246CrossRef Kung MP, Hou C, Goswami R et al (2007) Characterization of optically resolved 9-fluoropropyl-dihydrotetrabenazine as a potential PET imaging agent targeting vesicular monoamine transporters. Nucl Med Biol 3:239–246CrossRef
30.
go back to reference Jung LH, Weng YH, Wen MC et al (2018) Quantitative study of 18F-(+)DTBZ image: comparison of PET template-based and MRI based image analysis. Sci Rep 1:16027CrossRef Jung LH, Weng YH, Wen MC et al (2018) Quantitative study of 18F-(+)DTBZ image: comparison of PET template-based and MRI based image analysis. Sci Rep 1:16027CrossRef
31.
go back to reference Toomey JS, Bhatia S, Moon LT et al (2012) PET imaging a MPTP-induced mouse model of Parkinson's disease using the fluoropropyl-dihydrotetrabenazine analog [18F]-DTBZ (AV-133). PLoS One 6:e39041CrossRef Toomey JS, Bhatia S, Moon LT et al (2012) PET imaging a MPTP-induced mouse model of Parkinson's disease using the fluoropropyl-dihydrotetrabenazine analog [18F]-DTBZ (AV-133). PLoS One 6:e39041CrossRef
32.
go back to reference Kohzaki K, Vingrys AJ, Bui BV (2008) Early inner retinal dysfunction in streptozotocin-induced diabetic rats. Invest Ophthalmol Vis Sci 8:3595–3604CrossRef Kohzaki K, Vingrys AJ, Bui BV (2008) Early inner retinal dysfunction in streptozotocin-induced diabetic rats. Invest Ophthalmol Vis Sci 8:3595–3604CrossRef
33.
go back to reference Desjardins DM, Yates PW, Dahrouj M et al (2016) Progressive early breakdown of retinal pigment epithelium function in hyperglycemic rats. Invest Ophthalmol Vis Sci 6:2706–2713CrossRef Desjardins DM, Yates PW, Dahrouj M et al (2016) Progressive early breakdown of retinal pigment epithelium function in hyperglycemic rats. Invest Ophthalmol Vis Sci 6:2706–2713CrossRef
34.
go back to reference Hiramatsu N, Deguchi S, Yoshioka C et al (2017) Evaluation of retinal function in streptozotocin-induced diabetic rats by using the electroretinography and immunohistochemistry methods. Yakugaku Zasshi 9:1169–1175CrossRef Hiramatsu N, Deguchi S, Yoshioka C et al (2017) Evaluation of retinal function in streptozotocin-induced diabetic rats by using the electroretinography and immunohistochemistry methods. Yakugaku Zasshi 9:1169–1175CrossRef
35.
go back to reference Pescosolido N, Barbato A, Stefanucci A, Buomprisco G (2015) Role of electrophysiology in the early diagnosis and follow-up of diabetic retinopathy. J Diabetes Res 2015:319692CrossRef Pescosolido N, Barbato A, Stefanucci A, Buomprisco G (2015) Role of electrophysiology in the early diagnosis and follow-up of diabetic retinopathy. J Diabetes Res 2015:319692CrossRef
36.
go back to reference Wang Y, Qin S, Pen G et al (2017) Original research: potential ocular protection and dynamic observation of Polygonatum sibiricum polysaccharide against streptozocin-induced diabetic rats' model. Exp Biol Med (Maywood) 1:92–101CrossRef Wang Y, Qin S, Pen G et al (2017) Original research: potential ocular protection and dynamic observation of Polygonatum sibiricum polysaccharide against streptozocin-induced diabetic rats' model. Exp Biol Med (Maywood) 1:92–101CrossRef
37.
go back to reference Zhang S, Chai FY, Yan H, Guo Y, Harding JJ (2008) Effects of N-acetylcysteine and glutathione ethyl ester drops on streptozotocin-induced diabetic cataract in rats. Mol Vis 14:862–870PubMedPubMedCentral Zhang S, Chai FY, Yan H, Guo Y, Harding JJ (2008) Effects of N-acetylcysteine and glutathione ethyl ester drops on streptozotocin-induced diabetic cataract in rats. Mol Vis 14:862–870PubMedPubMedCentral
38.
go back to reference Kirkpatrick JN, Manivannan A, Gupta AK et al (1995) Fundus imaging in patients with cataract: role for a variable wavelength scanning laser ophthalmoscope. Br J Ophthalmol 10:892–899CrossRef Kirkpatrick JN, Manivannan A, Gupta AK et al (1995) Fundus imaging in patients with cataract: role for a variable wavelength scanning laser ophthalmoscope. Br J Ophthalmol 10:892–899CrossRef
39.
go back to reference Anlauf M, Schafer MK, Schwark T et al (2006) Vesicular monoamine transporter 2 (VMAT2) expression in hematopoietic cells and in patients with systemic mastocytosis. J Histochem Cytochem 2:201–213CrossRef Anlauf M, Schafer MK, Schwark T et al (2006) Vesicular monoamine transporter 2 (VMAT2) expression in hematopoietic cells and in patients with systemic mastocytosis. J Histochem Cytochem 2:201–213CrossRef
Metadata
Title
PET Imaging of Vesicular Monoamine Transporter 2 in Early Diabetic Retinopathy Using [18F]FP-(+)-DTBZ
Authors
Jun Li
Ping Chen
Yong Bao
Yu Sun
Jiang He
Xingdang Liu
Publication date
01-10-2020
Publisher
Springer International Publishing
Published in
Molecular Imaging and Biology / Issue 5/2020
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-019-01443-1

Other articles of this Issue 5/2020

Molecular Imaging and Biology 5/2020 Go to the issue