Skip to main content
Top
Published in: Molecular Imaging and Biology 1/2020

01-02-2020 | Positron Emission Tomography | Research Article

The Impact of Positron Range on PET Resolution, Evaluated with Phantoms and PHITS Monte Carlo Simulations for Conventional and Non-conventional Radionuclides

Authors: L. M. Carter, Adam Leon Kesner, E. C. Pratt, V. A. Sanders, A. V. F. Massicano, C. S. Cutler, S. E. Lapi, Jason S. Lewis

Published in: Molecular Imaging and Biology | Issue 1/2020

Login to get access

Abstract

Purpose

The increasing interest and availability of non-standard positron-emitting radionuclides has heightened the relevance of radionuclide choice in the development and optimization of new positron emission tomography (PET) imaging procedures, both in preclinical research and clinical practice. Differences in achievable resolution arising from positron range can largely influence application suitability of each radionuclide, especially in small-ring preclinical PET where system blurring factors due to annihilation photon acollinearity and detector geometry are less significant. Some resolution degradation can be mitigated with appropriate range corrections implemented during image reconstruction, the quality of which is contingent on an accurate characterization of positron range.

Procedures

To address this need, we have characterized the positron range of several standard and non-standard PET radionuclides (As-72, F-18, Ga-68, Mn-52, Y-86, and Zr-89) through imaging of small-animal quality control phantoms on a benchmark preclinical PET scanner. Further, the Particle and Heavy Ion Transport code System (PHITS v3.02) code was utilized for Monte Carlo modeling of positron range-dependent blurring effects.

Results

Positron range kernels for each radionuclide were derived from simulation of point sources in ICRP reference tissues. PET resolution and quantitative accuracy afforded by various radionuclides in practicable imaging scenarios were characterized using a convolution-based method based on positron annihilation distributions obtained from PHITS. Our imaging and simulation results demonstrate the degradation of small animal PET resolution, and quantitative accuracy correlates with increasing positron energy; however, for a specific “benchmark” preclinical PET scanner and reconstruction workflow, these differences were observed to be minimal given radionuclides with average positron energies below ~ 400 keV.

Conclusion

Our measurements and simulations of the influence of positron range on PET resolution compare well with previous efforts documented in the literature and provide new data for several radionuclides in increasing clinical and preclinical use. The results will support current and future improvements in methods for positron range corrections in PET imaging.
Appendix
Available only for authorised users
Literature
1.
go back to reference Laforest R, Liu X (2008) Image quality with non-standard nuclides in PET. Q J Nucl Med Mol Imaging 52:151–158PubMed Laforest R, Liu X (2008) Image quality with non-standard nuclides in PET. Q J Nucl Med Mol Imaging 52:151–158PubMed
2.
go back to reference Bunka M, Müller C, Vermeulen C, Haller S, Türler A, Schibli R, van der Meulen NP (2016) Imaging quality of (44)Sc in comparison with five other PET radionuclides using Derenzo phantoms and preclinical PET. Appl Radiat Isot 110:129–133CrossRef Bunka M, Müller C, Vermeulen C, Haller S, Türler A, Schibli R, van der Meulen NP (2016) Imaging quality of (44)Sc in comparison with five other PET radionuclides using Derenzo phantoms and preclinical PET. Appl Radiat Isot 110:129–133CrossRef
3.
go back to reference Sanchez-Crespo A (2013) Comparison of gallium-68 and fluorine-18 imaging characteristics in positron emission tomography. Appl Radiat Isot 76:55–62CrossRef Sanchez-Crespo A (2013) Comparison of gallium-68 and fluorine-18 imaging characteristics in positron emission tomography. Appl Radiat Isot 76:55–62CrossRef
4.
go back to reference Sánchez-Crespo A, Andreo P, Larsson SA (2004) Positron flight in human tissues and its influence on PET image spatial resolution. Eur J Nucl Med Mol Imaging 31:44–51CrossRef Sánchez-Crespo A, Andreo P, Larsson SA (2004) Positron flight in human tissues and its influence on PET image spatial resolution. Eur J Nucl Med Mol Imaging 31:44–51CrossRef
6.
go back to reference Peng H, Levin CS (2012) Study of PET intrinsic spatial resolution and contrast recovery improvement for PET/MRI systems. Phys Med Biol 57:N101–N115CrossRef Peng H, Levin CS (2012) Study of PET intrinsic spatial resolution and contrast recovery improvement for PET/MRI systems. Phys Med Biol 57:N101–N115CrossRef
7.
go back to reference Cal-González J, Herraiz JL, España S, Corzo PMG, Vaquero JJ, Desco M, Udias JM (2013) Positron range estimations with PeneloPET. Phys Med Biol 58:5127–5152CrossRef Cal-González J, Herraiz JL, España S, Corzo PMG, Vaquero JJ, Desco M, Udias JM (2013) Positron range estimations with PeneloPET. Phys Med Biol 58:5127–5152CrossRef
8.
go back to reference Champion C, Loirec CL (2006) Positron follow-up in liquid water: I. A new Monte Carlo track-structure code. Phys Med Biol 51:1707–1723CrossRef Champion C, Loirec CL (2006) Positron follow-up in liquid water: I. A new Monte Carlo track-structure code. Phys Med Biol 51:1707–1723CrossRef
10.
go back to reference Phelps ME, Hoffman EJ, Huang S-C, Ter-Pogossian MM (1975) Effect of positron range on spatial resolution. J Nucl Med 16:649–652PubMed Phelps ME, Hoffman EJ, Huang S-C, Ter-Pogossian MM (1975) Effect of positron range on spatial resolution. J Nucl Med 16:649–652PubMed
11.
go back to reference Cho ZH, Chan JK, Ericksson L, Singh M, Graham S, MacDonald N, Yano Y (1975) Positron ranges obtained from biomedically important positron-emitting radionuclides. J Nucl Med 16:1174–1176PubMed Cho ZH, Chan JK, Ericksson L, Singh M, Graham S, MacDonald N, Yano Y (1975) Positron ranges obtained from biomedically important positron-emitting radionuclides. J Nucl Med 16:1174–1176PubMed
12.
go back to reference Derenzo SE (1979) Precision measurement of annihilation point spread distributions for medically important positron emitters. Proceedings of the fifth international conference on positron annihilation Derenzo SE (1979) Precision measurement of annihilation point spread distributions for medically important positron emitters. Proceedings of the fifth international conference on positron annihilation
13.
go back to reference Sato T, Niita K, Matsuda N, Hashimoto S, Iwamoto Y, Furuta T, Noda S, Ogawa T, Iwase H, Nakashima H, Fukahori T, Okumura K, Kai T, Chiba S, Sihver L (2015) Overview of particle and heavy ion transport code system PHITS. Ann Nucl Energy 82:110–115CrossRef Sato T, Niita K, Matsuda N, Hashimoto S, Iwamoto Y, Furuta T, Noda S, Ogawa T, Iwase H, Nakashima H, Fukahori T, Okumura K, Kai T, Chiba S, Sihver L (2015) Overview of particle and heavy ion transport code system PHITS. Ann Nucl Energy 82:110–115CrossRef
14.
go back to reference Sato T, Iwamoto Y, Hashimoto S, Ogawa T, Furuta T, Abe SI, Kai T, Tsai PE, Matsuda N, Iwase H, Shigyo N, Sihver L, Niita K (2018) Features of particle and heavy ion transport code system (PHITS) version 3.02. J Nucl Sci Technol 55:684–690CrossRef Sato T, Iwamoto Y, Hashimoto S, Ogawa T, Furuta T, Abe SI, Kai T, Tsai PE, Matsuda N, Iwase H, Shigyo N, Sihver L, Niita K (2018) Features of particle and heavy ion transport code system (PHITS) version 3.02. J Nucl Sci Technol 55:684–690CrossRef
15.
go back to reference Iwamoto Y, Sato T, Hashimoto S, Ogawa T, Furuta T, Abe SI, Kai T, Matsuda N, Hosoyamada R, Niita K (2017) Benchmark study of the recent version of the PHITS code. J Nucl Sci Technol 54:617–635CrossRef Iwamoto Y, Sato T, Hashimoto S, Ogawa T, Furuta T, Abe SI, Kai T, Matsuda N, Hosoyamada R, Niita K (2017) Benchmark study of the recent version of the PHITS code. J Nucl Sci Technol 54:617–635CrossRef
16.
go back to reference Furuta T, Sato T, Han MC, Yeom YS, Kim CH, Brown JL, Bolch WE (2017) Implementation of tetrahedral-mesh geometry in Monte Carlo radiation transport code PHITS. Phys Med Biol 62:4798–4810CrossRef Furuta T, Sato T, Han MC, Yeom YS, Kim CH, Brown JL, Bolch WE (2017) Implementation of tetrahedral-mesh geometry in Monte Carlo radiation transport code PHITS. Phys Med Biol 62:4798–4810CrossRef
17.
go back to reference Endo A, Yamaguchi Y (2001) Compilation of new nuclear decay data files used for dose calculation. J Nucl Sci Technol 38:689–696CrossRef Endo A, Yamaguchi Y (2001) Compilation of new nuclear decay data files used for dose calculation. J Nucl Sci Technol 38:689–696CrossRef
18.
go back to reference Alva-Sánchez H, Quintana-Bautista C, Martínez-Dávalos A, Ávila-Rodríguez MA, Rodríguez-Villafuerte M (2016) Positron range in tissue-equivalent materials: experimental microPET studies. Phys Med Biol 61:6307–6321CrossRef Alva-Sánchez H, Quintana-Bautista C, Martínez-Dávalos A, Ávila-Rodríguez MA, Rodríguez-Villafuerte M (2016) Positron range in tissue-equivalent materials: experimental microPET studies. Phys Med Biol 61:6307–6321CrossRef
20.
go back to reference Dogdas B, Stout D, Chatziioannou AF, Leahy RM (2007) Digimouse: a 3D whole body mouse atlas from CT and cryosection data. Phys Med Biol 52:577–587CrossRef Dogdas B, Stout D, Chatziioannou AF, Leahy RM (2007) Digimouse: a 3D whole body mouse atlas from CT and cryosection data. Phys Med Biol 52:577–587CrossRef
22.
go back to reference Disselhorst JA, Boerman OC, Oyen WJG, Slump CH, Visser EP (2010) Spatial resolution of the Inveon small-animal PET scanner for the entire field of view. Nucl Instrum Method A 615:245–248CrossRef Disselhorst JA, Boerman OC, Oyen WJG, Slump CH, Visser EP (2010) Spatial resolution of the Inveon small-animal PET scanner for the entire field of view. Nucl Instrum Method A 615:245–248CrossRef
23.
go back to reference Visser EP, Disselhorst JA, Brom M, Laverman P, Gotthardt M, Oyen WJ, Boerman OC (2009) Spatial resolution and sensitivity of the Inveon small-animal PET scanner. J Nucl Med 50:139–147CrossRef Visser EP, Disselhorst JA, Brom M, Laverman P, Gotthardt M, Oyen WJ, Boerman OC (2009) Spatial resolution and sensitivity of the Inveon small-animal PET scanner. J Nucl Med 50:139–147CrossRef
24.
go back to reference Holland JP, Divilov V, Bander NH, Smith-Jones PM, Larson SM, Lewis JS (2010) 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J Nucl Med 51:1293–1300CrossRef Holland JP, Divilov V, Bander NH, Smith-Jones PM, Larson SM, Lewis JS (2010) 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J Nucl Med 51:1293–1300CrossRef
27.
go back to reference Graves SA, Hernandez R, Fonslet J, England CG, Valdovinos HF, Ellison PA, Barnhart TE, Elema DR, Theuer CP, Cai W, Nickles RJ, Severin GW (2015) Novel preparation methods of (52)Mn for immunoPET imaging. Bioconjug Chem 26:2118–2124CrossRef Graves SA, Hernandez R, Fonslet J, England CG, Valdovinos HF, Ellison PA, Barnhart TE, Elema DR, Theuer CP, Cai W, Nickles RJ, Severin GW (2015) Novel preparation methods of (52)Mn for immunoPET imaging. Bioconjug Chem 26:2118–2124CrossRef
28.
go back to reference Cox BL, Graves SA, Farhoud M et al (2016) Development of a novel linearly-filled Derenzo microPET phantom. Am J Nucl Med Mol Imaging 6:199–204PubMedPubMedCentral Cox BL, Graves SA, Farhoud M et al (2016) Development of a novel linearly-filled Derenzo microPET phantom. Am J Nucl Med Mol Imaging 6:199–204PubMedPubMedCentral
29.
go back to reference DeGraffenreid AJ, Feng Y, Barnes CL et al (2016) Trithiols and their arsenic compounds for potential use in diagnostic and therapeutic radiopharmaceuticals. Nucl Med Biol 43:288–295CrossRef DeGraffenreid AJ, Feng Y, Barnes CL et al (2016) Trithiols and their arsenic compounds for potential use in diagnostic and therapeutic radiopharmaceuticals. Nucl Med Biol 43:288–295CrossRef
Metadata
Title
The Impact of Positron Range on PET Resolution, Evaluated with Phantoms and PHITS Monte Carlo Simulations for Conventional and Non-conventional Radionuclides
Authors
L. M. Carter
Adam Leon Kesner
E. C. Pratt
V. A. Sanders
A. V. F. Massicano
C. S. Cutler
S. E. Lapi
Jason S. Lewis
Publication date
01-02-2020
Publisher
Springer International Publishing
Published in
Molecular Imaging and Biology / Issue 1/2020
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-019-01337-2

Other articles of this Issue 1/2020

Molecular Imaging and Biology 1/2020 Go to the issue