Skip to main content
Top
Published in: Molecular Imaging and Biology 1/2016

01-02-2016 | Brief Article

Preclinical Evaluation of 4-[18F]Fluoroglutamine PET to Assess ASCT2 Expression in Lung Cancer

Authors: Mohamed Hassanein, Matthew R. Hight, Jason R. Buck, Mohammed N. Tantawy, Michael L. Nickels, Megan D. Hoeksema, Bradford K. Harris, Kelli Boyd, Pierre P. Massion, H. Charles Manning

Published in: Molecular Imaging and Biology | Issue 1/2016

Login to get access

Abstract

Purpose

Alanine-serine-cysteine transporter 2 (ASCT2) expression has been demonstrated as a promising lung cancer biomarker. (2S,4R)-4-[18F]Fluoroglutamine (4-[18F]fluoro-Gln) positron emission tomography (PET) was evaluated in preclinical models of non-small cell lung cancer as a quantitative, non-invasive measure of ASCT2 expression.

Procedures

In vivo microPET studies of 4-[18F]fluoro-Gln uptake were undertaken in human cell line xenograft tumor-bearing mice of varying ASCT2 levels, followed by a genetically engineered mouse model of epidermal growth factor receptor (EGFR)-mutant lung cancer. The relationship between a tracer accumulation and ASCT2 levels in tumors was evaluated by IHC and immunoblotting.

Result

4-[18F]Fluoro-Gln uptake, but not 2-deoxy-2-[18F]fluoro-D-glucose, correlated with relative ASCT2 levels in xenograft tumors. In genetically engineered mice, 4-[18F]fluoro-Gln accumulation was significantly elevated in lung tumors, relative to normal lung and cardiac tissues.

Conclusions

4-[18F]Fluoro-Gln PET appears to provide a non-invasive measure of ASCT2 expression. Given the potential of ASCT2 as a lung cancer biomarker, this and other tracers reflecting ASCT2 levels could emerge as precision imaging diagnostics in this setting.
Appendix
Available only for authorised users
Literature
1.
go back to reference Edwards BK, Noone AM, Mariotto AB et al (2014) Annual Report to the Nation on the status of cancer, 1975-2010, featuring prevalence of comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancer. Cancer 120:1290–1314PubMedCentralCrossRefPubMed Edwards BK, Noone AM, Mariotto AB et al (2014) Annual Report to the Nation on the status of cancer, 1975-2010, featuring prevalence of comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancer. Cancer 120:1290–1314PubMedCentralCrossRefPubMed
2.
go back to reference Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108CrossRefPubMed Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108CrossRefPubMed
3.
go back to reference Deppen S, Putnam JB Jr, Andrade G et al (2011) Accuracy of FDG-PET to diagnose lung cancer in a region of endemic granulomatous disease. Ann Thorac Surg 92:428–432, discussion 433 PubMedCentralCrossRefPubMed Deppen S, Putnam JB Jr, Andrade G et al (2011) Accuracy of FDG-PET to diagnose lung cancer in a region of endemic granulomatous disease. Ann Thorac Surg 92:428–432, discussion 433 PubMedCentralCrossRefPubMed
4.
go back to reference Burger IA, Zitzmann-Kolbe S, Pruim J et al (2014) First clinical results of (D)-18F-Fluoromethyltyrosine (BAY 86-9596) PET/CT in patients with non-small cell lung cancer and head and neck squamous cell carcinoma. J Nucl Med 55:1778–1785CrossRefPubMed Burger IA, Zitzmann-Kolbe S, Pruim J et al (2014) First clinical results of (D)-18F-Fluoromethyltyrosine (BAY 86-9596) PET/CT in patients with non-small cell lung cancer and head and neck squamous cell carcinoma. J Nucl Med 55:1778–1785CrossRefPubMed
5.
go back to reference Liu W, Le A, Hancock C et al (2012) Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci U S A 109:8983–8988PubMedCentralCrossRefPubMed Liu W, Le A, Hancock C et al (2012) Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci U S A 109:8983–8988PubMedCentralCrossRefPubMed
6.
go back to reference Gaglio D, Metallo CM, Gameiro PA et al (2011) Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol 7:523PubMedCentralCrossRefPubMed Gaglio D, Metallo CM, Gameiro PA et al (2011) Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol 7:523PubMedCentralCrossRefPubMed
7.
8.
go back to reference Brower M, Carney DN, Oie HK, Gazdar AF, Minna JD (1986) Growth of cell lines and clinical specimens of human non-small cell lung cancer in a serum-free defined medium. Cancer Res 46:798–806PubMed Brower M, Carney DN, Oie HK, Gazdar AF, Minna JD (1986) Growth of cell lines and clinical specimens of human non-small cell lung cancer in a serum-free defined medium. Cancer Res 46:798–806PubMed
9.
go back to reference Drogat B, Bouchecareilh M, North S et al (2007) Acute L-glutamine deprivation compromises VEGF-a upregulation in A549/8 human carcinoma cells. J Cell Physiol 212:463–472CrossRefPubMed Drogat B, Bouchecareilh M, North S et al (2007) Acute L-glutamine deprivation compromises VEGF-a upregulation in A549/8 human carcinoma cells. J Cell Physiol 212:463–472CrossRefPubMed
10.
go back to reference Shelton LM, Huysentruyt LC, Seyfried TN (2010) Glutamine targeting inhibits systemic metastasis in the VM-M3 murine tumor model. Int J Cancer 127:2478–2485PubMedCentralCrossRefPubMed Shelton LM, Huysentruyt LC, Seyfried TN (2010) Glutamine targeting inhibits systemic metastasis in the VM-M3 murine tumor model. Int J Cancer 127:2478–2485PubMedCentralCrossRefPubMed
11.
go back to reference Hassanein M, Hoeksema MD, Shiota M et al (2013) SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival. Clin Cancer Res 19:560–570PubMedCentralCrossRefPubMed Hassanein M, Hoeksema MD, Shiota M et al (2013) SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival. Clin Cancer Res 19:560–570PubMedCentralCrossRefPubMed
12.
go back to reference Hassanein M, Qian J, Hoeksema MD, et al (2015) Targeting SLC1A5-mediated glutamine dependence in non-small cell lung cancer. Int J Cancer. doi:10.1002/ijc.29535 Hassanein M, Qian J, Hoeksema MD, et al (2015) Targeting SLC1A5-mediated glutamine dependence in non-small cell lung cancer. Int J Cancer. doi:10.​1002/​ijc.​29535
13.
go back to reference Qu W, Zha Z, Ploessl K et al (2011) Synthesis of optically pure 4-fluoro-glutamines as potential metabolic imaging agents for tumors. J Am Chem Soc 133:1122–1133CrossRefPubMed Qu W, Zha Z, Ploessl K et al (2011) Synthesis of optically pure 4-fluoro-glutamines as potential metabolic imaging agents for tumors. J Am Chem Soc 133:1122–1133CrossRefPubMed
14.
go back to reference Regales L, Balak MN, Gong Y et al (2007) Development of new mouse lung tumor models expressing EGFR T790M mutants associated with clinical resistance to kinase inhibitors. PLoS One 2, e810PubMedCentralCrossRefPubMed Regales L, Balak MN, Gong Y et al (2007) Development of new mouse lung tumor models expressing EGFR T790M mutants associated with clinical resistance to kinase inhibitors. PLoS One 2, e810PubMedCentralCrossRefPubMed
15.
go back to reference Qu W, Oya S, Lieberman BP et al (2012) Preparation and characterization of L-[5-11C]-glutamine for metabolic imaging of tumors. J Nucl Med 53:98–105CrossRefPubMed Qu W, Oya S, Lieberman BP et al (2012) Preparation and characterization of L-[5-11C]-glutamine for metabolic imaging of tumors. J Nucl Med 53:98–105CrossRefPubMed
16.
go back to reference Hight MR, Cheung YY, Nickels ML et al (2014) A peptide-based positron emission tomography probe for in vivo detection of caspase activity in apoptotic cells. Clin Cancer Res 20:2126–2135PubMedCentralCrossRefPubMed Hight MR, Cheung YY, Nickels ML et al (2014) A peptide-based positron emission tomography probe for in vivo detection of caspase activity in apoptotic cells. Clin Cancer Res 20:2126–2135PubMedCentralCrossRefPubMed
17.
go back to reference Chmielecki J, Foo J, Oxnard GR et al (2011) Optimization of dosing for EGFR-mutant non-small cell lung cancer with evolutionary cancer modeling. Sci Transl Med 3:90ra59PubMedCentralCrossRefPubMed Chmielecki J, Foo J, Oxnard GR et al (2011) Optimization of dosing for EGFR-mutant non-small cell lung cancer with evolutionary cancer modeling. Sci Transl Med 3:90ra59PubMedCentralCrossRefPubMed
18.
19.
go back to reference Deppen SA, Blume JD, Kensinger CD et al (2014) Accuracy of FDG-PET to diagnose lung cancer in areas with infectious lung disease: a meta-analysis. JAMA 312:1227–1236PubMedCentralCrossRefPubMed Deppen SA, Blume JD, Kensinger CD et al (2014) Accuracy of FDG-PET to diagnose lung cancer in areas with infectious lung disease: a meta-analysis. JAMA 312:1227–1236PubMedCentralCrossRefPubMed
20.
go back to reference Venneti S, Dunphy MP, Zhang H et al (2015) Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci Transl Med 7:274ra217CrossRef Venneti S, Dunphy MP, Zhang H et al (2015) Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci Transl Med 7:274ra217CrossRef
21.
go back to reference Schulte ML, Dawson ES, Saleh SA, Cuthbertson ML, Manning HC (2015) 2-Substituted Nγ-glutamylanilides as novel probes of ASCT2 with improved potency. Bioorg Med Chem Lett 25:113–116PubMedCentralCrossRefPubMed Schulte ML, Dawson ES, Saleh SA, Cuthbertson ML, Manning HC (2015) 2-Substituted Nγ-glutamylanilides as novel probes of ASCT2 with improved potency. Bioorg Med Chem Lett 25:113–116PubMedCentralCrossRefPubMed
22.
go back to reference Wu Z, Zha Z, Li G, et al (2014) [(18)F](2S,4S)-4-(3-Fluoropropyl)glutamine as a tumor imaging agent. Mol Pharm 11(11):3852–3866 Wu Z, Zha Z, Li G, et al (2014) [(18)F](2S,4S)-4-(3-Fluoropropyl)glutamine as a tumor imaging agent. Mol Pharm 11(11):3852–3866
Metadata
Title
Preclinical Evaluation of 4-[18F]Fluoroglutamine PET to Assess ASCT2 Expression in Lung Cancer
Authors
Mohamed Hassanein
Matthew R. Hight
Jason R. Buck
Mohammed N. Tantawy
Michael L. Nickels
Megan D. Hoeksema
Bradford K. Harris
Kelli Boyd
Pierre P. Massion
H. Charles Manning
Publication date
01-02-2016
Publisher
Springer US
Published in
Molecular Imaging and Biology / Issue 1/2016
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-015-0862-4

Other articles of this Issue 1/2016

Molecular Imaging and Biology 1/2016 Go to the issue