Skip to main content
Top
Published in: Molecular Imaging and Biology 1/2013

01-02-2013 | Research Article

Reproducibility of Static and Dynamic 18F-FDG, 18F-FLT, and 18F-FMISO MicroPET Studies in a Murine Model of HER2+ Breast Cancer

Authors: Jennifer G. Whisenant, Todd E. Peterson, Jacob U. Fluckiger, Mohammed Noor Tantawy, Gregory D. Ayers, Thomas E. Yankeelov

Published in: Molecular Imaging and Biology | Issue 1/2013

Login to get access

Abstract

Purpose

The objective of this study is to determine the reproducibility of static 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG), 3′-deoxy-3′-[18F]fluorothymidine (18F-FLT), and [18F]-fluoromisonidazole (18F-FMISO) microPET measurements, as well as kinetic parameters returned from analyses of dynamic 18F-FLT and 18F-FMISO data.

Procedures

HER2+ xenografts were established in nude mice. Dynamic data were acquired for 60 min, followed by a repeat injection and second scan 6 h later. Reproducibility was assessed for the percent-injected dose per gram (%ID/g) for each radiotracer, and with kinetic parameters (K 1 –k 4 , K i ) for 18F-FLT and 18F-FMISO.

Results

The value needed to reflect a change in tumor physiology is given by the 95 % confidence interval (CI), which is ±14, ±5, and ±6 % for 18F-FDG (n = 12), 18F-FLT (n = 11), and 18F-FMISO (n = 11) %ID/g, respectively. V d (=K 1 /k 2), k 3, and K FLT are the most reproducible 18F-FLT (n = 9) kinetic parameters, with 95 % CIs of ±18, ±10, and ±18 %, respectively. V d and K FMISO are the most reproducible 18F-FMISO kinetic parameters (n = 7) with 95 % CIs of ±16 and ±14 %, respectively.

Conclusions

Percent-injected dose per gram measurements are reproducible and appropriate for detecting treatment-induced changes. Kinetic parameters have larger threshold values, but are potentially sufficiently reproducible to detect treatment response.
Literature
1.
go back to reference Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):122S–50SPubMedCrossRef Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):122S–50SPubMedCrossRef
2.
go back to reference Guarneri V, Barbieri E, Dieci MV, Piacentini F, Conte P (2010) Anti-HER2 neoadjuvant and adjuvant therapies in HER2 positive breast cancer. Cancer Treat Rev 36(Suppl 3):S62–6PubMedCrossRef Guarneri V, Barbieri E, Dieci MV, Piacentini F, Conte P (2010) Anti-HER2 neoadjuvant and adjuvant therapies in HER2 positive breast cancer. Cancer Treat Rev 36(Suppl 3):S62–6PubMedCrossRef
3.
go back to reference Harry VN, Semple SI, Parkin DE, Gilbert FJ (2010) Use of new imaging techniques to predict tumour response to therapy. Lancet Oncol 11:92–102PubMedCrossRef Harry VN, Semple SI, Parkin DE, Gilbert FJ (2010) Use of new imaging techniques to predict tumour response to therapy. Lancet Oncol 11:92–102PubMedCrossRef
4.
go back to reference Dunphy MP, Lewis JS (2009) Radiopharmaceuticals in preclinical and clinical development for monitoring of therapy with PET. J Nucl Med 50(Suppl 1):106S–21SPubMedCrossRef Dunphy MP, Lewis JS (2009) Radiopharmaceuticals in preclinical and clinical development for monitoring of therapy with PET. J Nucl Med 50(Suppl 1):106S–21SPubMedCrossRef
6.
go back to reference Brepoels L, Stroobants S, Verhoef G et al (2009) (18)F-FDG and (18)F-FLT uptake early after cyclophosphamide and mTOR inhibition in an experimental lymphoma model. J Nucl Med 50:1102–9PubMedCrossRef Brepoels L, Stroobants S, Verhoef G et al (2009) (18)F-FDG and (18)F-FLT uptake early after cyclophosphamide and mTOR inhibition in an experimental lymphoma model. J Nucl Med 50:1102–9PubMedCrossRef
7.
go back to reference Oehler C, O’Donoghue JA, Russell J et al (2011) 18F-fluromisonidazole PET imaging as a biomarker for the response to 5,6-dimethylxanthenone-4-acetic acid in colorectal xenograft tumors. J Nucl Med 52:437–44PubMedCrossRef Oehler C, O’Donoghue JA, Russell J et al (2011) 18F-fluromisonidazole PET imaging as a biomarker for the response to 5,6-dimethylxanthenone-4-acetic acid in colorectal xenograft tumors. J Nucl Med 52:437–44PubMedCrossRef
8.
go back to reference Dandekar M, Tseng JR, Gambhir SS (2007) Reproducibility of 18F-FDG microPET studies in mouse tumor xenografts. J Nucl Med 48:602–7PubMedCrossRef Dandekar M, Tseng JR, Gambhir SS (2007) Reproducibility of 18F-FDG microPET studies in mouse tumor xenografts. J Nucl Med 48:602–7PubMedCrossRef
9.
go back to reference Tseng JR, Dandekar M, Subbarayan M et al (2005) Reproducibility of 3′-deoxy-3′-(18)F-fluorothymidine microPET studies in tumor xenografts in mice. J Nucl Med 46:1851–7PubMed Tseng JR, Dandekar M, Subbarayan M et al (2005) Reproducibility of 3′-deoxy-3′-(18)F-fluorothymidine microPET studies in tumor xenografts in mice. J Nucl Med 46:1851–7PubMed
10.
go back to reference Choi SJ, Kim SY, Kim SJ et al (2009) Reproducibility of the kinetic analysis of 3′-deoxy-3′-[(18)F]fluorothymidine positron emission tomography in mouse tumor models. Nucl Med Biol 36:711–9PubMedCrossRef Choi SJ, Kim SY, Kim SJ et al (2009) Reproducibility of the kinetic analysis of 3′-deoxy-3′-[(18)F]fluorothymidine positron emission tomography in mouse tumor models. Nucl Med Biol 36:711–9PubMedCrossRef
11.
go back to reference Ritter CA, Perez-Torres M, Rinehart C et al (2007) Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clin Cancer Res 13:4909–19PubMedCrossRef Ritter CA, Perez-Torres M, Rinehart C et al (2007) Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clin Cancer Res 13:4909–19PubMedCrossRef
12.
go back to reference Choi SJ, Kim JS, Kim JH et al (2005) [18F]3′-deoxy-3′-fluorothymidine PET for the diagnosis and grading of brain tumors. Eur J Nucl Med Mol Imaging 32:653–9PubMedCrossRef Choi SJ, Kim JS, Kim JH et al (2005) [18F]3′-deoxy-3′-fluorothymidine PET for the diagnosis and grading of brain tumors. Eur J Nucl Med Mol Imaging 32:653–9PubMedCrossRef
13.
go back to reference Tang G, Wang M, Tang X, Gan M, Luo L (2005) Fully automated one-pot synthesis of [18F]fluoromisonidazole. Nucl Med Biol 32:553–8PubMedCrossRef Tang G, Wang M, Tang X, Gan M, Luo L (2005) Fully automated one-pot synthesis of [18F]fluoromisonidazole. Nucl Med Biol 32:553–8PubMedCrossRef
14.
go back to reference Tai YC, Ruangma A, Rowland D et al (2005) Performance evaluation of the microPET focus: a third-generation microPET scanner dedicated to animal imaging. J Nucl Med 46:455–63PubMed Tai YC, Ruangma A, Rowland D et al (2005) Performance evaluation of the microPET focus: a third-generation microPET scanner dedicated to animal imaging. J Nucl Med 46:455–63PubMed
15.
go back to reference Fueger BJ, Czernin J, Hildebrandt I et al (2006) Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med 47:999–1006PubMed Fueger BJ, Czernin J, Hildebrandt I et al (2006) Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med 47:999–1006PubMed
16.
go back to reference Fang YH, Muzic RF Jr (2008) Spillover and partial-volume correction for image-derived input functions for small-animal 18F-FDG PET studies. J Nucl Med 49:606–14PubMedCrossRef Fang YH, Muzic RF Jr (2008) Spillover and partial-volume correction for image-derived input functions for small-animal 18F-FDG PET studies. J Nucl Med 49:606–14PubMedCrossRef
17.
go back to reference Kim SJ, Lee JS, Im KC et al (2008) Kinetic modeling of 3′-deoxy-3′-18F-fluorothymidine for quantitative cell proliferation imaging in subcutaneous tumor models in mice. J Nucl Med 49:2057–66PubMedCrossRef Kim SJ, Lee JS, Im KC et al (2008) Kinetic modeling of 3′-deoxy-3′-18F-fluorothymidine for quantitative cell proliferation imaging in subcutaneous tumor models in mice. J Nucl Med 49:2057–66PubMedCrossRef
18.
go back to reference Tantawy MN, Peterson TE (2010) Simplified [18F]FDG image-derived input function using the left ventricle, liver, and one venous blood sample. Mol Imaging 9:76–86PubMed Tantawy MN, Peterson TE (2010) Simplified [18F]FDG image-derived input function using the left ventricle, liver, and one venous blood sample. Mol Imaging 9:76–86PubMed
19.
go back to reference Ferl GZ, Zhang X, Wu HM, Kreissl MC, Huang SC (2007) Estimation of the 18F-FDG input function in mice by use of dynamic small-animal PET and minimal blood sample data. J Nucl Med 48:2037–45PubMedCrossRef Ferl GZ, Zhang X, Wu HM, Kreissl MC, Huang SC (2007) Estimation of the 18F-FDG input function in mice by use of dynamic small-animal PET and minimal blood sample data. J Nucl Med 48:2037–45PubMedCrossRef
20.
go back to reference Muzi M, Mankoff DA, Grierson JR et al (2005) Kinetic modeling of 3′-deoxy-3′-fluorothymidine in somatic tumors: mathematical studies. J Nucl Med 46:371–80PubMed Muzi M, Mankoff DA, Grierson JR et al (2005) Kinetic modeling of 3′-deoxy-3′-fluorothymidine in somatic tumors: mathematical studies. J Nucl Med 46:371–80PubMed
21.
go back to reference Burnham KP, Anderson DR (2004) Multimodal inference: understanding AIC and BIC in model selection. Socio Meth Res 33:261–304CrossRef Burnham KP, Anderson DR (2004) Multimodal inference: understanding AIC and BIC in model selection. Socio Meth Res 33:261–304CrossRef
22.
go back to reference Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Meth Med Res 8:135–60CrossRef Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Meth Med Res 8:135–60CrossRef
23.
go back to reference Galbraith SM, Lodge MA, Taylor NJ et al (2002) Reproducibility of dynamic contrast-enhanced MRI in human muscle and tumours: comparison of quantitative and semi-quantitative analysis. NMR Biomed 15:132–42PubMedCrossRef Galbraith SM, Lodge MA, Taylor NJ et al (2002) Reproducibility of dynamic contrast-enhanced MRI in human muscle and tumours: comparison of quantitative and semi-quantitative analysis. NMR Biomed 15:132–42PubMedCrossRef
24.
go back to reference Motulsky H (1999) Analyzing data with graphpad prism. GraphPad Software Inc, San Diego Motulsky H (1999) Analyzing data with graphpad prism. GraphPad Software Inc, San Diego
25.
go back to reference Disselhorst JA, Brom M, Laverman P et al (2010) Image-quality assessment for several positron emitters using the NEMA NU 4-2008 standards in the Siemens Inveon small-animal PET scanner. J Nucl Med 51:610–7PubMedCrossRef Disselhorst JA, Brom M, Laverman P et al (2010) Image-quality assessment for several positron emitters using the NEMA NU 4-2008 standards in the Siemens Inveon small-animal PET scanner. J Nucl Med 51:610–7PubMedCrossRef
26.
go back to reference Shields AF, Lawhorn-Crews JM, Briston DA et al (2008) Analysis and reproducibility of 3′-Deoxy-3′-[18F]fluorothymidine positron emission tomography imaging in patients with non-small cell lung cancer. Clin Cancer Res 14:4463–8PubMedCrossRef Shields AF, Lawhorn-Crews JM, Briston DA et al (2008) Analysis and reproducibility of 3′-Deoxy-3′-[18F]fluorothymidine positron emission tomography imaging in patients with non-small cell lung cancer. Clin Cancer Res 14:4463–8PubMedCrossRef
27.
go back to reference Lee SJ, Kang HY, Kim SY et al (2011) Early assessment of tumor response to JAC106, an anti-tubulin agent, by 3′-deoxy-3′-[(1)F]fluorothymidine in preclinical tumor models. Eur J Nucl Med Mol Imaging 38:1436–48PubMedCrossRef Lee SJ, Kang HY, Kim SY et al (2011) Early assessment of tumor response to JAC106, an anti-tubulin agent, by 3′-deoxy-3′-[(1)F]fluorothymidine in preclinical tumor models. Eur J Nucl Med Mol Imaging 38:1436–48PubMedCrossRef
28.
go back to reference Wang W, Georgi JC, Nehmeh SA et al (2009) Evaluation of a compartmental model for estimating tumor hypoxia via FMISO dynamic PET imaging. Phys Med Biol 54:3083–99PubMedCrossRef Wang W, Georgi JC, Nehmeh SA et al (2009) Evaluation of a compartmental model for estimating tumor hypoxia via FMISO dynamic PET imaging. Phys Med Biol 54:3083–99PubMedCrossRef
29.
go back to reference Wang W, Lee NY, Georgi JC et al (2010) Pharmacokinetic analysis of hypoxia (18)F-fluoromisonidazole dynamic PET in head and neck cancer. J Nucl Med 51:37–45PubMedCrossRef Wang W, Lee NY, Georgi JC et al (2010) Pharmacokinetic analysis of hypoxia (18)F-fluoromisonidazole dynamic PET in head and neck cancer. J Nucl Med 51:37–45PubMedCrossRef
30.
go back to reference Kersemans V, Hueting R, Cornelissen B et al (2011) Confounding factors arising from the use of anesthesia in preclinical imaging studies of 18F-FMISO as a diagnostic marker of hypoxia. J Nucl Med: Abstract Book Supplement 52:72P–3P Kersemans V, Hueting R, Cornelissen B et al (2011) Confounding factors arising from the use of anesthesia in preclinical imaging studies of 18F-FMISO as a diagnostic marker of hypoxia. J Nucl Med: Abstract Book Supplement 52:72P–3P
Metadata
Title
Reproducibility of Static and Dynamic 18F-FDG, 18F-FLT, and 18F-FMISO MicroPET Studies in a Murine Model of HER2+ Breast Cancer
Authors
Jennifer G. Whisenant
Todd E. Peterson
Jacob U. Fluckiger
Mohammed Noor Tantawy
Gregory D. Ayers
Thomas E. Yankeelov
Publication date
01-02-2013
Publisher
Springer-Verlag
Published in
Molecular Imaging and Biology / Issue 1/2013
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-012-0564-0

Other articles of this Issue 1/2013

Molecular Imaging and Biology 1/2013 Go to the issue