Skip to main content
Top
Published in: Molecular Imaging and Biology 5/2012

01-10-2012 | Research Article

Pharmacodynamic Evaluation of Irinotecan Therapy by FDG and FLT PET/CT Imaging in a Colorectal Cancer Xenograft Model

Authors: Sarah R. Mudd, Kimberley D. Holich, Martin J. Voorbach, Todd B. Cole, David R. Reuter, Paul Tapang, Gail Bukofzer, Arunava Chakravartty, Cherrie K. Donawho, Joann P. Palma, Gerard B. Fox, Mark Day, Yanping Luo

Published in: Molecular Imaging and Biology | Issue 5/2012

Login to get access

Abstract

Purpose

Longitudinal changes of 3′-[18 F]fluoro-3′-deoxythymidine (FLT) and 2-deoxy-2-[18 F]fluoro-d-glucose (FDG) in response to irinotecan therapy in an animal model of colorectal cancer were compared.

Procedures

SCID/CB-17 mice with HCT116 tumors were treated with 50 mg/kg irinotecan by intraperitoneal injection weekly for 3 weeks. FLT and FDG-positron emission tomography (PET) were performed at baseline, the day after each treatment, and 5 days after the first treatment. Proliferation and apoptosis were evaluated by immunohistochemistry (IHC) after day 15 of imaging.

Results

Irinotecan treatment resulted in a suppression of tumor growth. Tumor FLT uptake was decreased the day after each treatment but to a lesser extent 5 days after the first treatment. FDG uptake increased the day after each treatment with a continuous increase throughout the experiment. IHC analysis of phospho-H3 and Ki67 confirmed FLT-PET results, indicating a decrease in proliferation the day after the final irinotecan treatment. Increased apoptosis monitored by caspase-3 was observed after day 15 with irinotecan treatment.

Conclusions

FLT-PET may be a better method than FDG-PET for assessing treatment response to irinotecan. Changes in imaging occur before changes in tumor volume.
Literature
1.
go back to reference Shields AF (2006) Positron emission tomography measurement of tumor metabolism and growth: its expanding role in oncology. Mol Imaging Biol 8(3):141–150PubMedCrossRef Shields AF (2006) Positron emission tomography measurement of tumor metabolism and growth: its expanding role in oncology. Mol Imaging Biol 8(3):141–150PubMedCrossRef
2.
go back to reference Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS (2008) Molecular imaging in drug development. Nat Rev Drug Discov 7(7):591–607PubMedCrossRef Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS (2008) Molecular imaging in drug development. Nat Rev Drug Discov 7(7):591–607PubMedCrossRef
3.
go back to reference Pien HH, Fischman AJ, Thrall JH, Sorensen AG (2005) Using imaging biomarkers to accelerate drug development and clinical trials. Drug Discov Today 10(4):259–266PubMedCrossRef Pien HH, Fischman AJ, Thrall JH, Sorensen AG (2005) Using imaging biomarkers to accelerate drug development and clinical trials. Drug Discov Today 10(4):259–266PubMedCrossRef
4.
go back to reference Bading JR, Shields AF (2008) Imaging of cell proliferation: status and prospects. J Nucl Med 49(Suppl 2):64S–80SPubMedCrossRef Bading JR, Shields AF (2008) Imaging of cell proliferation: status and prospects. J Nucl Med 49(Suppl 2):64S–80SPubMedCrossRef
5.
go back to reference Shields AF, Grierson JR, Dohmen BM et al (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4(11):1334–1336PubMedCrossRef Shields AF, Grierson JR, Dohmen BM et al (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4(11):1334–1336PubMedCrossRef
6.
go back to reference Rasey JS, Grierson JR, Wiens LW, Kolb PD, Schwartz JL (2002) Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 43(9):1210–1217PubMed Rasey JS, Grierson JR, Wiens LW, Kolb PD, Schwartz JL (2002) Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 43(9):1210–1217PubMed
7.
go back to reference Seitz U, Wagner M, Neumaier B et al (2002) Evaluation of pyrimidine metabolising enzymes and in vitro uptake of 3′-[(18)F]fluoro-3′-deoxythymidine ([(18)F]FLT) in pancreatic cancer cell lines. Eur J Nucl Med Mol Imaging 29(9):1174–1181PubMedCrossRef Seitz U, Wagner M, Neumaier B et al (2002) Evaluation of pyrimidine metabolising enzymes and in vitro uptake of 3′-[(18)F]fluoro-3′-deoxythymidine ([(18)F]FLT) in pancreatic cancer cell lines. Eur J Nucl Med Mol Imaging 29(9):1174–1181PubMedCrossRef
8.
go back to reference Been LB, Suurmeijer AJ, Cobben DC, Jager PL, Hoekstra HJ, Elsinga PH (2004) [18 F]FLT-PET in oncology: current status and opportunities. Eur J Nucl Med Mol Imaging 31(12):1659–1672PubMedCrossRef Been LB, Suurmeijer AJ, Cobben DC, Jager PL, Hoekstra HJ, Elsinga PH (2004) [18 F]FLT-PET in oncology: current status and opportunities. Eur J Nucl Med Mol Imaging 31(12):1659–1672PubMedCrossRef
9.
go back to reference Waldherr C, Mellinghoff IK, Tran C et al (2005) Monitoring antiproliferative responses to kinase inhibitor therapy in mice with 3′-deoxy-3′-18 F-fluorothymidine PET. J Nucl Med 46(1):114–120PubMed Waldherr C, Mellinghoff IK, Tran C et al (2005) Monitoring antiproliferative responses to kinase inhibitor therapy in mice with 3′-deoxy-3′-18 F-fluorothymidine PET. J Nucl Med 46(1):114–120PubMed
10.
go back to reference Barthel H, Cleij MC, Collingridge DR et al (2003) 3′-Deoxy-3′-[18 F]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res 63(13):3791–3798PubMed Barthel H, Cleij MC, Collingridge DR et al (2003) 3′-Deoxy-3′-[18 F]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res 63(13):3791–3798PubMed
11.
go back to reference Schiepers C, Dahlbom M, Chen W et al (2010) Kinetics of 3′-deoxy-3′-18 F-fluorothymidine during treatment monitoring of recurrent high-grade glioma. J Nucl Med 51(5):720–727PubMedCrossRef Schiepers C, Dahlbom M, Chen W et al (2010) Kinetics of 3′-deoxy-3′-18 F-fluorothymidine during treatment monitoring of recurrent high-grade glioma. J Nucl Med 51(5):720–727PubMedCrossRef
12.
go back to reference Dittmann H, Dohmen BM, Kehlbach R et al (2002) Early changes in [18 F]FLT uptake after chemotherapy: an experimental study. Eur J Nucl Med Mol Imaging 29(11):1462–1469PubMedCrossRef Dittmann H, Dohmen BM, Kehlbach R et al (2002) Early changes in [18 F]FLT uptake after chemotherapy: an experimental study. Eur J Nucl Med Mol Imaging 29(11):1462–1469PubMedCrossRef
13.
go back to reference Na YS, Jung KA, Kim SM et al (2010) The histone deacetylase inhibitor PXD101 increases the efficacy of irinotecan in in vitro and in vivo colon cancer models. Cancer Chemother Pharmacol 68(2):389–398 Na YS, Jung KA, Kim SM et al (2010) The histone deacetylase inhibitor PXD101 increases the efficacy of irinotecan in in vitro and in vivo colon cancer models. Cancer Chemother Pharmacol 68(2):389–398
14.
go back to reference Moroz MA, Kochetkov T, Cai S et al (2011) Imaging colon cancer response following treatment with AZD1152: a preclinical analysis of [18 F]fluoro-2-deoxyglucose and 3′-deoxy-3′-[18 F]fluorothymidine imaging. Clin Cancer Res 17(5):1099–1110PubMedCrossRef Moroz MA, Kochetkov T, Cai S et al (2011) Imaging colon cancer response following treatment with AZD1152: a preclinical analysis of [18 F]fluoro-2-deoxyglucose and 3′-deoxy-3′-[18 F]fluorothymidine imaging. Clin Cancer Res 17(5):1099–1110PubMedCrossRef
15.
go back to reference Leyton J, Smith G, Lees M et al (2008) Noninvasive imaging of cell proliferation following mitogenic extracellular kinase inhibition by PD0325901. Mol Cancer Ther 7(9):3112–3121PubMedCrossRef Leyton J, Smith G, Lees M et al (2008) Noninvasive imaging of cell proliferation following mitogenic extracellular kinase inhibition by PD0325901. Mol Cancer Ther 7(9):3112–3121PubMedCrossRef
16.
go back to reference Leyton J, Alao JP, Da Costa M et al (2006) In vivo biological activity of the histone deacetylase inhibitor LAQ824 is detectable with 3′-deoxy-3′-[18 F]fluorothymidine positron emission tomography. Cancer Res 66(15):7621–7629PubMedCrossRef Leyton J, Alao JP, Da Costa M et al (2006) In vivo biological activity of the histone deacetylase inhibitor LAQ824 is detectable with 3′-deoxy-3′-[18 F]fluorothymidine positron emission tomography. Cancer Res 66(15):7621–7629PubMedCrossRef
17.
go back to reference Weekes J, Lam AK, Sebesan S, Ho YH (2009) Irinotecan therapy and molecular targets in colorectal cancer: a systemic review. World J Gastroenterol 15(29):3597–3602PubMedCrossRef Weekes J, Lam AK, Sebesan S, Ho YH (2009) Irinotecan therapy and molecular targets in colorectal cancer: a systemic review. World J Gastroenterol 15(29):3597–3602PubMedCrossRef
18.
go back to reference Palma JP, Wang YC, Rodriguez LE et al (2009) ABT-888 confers broad in vivo activity in combination with temozolomide in diverse tumors. Clin Cancer Res 15(23):7277–7290PubMedCrossRef Palma JP, Wang YC, Rodriguez LE et al (2009) ABT-888 confers broad in vivo activity in combination with temozolomide in diverse tumors. Clin Cancer Res 15(23):7277–7290PubMedCrossRef
19.
go back to reference Teicher BA (2002) Tumor models in cancer research, 2nd edn. Humana Press, Totowa Teicher BA (2002) Tumor models in cancer research, 2nd edn. Humana Press, Totowa
20.
go back to reference Aide N, Poulain L, Briand M et al (2009) Early evaluation of the effects of chemotherapy with longitudinal FDG small-animal PET in human testicular cancer xenografts: early flare response does not reflect refractory disease. Eur J Nucl Med Mol Imaging 36(3):396–405PubMedCrossRef Aide N, Poulain L, Briand M et al (2009) Early evaluation of the effects of chemotherapy with longitudinal FDG small-animal PET in human testicular cancer xenografts: early flare response does not reflect refractory disease. Eur J Nucl Med Mol Imaging 36(3):396–405PubMedCrossRef
21.
go back to reference Sharma RI, Smith TA (2008) Colorectal tumor cells treated with 5-FU, oxaliplatin, irinotecan, and cetuximab exhibit changes in 18 F-FDG incorporation corresponding to hexokinase activity and glucose transport. J Nucl Med 49(8):1386–1394PubMedCrossRef Sharma RI, Smith TA (2008) Colorectal tumor cells treated with 5-FU, oxaliplatin, irinotecan, and cetuximab exhibit changes in 18 F-FDG incorporation corresponding to hexokinase activity and glucose transport. J Nucl Med 49(8):1386–1394PubMedCrossRef
22.
go back to reference Takeba Y, Sekine S, Kumai T et al (2007) Irinotecan-induced apoptosis is inhibited by increased P-glycoprotein expression and decreased p53 in human hepatocellular carcinoma cells. Biol Pharm Bull 30(8):1400–1406PubMedCrossRef Takeba Y, Sekine S, Kumai T et al (2007) Irinotecan-induced apoptosis is inhibited by increased P-glycoprotein expression and decreased p53 in human hepatocellular carcinoma cells. Biol Pharm Bull 30(8):1400–1406PubMedCrossRef
23.
go back to reference Haberkorn U, Bellemann ME, Brix G et al (2001) Apoptosis and changes in glucose transport early after treatment of Morris hepatoma with gemcitabine. Eur J Nucl Med 28(4):418–425PubMedCrossRef Haberkorn U, Bellemann ME, Brix G et al (2001) Apoptosis and changes in glucose transport early after treatment of Morris hepatoma with gemcitabine. Eur J Nucl Med 28(4):418–425PubMedCrossRef
24.
go back to reference Takei T, Kuge Y, Zhao S et al (2005) Enhanced apoptotic reaction correlates with suppressed tumor glucose utilization after cytotoxic chemotherapy: use of 99mTc-Annexin V, 18 F-FDG, and histologic evaluation. J Nucl Med 46(5):794–799PubMed Takei T, Kuge Y, Zhao S et al (2005) Enhanced apoptotic reaction correlates with suppressed tumor glucose utilization after cytotoxic chemotherapy: use of 99mTc-Annexin V, 18 F-FDG, and histologic evaluation. J Nucl Med 46(5):794–799PubMed
25.
go back to reference Teicher BA (2008) Next generation topoisomerase I inhibitors: Rationale and biomarker strategies. Biochem Pharmacol 75(6):1262–1271PubMedCrossRef Teicher BA (2008) Next generation topoisomerase I inhibitors: Rationale and biomarker strategies. Biochem Pharmacol 75(6):1262–1271PubMedCrossRef
26.
go back to reference Olivieri G, Micheli A (1983) Mitotic delay and repair in human lymphocytes. Mutat Res 122(1):65–72PubMedCrossRef Olivieri G, Micheli A (1983) Mitotic delay and repair in human lymphocytes. Mutat Res 122(1):65–72PubMedCrossRef
27.
go back to reference Aguda BD (1999) A quantitative analysis of the kinetics of the G(2) DNA damage checkpoint system. Proc Natl Acad Sci U S A 96(20):11352–11357PubMedCrossRef Aguda BD (1999) A quantitative analysis of the kinetics of the G(2) DNA damage checkpoint system. Proc Natl Acad Sci U S A 96(20):11352–11357PubMedCrossRef
28.
go back to reference Furuta M, Hasegawa M, Hayakawa K et al (1997) Rapid rise in FDG uptake in an irradiated human tumour xenograft. Eur J Nucl Med 24(4):435–438PubMed Furuta M, Hasegawa M, Hayakawa K et al (1997) Rapid rise in FDG uptake in an irradiated human tumour xenograft. Eur J Nucl Med 24(4):435–438PubMed
29.
go back to reference Fishel ML, He Y, Reed AM et al (2008) Knockdown of the DNA repair and redox signaling protein Ape1/Ref-1 blocks ovarian cancer cell and tumor growth. DNA Repair (Amst) 7(2):177–186CrossRef Fishel ML, He Y, Reed AM et al (2008) Knockdown of the DNA repair and redox signaling protein Ape1/Ref-1 blocks ovarian cancer cell and tumor growth. DNA Repair (Amst) 7(2):177–186CrossRef
30.
go back to reference Chen YL, Eriksson S, Chang ZF (2010) Regulation and functional contribution of thymidine kinase 1 in repair of DNA damage. J Biol Chem 285(35):27327–27335PubMedCrossRef Chen YL, Eriksson S, Chang ZF (2010) Regulation and functional contribution of thymidine kinase 1 in repair of DNA damage. J Biol Chem 285(35):27327–27335PubMedCrossRef
31.
go back to reference Guichard S, Chatelut E, Lochon I, Bugat R, Mahjoubi M, Canal P (1998) Comparison of the pharmacokinetics and efficacy of irinotecan after administration by the intravenous versus intraperitoneal route in mice. Cancer Chemother Pharmacol 42(2):165–170PubMedCrossRef Guichard S, Chatelut E, Lochon I, Bugat R, Mahjoubi M, Canal P (1998) Comparison of the pharmacokinetics and efficacy of irinotecan after administration by the intravenous versus intraperitoneal route in mice. Cancer Chemother Pharmacol 42(2):165–170PubMedCrossRef
32.
go back to reference Chen W, Delaloye S, Silverman DH et al (2007) Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18 F] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol 25(30):4714–4721PubMedCrossRef Chen W, Delaloye S, Silverman DH et al (2007) Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18 F] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol 25(30):4714–4721PubMedCrossRef
33.
go back to reference Goshen E, Davidson T, Zwas ST, Aderka D (2006) PET/CT in the evaluation of response to treatment of liver metastases from colorectal cancer with bevacizumab and irinotecan. Technol Cancer Res Treat 5(1):37–43PubMed Goshen E, Davidson T, Zwas ST, Aderka D (2006) PET/CT in the evaluation of response to treatment of liver metastases from colorectal cancer with bevacizumab and irinotecan. Technol Cancer Res Treat 5(1):37–43PubMed
34.
go back to reference El-Deiry WS, Sigman CC, Kelloff GJ (2006) Imaging and oncologic drug development. J Clin Oncol 24(20):3261–3273PubMedCrossRef El-Deiry WS, Sigman CC, Kelloff GJ (2006) Imaging and oncologic drug development. J Clin Oncol 24(20):3261–3273PubMedCrossRef
35.
go back to reference Kelloff GJ, Hoffman JM, Johnson B et al (2005) Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res 11(8):2785–2808PubMedCrossRef Kelloff GJ, Hoffman JM, Johnson B et al (2005) Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res 11(8):2785–2808PubMedCrossRef
Metadata
Title
Pharmacodynamic Evaluation of Irinotecan Therapy by FDG and FLT PET/CT Imaging in a Colorectal Cancer Xenograft Model
Authors
Sarah R. Mudd
Kimberley D. Holich
Martin J. Voorbach
Todd B. Cole
David R. Reuter
Paul Tapang
Gail Bukofzer
Arunava Chakravartty
Cherrie K. Donawho
Joann P. Palma
Gerard B. Fox
Mark Day
Yanping Luo
Publication date
01-10-2012
Publisher
Springer-Verlag
Published in
Molecular Imaging and Biology / Issue 5/2012
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-011-0529-8

Other articles of this Issue 5/2012

Molecular Imaging and Biology 5/2012 Go to the issue