Skip to main content
Top
Published in: Molecular Imaging and Biology 6/2011

01-12-2011 | Research Article

Impact of Indium-111 Oxine Labelling on Viability of Human Mesenchymal Stem Cells In Vitro, and 3D Cell-Tracking Using SPECT/CT In Vivo

Authors: Franz Josef Gildehaus, Florian Haasters, Inga Drosse, Erika Wagner, Christian Zach, Wolf Mutschler, Paul Cumming, Peter Bartenstein, Matthias Schieker

Published in: Molecular Imaging and Biology | Issue 6/2011

Login to get access

Abstract

Purpose

This study investigates the effects of 111In-oxine incorporation on human mesenchymal stem cells’ (hMSC) biology and viability, and the applicability of 111In-oxine for single-photon emission computed tomography/X-ray computed tomography (SPECT/CT) monitoring of hMSC in vivo.

Procedures

HMSC were labelled with 10 Bq/cell. Cellular retention of radioactivity, cell survival, and migration were evaluated over 48 h. Metabolic activity was assessed over 14 days and the hMSC’s stem cell character was evaluated. Serial SPECT/CT was performed after intra-osseous injection to athymic rats over 48 h.

Results

Labelling efficiency was 25%, with 61% of incorporated 111In remaining in the hMSC at 48 h. The radiolabelling was without effect on cell viability, stem cell character, and plasticity, whereas metabolic activity and migration were significantly reduced. Grafted cells could be imaged in situ with SPECT/CT.

Conclusions

111In-oxine labelling moderately impaired hMSC’s functional integrity while preserving their stem cell character. Combined SPECT/CT imaging of 111In-oxine-labelled hMSC opens the possibility for non-invasive sequential monitoring of therapeutic stem cells.
Literature
1.
go back to reference Drosse I, Volkmer E, Capanna R et al (2008) Tissue engineering for bone defect healing: an update on a multi-component approach. Injury 39(Suppl 2):S9–S20PubMedCrossRef Drosse I, Volkmer E, Capanna R et al (2008) Tissue engineering for bone defect healing: an update on a multi-component approach. Injury 39(Suppl 2):S9–S20PubMedCrossRef
2.
go back to reference Zimmermann WH, Melnychenko I, Wasmeier G et al (2006) Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med 12:452–458PubMedCrossRef Zimmermann WH, Melnychenko I, Wasmeier G et al (2006) Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med 12:452–458PubMedCrossRef
3.
go back to reference Petite H, Viateau V, Bensaid W et al (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18:959–963PubMedCrossRef Petite H, Viateau V, Bensaid W et al (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18:959–963PubMedCrossRef
4.
go back to reference Wang C, Wang Z, Li A et al (2009) Repair of segmental bone-defect of goat’s tibia using a dynamic perfusion culture tissue engineering bone. J Biomed Mater Res A 92A:1145–1153 Wang C, Wang Z, Li A et al (2009) Repair of segmental bone-defect of goat’s tibia using a dynamic perfusion culture tissue engineering bone. J Biomed Mater Res A 92A:1145–1153
5.
go back to reference Zhou XZ, Leung VY, Dong QR et al (2008) Mesenchymal stem cell-based repair of articular cartilage with polyglycolic acid-hydroxyapatite biphasic scaffold. Int J Artif Organs 31:480–489PubMed Zhou XZ, Leung VY, Dong QR et al (2008) Mesenchymal stem cell-based repair of articular cartilage with polyglycolic acid-hydroxyapatite biphasic scaffold. Int J Artif Organs 31:480–489PubMed
6.
go back to reference Badorff C, Brandes RP, Popp R et al (2003) Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 107:1024–1032PubMedCrossRef Badorff C, Brandes RP, Popp R et al (2003) Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 107:1024–1032PubMedCrossRef
7.
go back to reference Kassem M (2006) Stem cells: potential therapy for age-related diseases. Ann NY Acad Sci 1067:436–442PubMedCrossRef Kassem M (2006) Stem cells: potential therapy for age-related diseases. Ann NY Acad Sci 1067:436–442PubMedCrossRef
8.
go back to reference Liechty KW, MacKenzie TC, Shaaban AF et al (2000) Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 6:1282–1286PubMedCrossRef Liechty KW, MacKenzie TC, Shaaban AF et al (2000) Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 6:1282–1286PubMedCrossRef
9.
go back to reference Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRef Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRef
10.
go back to reference Bruder SP, Jaiswal N, Ricalton NS et al (1998) Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop Relat Res 355:S247–S256PubMedCrossRef Bruder SP, Jaiswal N, Ricalton NS et al (1998) Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop Relat Res 355:S247–S256PubMedCrossRef
11.
go back to reference Schantz JT, Hutmacher DW, Lam CX et al (2003) Repair of calvarial defects with customised tissue-engineered bone grafts II. Evaluation of cellular efficiency and efficacy in vivo. Tissue Eng 9(Suppl 1):S127–S139PubMedCrossRef Schantz JT, Hutmacher DW, Lam CX et al (2003) Repair of calvarial defects with customised tissue-engineered bone grafts II. Evaluation of cellular efficiency and efficacy in vivo. Tissue Eng 9(Suppl 1):S127–S139PubMedCrossRef
12.
go back to reference Xian CJ, Foster BK (2006) Repair of injured articular and growth plate cartilage using mesenchymal stem cells and chondrogenic gene therapy. Curr Stem Cell Res Ther 1:213–229PubMedCrossRef Xian CJ, Foster BK (2006) Repair of injured articular and growth plate cartilage using mesenchymal stem cells and chondrogenic gene therapy. Curr Stem Cell Res Ther 1:213–229PubMedCrossRef
13.
go back to reference Saldanha KJ, Piper SL, Ainslie KM, Kim HT, Majumdar S (2008) Magnetic resonance imaging of iron oxide labelled stem cells: applications to tissue engineering based regeneration of the intervertebral disc. Eur Cell Mater 16:17–25PubMed Saldanha KJ, Piper SL, Ainslie KM, Kim HT, Majumdar S (2008) Magnetic resonance imaging of iron oxide labelled stem cells: applications to tissue engineering based regeneration of the intervertebral disc. Eur Cell Mater 16:17–25PubMed
14.
go back to reference Puppi J, Modo M (2009) Use of magnetic resonance imaging contrast agents to detect transplanted liver cells. Top Magn Reson Imaging 20:113–120PubMedCrossRef Puppi J, Modo M (2009) Use of magnetic resonance imaging contrast agents to detect transplanted liver cells. Top Magn Reson Imaging 20:113–120PubMedCrossRef
15.
go back to reference Choi HO, Hwang KJ (1987) Mechanism of ionophoric transport of indium-111 cations through a lipid bilayer membrane. J Nucl Med 28:91–96PubMed Choi HO, Hwang KJ (1987) Mechanism of ionophoric transport of indium-111 cations through a lipid bilayer membrane. J Nucl Med 28:91–96PubMed
16.
go back to reference Bindslev L, Haack-Sorensen M, Bisgaard K et al (2006) Labelling of human mesenchymal stem cells with indium-111 for SPECT imaging: effect on cell proliferation and differentiation. Eur J Nucl Med Mol Imaging 33:1171–1177PubMedCrossRef Bindslev L, Haack-Sorensen M, Bisgaard K et al (2006) Labelling of human mesenchymal stem cells with indium-111 for SPECT imaging: effect on cell proliferation and differentiation. Eur J Nucl Med Mol Imaging 33:1171–1177PubMedCrossRef
17.
go back to reference Nowak B, Weber C, Schober A et al (2007) Indium-111 oxine labelling affects the cellular integrity of haematopoietic progenitor cells. Eur J Nucl Med Mol Imaging 34:715–721PubMedCrossRef Nowak B, Weber C, Schober A et al (2007) Indium-111 oxine labelling affects the cellular integrity of haematopoietic progenitor cells. Eur J Nucl Med Mol Imaging 34:715–721PubMedCrossRef
18.
go back to reference Brenner W, Aicher A, Eckey T et al (2004) 111In-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model. J Nucl Med 45:512–518PubMed Brenner W, Aicher A, Eckey T et al (2004) 111In-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model. J Nucl Med 45:512–518PubMed
19.
go back to reference Acton PD, Zhou R (2005) Imaging reporter genes for cell tracking with PET and SPECT. Q J Nucl Med Mol Imaging 49:349–360PubMed Acton PD, Zhou R (2005) Imaging reporter genes for cell tracking with PET and SPECT. Q J Nucl Med Mol Imaging 49:349–360PubMed
20.
go back to reference Böcker W, Yin Z, Drosse I et al (2008) Introducing a single-cell-derived human mesenchymal stem cell line expressing hTERT after lentiviral gene transfer. J Cell Mol Med 12:1347–1359CrossRef Böcker W, Yin Z, Drosse I et al (2008) Introducing a single-cell-derived human mesenchymal stem cell line expressing hTERT after lentiviral gene transfer. J Cell Mol Med 12:1347–1359CrossRef
21.
go back to reference Volkmer E, Drosse I, Otto S et al (2008) Hypoxia in static and dynamic 3D culture systems for tissue engineering of bone. Tissue Eng A 14:1331–1340CrossRef Volkmer E, Drosse I, Otto S et al (2008) Hypoxia in static and dynamic 3D culture systems for tissue engineering of bone. Tissue Eng A 14:1331–1340CrossRef
22.
go back to reference Gholamrezanezhad A, Mirpour S, Ardekani JM et al (2009) Cytotoxicity of 111In-oxine on mesenchymal stem cells: a time-dependent adverse effect. Nucl Med Commun 30:210–216PubMedCrossRef Gholamrezanezhad A, Mirpour S, Ardekani JM et al (2009) Cytotoxicity of 111In-oxine on mesenchymal stem cells: a time-dependent adverse effect. Nucl Med Commun 30:210–216PubMedCrossRef
23.
go back to reference Jin Y, Kong H, Stodilka RZ et al (2005) Determining the minimum number of detectable cardiac-transplanted 111In-tropolone-labelled bone-marrow-derived mesenchymal stem cells by SPECT. Phys Med Biol 50:4445–4455PubMedCrossRef Jin Y, Kong H, Stodilka RZ et al (2005) Determining the minimum number of detectable cardiac-transplanted 111In-tropolone-labelled bone-marrow-derived mesenchymal stem cells by SPECT. Phys Med Biol 50:4445–4455PubMedCrossRef
24.
go back to reference Bustamante J, Dock L, Vahter M, Fowler B, Orrenius S (1997) The semiconductor elements arsenic and indium induce apoptosis in rat thymocytes. Toxicology 118:129–136PubMedCrossRef Bustamante J, Dock L, Vahter M, Fowler B, Orrenius S (1997) The semiconductor elements arsenic and indium induce apoptosis in rat thymocytes. Toxicology 118:129–136PubMedCrossRef
25.
go back to reference Fjälling M, Andersson P, Forssell-Aronsson E et al (1996) Systemic radionuclide therapy using indium-111-DTPA-D-Phe1-octreotide in midgut carcinoid syndrome. J Nucl Med 37:1519–1521PubMed Fjälling M, Andersson P, Forssell-Aronsson E et al (1996) Systemic radionuclide therapy using indium-111-DTPA-D-Phe1-octreotide in midgut carcinoid syndrome. J Nucl Med 37:1519–1521PubMed
26.
go back to reference Martin RF, Bradley TR, Hodgson GS (1979) Cytotoxicity of an 125I-labeled DNA-binding compound that induces double-stranded DNA breaks. Cancer Res 39:3244–3247PubMed Martin RF, Bradley TR, Hodgson GS (1979) Cytotoxicity of an 125I-labeled DNA-binding compound that induces double-stranded DNA breaks. Cancer Res 39:3244–3247PubMed
27.
go back to reference Weaver AS, Su YP, Begun DL et al (2010) The effects of axial displacement on fracture callus morphology and MSC homing depend on the timing of application. Bone 47:41–48PubMedCrossRef Weaver AS, Su YP, Begun DL et al (2010) The effects of axial displacement on fracture callus morphology and MSC homing depend on the timing of application. Bone 47:41–48PubMedCrossRef
28.
go back to reference Mahmood A, Lu D, Wang L et al (2001) Treatment of traumatic brain injury in female rats with intravenous administration of bone marrow stromal cells. Neurosurgery 49:1196–1203PubMed Mahmood A, Lu D, Wang L et al (2001) Treatment of traumatic brain injury in female rats with intravenous administration of bone marrow stromal cells. Neurosurgery 49:1196–1203PubMed
29.
go back to reference Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705PubMedCrossRef Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705PubMedCrossRef
30.
go back to reference Assis AC, Carvalho JL, Jacoby BA et al (2010) Time-dependent migration of systemically delivered bone marrow mesenchymal stem cells to the infarcted heart. Cell Transplant 19:219–230PubMedCrossRef Assis AC, Carvalho JL, Jacoby BA et al (2010) Time-dependent migration of systemically delivered bone marrow mesenchymal stem cells to the infarcted heart. Cell Transplant 19:219–230PubMedCrossRef
31.
go back to reference Haasters F, Prall WC, Anz D et al (2009) Morphological and immunocytochemical characteristics indicate the yield of early progenitors and represent a quality control for human mesenchymal stem cell culturing. J Anat 214:759–767PubMedCrossRef Haasters F, Prall WC, Anz D et al (2009) Morphological and immunocytochemical characteristics indicate the yield of early progenitors and represent a quality control for human mesenchymal stem cell culturing. J Anat 214:759–767PubMedCrossRef
32.
go back to reference Schieker M, Pautke C, Haasters F et al (2007) Human mesenchymal stem cells at the single-cell level: simultaneous seven-colour immunofluorescence. J Anat 210:592–599PubMedCrossRef Schieker M, Pautke C, Haasters F et al (2007) Human mesenchymal stem cells at the single-cell level: simultaneous seven-colour immunofluorescence. J Anat 210:592–599PubMedCrossRef
33.
go back to reference Jaiswal RK, Jaiswal N, Bruder SP et al (2000) Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem 275:9645–9652PubMedCrossRef Jaiswal RK, Jaiswal N, Bruder SP et al (2000) Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem 275:9645–9652PubMedCrossRef
34.
go back to reference Raimondo S, Penna C, Pagliaro P, Geuna S (2006) Morphological characterization of GFP stably transfected adult mesenchymal bone marrow stem cells. J Anat 208:3–12PubMedCrossRef Raimondo S, Penna C, Pagliaro P, Geuna S (2006) Morphological characterization of GFP stably transfected adult mesenchymal bone marrow stem cells. J Anat 208:3–12PubMedCrossRef
35.
go back to reference Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580PubMedCrossRef Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580PubMedCrossRef
36.
go back to reference Agriantonis DJ, Hall L, Wilson MA (2009) Utility of SPECT/CT as an adjunct to planar whole body I-131 imaging: liver metastasis from papillary thyroid cancer. Clin Nucl Med 34:247–248PubMedCrossRef Agriantonis DJ, Hall L, Wilson MA (2009) Utility of SPECT/CT as an adjunct to planar whole body I-131 imaging: liver metastasis from papillary thyroid cancer. Clin Nucl Med 34:247–248PubMedCrossRef
37.
go back to reference Keidar Z, Israel O, Krausz Y (2003) SPECT/CT in tumor imaging: technical aspects and clinical applications. Semin Nucl Med 33:205–218PubMedCrossRef Keidar Z, Israel O, Krausz Y (2003) SPECT/CT in tumor imaging: technical aspects and clinical applications. Semin Nucl Med 33:205–218PubMedCrossRef
38.
go back to reference ten Berge RJ, Natarajan AT, Hardeman MR, van Royen EA, Schellekens PT (1983) Labeling with indium-111 has detrimental effects on human lymphocytes: concise communication. J Nucl Med 24:615–620PubMed ten Berge RJ, Natarajan AT, Hardeman MR, van Royen EA, Schellekens PT (1983) Labeling with indium-111 has detrimental effects on human lymphocytes: concise communication. J Nucl Med 24:615–620PubMed
39.
go back to reference Kraitchman DL, Tatsumi M, Gilson WD et al (2005) Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation 112:1451–1461PubMedCrossRef Kraitchman DL, Tatsumi M, Gilson WD et al (2005) Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation 112:1451–1461PubMedCrossRef
40.
go back to reference Shake JG, Gruber PJ, Baumgartner WA et al (2002) Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg 73:1919–1925PubMedCrossRef Shake JG, Gruber PJ, Baumgartner WA et al (2002) Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg 73:1919–1925PubMedCrossRef
41.
go back to reference Terrovitis JV, Bulte JW, Sarvananthan S et al (2006) Magnetic resonance imaging of ferumoxide-labeled mesenchymal stem cells seeded on collagen scaffolds-relevance to tissue engineering. Tissue Eng 12:2765–2775PubMedCrossRef Terrovitis JV, Bulte JW, Sarvananthan S et al (2006) Magnetic resonance imaging of ferumoxide-labeled mesenchymal stem cells seeded on collagen scaffolds-relevance to tissue engineering. Tissue Eng 12:2765–2775PubMedCrossRef
42.
go back to reference Liang SX, Tan TY, Gaudry L, Chong B (2010) Differentiation and migration of Sca1+/CD31- cardiac side population cells in a murine myocardial ischemic model. Int J Cardiol 138:40–49PubMedCrossRef Liang SX, Tan TY, Gaudry L, Chong B (2010) Differentiation and migration of Sca1+/CD31- cardiac side population cells in a murine myocardial ischemic model. Int J Cardiol 138:40–49PubMedCrossRef
43.
go back to reference Lien CY, Chih-Yuan HK, Lee OK, Blunn GW, Su Y (2009) Restoration of bone mass and strength in glucocorticoid-treated mice by systemic transplantation of CXCR4 and cbfa-1 co-expressing mesenchymal stem cells. J Bone Miner Res 24:837–848PubMedCrossRef Lien CY, Chih-Yuan HK, Lee OK, Blunn GW, Su Y (2009) Restoration of bone mass and strength in glucocorticoid-treated mice by systemic transplantation of CXCR4 and cbfa-1 co-expressing mesenchymal stem cells. J Bone Miner Res 24:837–848PubMedCrossRef
44.
go back to reference Lan X, Yin X, Wang R, Liu Y, Zhang Y (2009) Comparative study of cellular kinetics of reporter probe [(131)I]FIAU in neonatal cardiac myocytes after transfer of HSV1-tk reporter gene with two vectors. Nucl Med Biol 36:207–213PubMedCrossRef Lan X, Yin X, Wang R, Liu Y, Zhang Y (2009) Comparative study of cellular kinetics of reporter probe [(131)I]FIAU in neonatal cardiac myocytes after transfer of HSV1-tk reporter gene with two vectors. Nucl Med Biol 36:207–213PubMedCrossRef
45.
go back to reference Roelants V, Labar D, de Meester C et al (2008) Comparison between adenoviral and retroviral vectors for the transduction of the thymidine kinase PET reporter gene in rat mesenchymal stem cells. J Nucl Med 49:1836–1844PubMedCrossRef Roelants V, Labar D, de Meester C et al (2008) Comparison between adenoviral and retroviral vectors for the transduction of the thymidine kinase PET reporter gene in rat mesenchymal stem cells. J Nucl Med 49:1836–1844PubMedCrossRef
Metadata
Title
Impact of Indium-111 Oxine Labelling on Viability of Human Mesenchymal Stem Cells In Vitro, and 3D Cell-Tracking Using SPECT/CT In Vivo
Authors
Franz Josef Gildehaus
Florian Haasters
Inga Drosse
Erika Wagner
Christian Zach
Wolf Mutschler
Paul Cumming
Peter Bartenstein
Matthias Schieker
Publication date
01-12-2011
Publisher
Springer-Verlag
Published in
Molecular Imaging and Biology / Issue 6/2011
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-010-0439-1

Other articles of this Issue 6/2011

Molecular Imaging and Biology 6/2011 Go to the issue