Skip to main content
Top
Published in: Molecular Imaging and Biology 5/2010

01-10-2010 | Research Article

18F-Labeled Galacto and PEGylated RGD Dimers for PET Imaging of αvβ3 Integrin Expression

Authors: Shuanglong Liu, Zhaofei Liu, Kai Chen, Yongjun Yan, Petra Watzlowik, Hans-Jürgen Wester, Frederick T. Chin, Xiaoyuan Chen

Published in: Molecular Imaging and Biology | Issue 5/2010

Login to get access

Abstract

Purpose

In vivo imaging of αvβ3 has important diagnostic and therapeutic applications. 18F-Galacto-arginine–glycine–aspartic acid (RGD) has been developed for positron emission tomography (PET) imaging of integrin αvβ3 expression and is now being tested on humans. Dimerization and multimerization of cyclic RGD peptides have been reported to improve the integrin αvβ3-binding affinity due to the polyvalency effect. Here, we compared a number of new dimeric RGD peptide tracers with the clinically used 18F-galacto-RGD.

Procedures

RGD monomers and dimers were coupled with galacto or PEG3 linkers, and labeled with 18F using 4-nitrophenyl 2-18F-fluoropropionate (18F-NFP) or N-succinimidyl 4-18F-fluorobenzoate as a prosthetic group. The newly developed tracers were evaluated by cell-based receptor-binding assay, biodistribution, and small-animal PET studies in a subcutaneous U87MG glioblastoma xenograft model.

Results

Starting with 18F-F, the total reaction time for 18F-FP-SRGD2 and 18F-FP-PRGD2 is about 120 min. The decay-corrected radiochemical yields for 18F-FP-SRGD2 and 18F-FP-PRGD2 are 52 ± 9% and 80 ± 7% calculated from 18F-NFP. Noninvasive small-animal PET and direct tissue sampling experiments demonstrated that the dimeric RGD peptides had significantly higher tumor uptake as compared to 18F-galacto-RGD.

Conclusion

Dimeric RGD peptide tracers with relatively high tumor integrin-specific accumulation and favorable in vivo kinetics may have the potential to be translated into clinic for integrin αvβ3 imaging.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bishop GG, McPherson JA, Sanders JM, Hesselbacher SE, Feldman MJ, McNamara CA, et al (2001) Selective αvβ3-receptor blockade reduces macrophage infiltration and restenosis after balloon angioplasty in the atherosclerotic rabbit. Circulation 103:1906–1911PubMed Bishop GG, McPherson JA, Sanders JM, Hesselbacher SE, Feldman MJ, McNamara CA, et al (2001) Selective αvβ3-receptor blockade reduces macrophage infiltration and restenosis after balloon angioplasty in the atherosclerotic rabbit. Circulation 103:1906–1911PubMed
2.
go back to reference Storgard CM, Stupack DG, Jonczyk A, Goodman SL, Fox RI, Cheresh DA (1999) Decreased angiogenesis and arthritic disease in rabbits treated with an αvβ3 antagonist. J Clin Invest 103:47–54CrossRefPubMed Storgard CM, Stupack DG, Jonczyk A, Goodman SL, Fox RI, Cheresh DA (1999) Decreased angiogenesis and arthritic disease in rabbits treated with an αvβ3 antagonist. J Clin Invest 103:47–54CrossRefPubMed
4.
go back to reference Albelda SM, Mette SA, Elder DE, Stewart R, Damjanovich L, Herlyn M, et al (1990) Integrin distribution in malignant melanoma: association of the beta 3 subunit with tumor progression. Cancer Res 50:6757–6764PubMed Albelda SM, Mette SA, Elder DE, Stewart R, Damjanovich L, Herlyn M, et al (1990) Integrin distribution in malignant melanoma: association of the beta 3 subunit with tumor progression. Cancer Res 50:6757–6764PubMed
5.
go back to reference Bello L, Francolini M, Marthyn P, Zhang J, Carroll RS, Nikas DC, et al (2001) αvβ3 and αvβ5 integrin expression in glioma periphery. Neurosurgery 49:380–389CrossRefPubMed Bello L, Francolini M, Marthyn P, Zhang J, Carroll RS, Nikas DC, et al (2001) αvβ3 and αvβ5 integrin expression in glioma periphery. Neurosurgery 49:380–389CrossRefPubMed
6.
go back to reference Brooks PC, Stromblad S, Klemke R, Visscher D, Sarkar FH, Cheresh DA (1995) Anti integrin αvβ3 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest 96:1815–1822CrossRefPubMed Brooks PC, Stromblad S, Klemke R, Visscher D, Sarkar FH, Cheresh DA (1995) Anti integrin αvβ3 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest 96:1815–1822CrossRefPubMed
7.
go back to reference Beer AJ, Schwaiger M (2008) Imaging of integrin αvβ3 expression. Cancer Metastasis Rev 27:631–644CrossRefPubMed Beer AJ, Schwaiger M (2008) Imaging of integrin αvβ3 expression. Cancer Metastasis Rev 27:631–644CrossRefPubMed
8.
go back to reference Cai W, Niu G, Chen X (2008) Imaging of integrins as biomarkers for tumor angiogenesis. Curr Pharm Des 14:2943–2973CrossRefPubMed Cai W, Niu G, Chen X (2008) Imaging of integrins as biomarkers for tumor angiogenesis. Curr Pharm Des 14:2943–2973CrossRefPubMed
9.
go back to reference Dijkgraaf I, Beer AJ, Wester HJ (2009) Application of RGD-containing peptides as imaging probes for αvβ3 expression. Front Biosci 14:887–899CrossRefPubMed Dijkgraaf I, Beer AJ, Wester HJ (2009) Application of RGD-containing peptides as imaging probes for αvβ3 expression. Front Biosci 14:887–899CrossRefPubMed
10.
go back to reference Cai W, Chen X (2008) Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 49 Suppl 2:113S–128SCrossRefPubMed Cai W, Chen X (2008) Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 49 Suppl 2:113S–128SCrossRefPubMed
11.
go back to reference Chen X (2006) Multimodality imaging of tumor integrin αvβ3 expression. Mini Rev Med Chem 6:227–234CrossRefPubMed Chen X (2006) Multimodality imaging of tumor integrin αvβ3 expression. Mini Rev Med Chem 6:227–234CrossRefPubMed
12.
go back to reference Haubner R, Wester HJ, Weber WA, Mang C, Ziegler SI, Goodman SL, et al (2001) Noninvasive imaging of αvβ3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 61:1781–1785PubMed Haubner R, Wester HJ, Weber WA, Mang C, Ziegler SI, Goodman SL, et al (2001) Noninvasive imaging of αvβ3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 61:1781–1785PubMed
13.
go back to reference Beer AJ, Haubner R, Sarbia M, Goebel M, Luderschmidt S, Grosu AL, et al (2006) Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin αvβ3 expression in man. Clin Cancer Res 12:3942–3949CrossRefPubMed Beer AJ, Haubner R, Sarbia M, Goebel M, Luderschmidt S, Grosu AL, et al (2006) Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin αvβ3 expression in man. Clin Cancer Res 12:3942–3949CrossRefPubMed
14.
go back to reference Beer AJ, Haubner R, Wolf I, Goebel M, Luderschmidt S, Niemeyer M, et al (2006) PET-based human dosimetry of 18F-galacto-RGD, a new radiotracer for imaging αvβ3 expression. J Nucl Med 47:763–769PubMed Beer AJ, Haubner R, Wolf I, Goebel M, Luderschmidt S, Niemeyer M, et al (2006) PET-based human dosimetry of 18F-galacto-RGD, a new radiotracer for imaging αvβ3 expression. J Nucl Med 47:763–769PubMed
15.
go back to reference Beer AJ, Niemeyer M, Carlsen J, Sarbia M, Nahrig J, Watzlowik P, et al (2008) Patterns of αvβ3 expression in primary and metastatic human breast cancer as shown by 18F-Galacto-RGD PET. J Nucl Med 49:255–259CrossRefPubMed Beer AJ, Niemeyer M, Carlsen J, Sarbia M, Nahrig J, Watzlowik P, et al (2008) Patterns of αvβ3 expression in primary and metastatic human breast cancer as shown by 18F-Galacto-RGD PET. J Nucl Med 49:255–259CrossRefPubMed
16.
go back to reference Picchio M, Beck R, Haubner R, Seidl S, Machulla HJ, Johnson TD, et al (2008) Intratumoral spatial distribution of hypoxia and angiogenesis assessed by 18F-FAZA and 125I-Gluco-RGD autoradiography. J Nucl Med 49:597–605CrossRefPubMed Picchio M, Beck R, Haubner R, Seidl S, Machulla HJ, Johnson TD, et al (2008) Intratumoral spatial distribution of hypoxia and angiogenesis assessed by 18F-FAZA and 125I-Gluco-RGD autoradiography. J Nucl Med 49:597–605CrossRefPubMed
17.
go back to reference Beer AJ, Grosu AL, Carlsen J, Kolk A, Sarbia M, Stangier I, et al (2007) [18F]galacto-RGD positron emission tomography for imaging of alphavbeta3 expression on the neovasculature in patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 13:6610–6616CrossRefPubMed Beer AJ, Grosu AL, Carlsen J, Kolk A, Sarbia M, Stangier I, et al (2007) [18F]galacto-RGD positron emission tomography for imaging of alphavbeta3 expression on the neovasculature in patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 13:6610–6616CrossRefPubMed
18.
go back to reference Beer AJ, Haubner R, Goebel M, Luderschmidt S, Spilker ME, Wester HJ, et al (2005) Biodistribution and pharmacokinetics of the αvβ3-selective tracer 18F-galacto-RGD in cancer patients. J Nucl Med 46:1333–1341PubMed Beer AJ, Haubner R, Goebel M, Luderschmidt S, Spilker ME, Wester HJ, et al (2005) Biodistribution and pharmacokinetics of the αvβ3-selective tracer 18F-galacto-RGD in cancer patients. J Nucl Med 46:1333–1341PubMed
19.
go back to reference Beer AJ, Lorenzen S, Metz S, Herrmann K, Watzlowik P, Wester HJ, et al (2008) Comparison of integrin αvβ3 expression and glucose metabolism in primary and metastatic lesions in cancer patients: a PET study using 18F-galacto-RGD and 18F-FDG. J Nucl Med 49:22–29CrossRefPubMed Beer AJ, Lorenzen S, Metz S, Herrmann K, Watzlowik P, Wester HJ, et al (2008) Comparison of integrin αvβ3 expression and glucose metabolism in primary and metastatic lesions in cancer patients: a PET study using 18F-galacto-RGD and 18F-FDG. J Nucl Med 49:22–29CrossRefPubMed
20.
go back to reference Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, et al (2005) Noninvasive visualization of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med 2:e70CrossRefPubMed Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, et al (2005) Noninvasive visualization of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med 2:e70CrossRefPubMed
21.
go back to reference Kreiner M, Li Z, Beattie J, Kelly SM, Mardon HJ, van der Walle CF (2008) Self-assembling multimeric integrin α5β1 ligands for cell attachment and spreading. Protein Eng Des Sel 21:553–560CrossRefPubMed Kreiner M, Li Z, Beattie J, Kelly SM, Mardon HJ, van der Walle CF (2008) Self-assembling multimeric integrin α5β1 ligands for cell attachment and spreading. Protein Eng Des Sel 21:553–560CrossRefPubMed
22.
go back to reference Zhang X, Xiong Z, Wu Y, Cai W, Tseng JR, Gambhir SS, et al (2008) Quantitative PET imaging of tumor integrin αvβ3 expression with 18F-FRGD2. J Nucl Med 47:113–121PubMed Zhang X, Xiong Z, Wu Y, Cai W, Tseng JR, Gambhir SS, et al (2008) Quantitative PET imaging of tumor integrin αvβ3 expression with 18F-FRGD2. J Nucl Med 47:113–121PubMed
23.
go back to reference Chen X, Liu S, Hou Y, Tohme M, Park R, Bading JR, et al (2004) MicroPET imaging of breast cancer αv-integrin expression with 64Cu-labeled dimeric RGD peptides. Mol Imaging Biol 6:350–359CrossRefPubMed Chen X, Liu S, Hou Y, Tohme M, Park R, Bading JR, et al (2004) MicroPET imaging of breast cancer αv-integrin expression with 64Cu-labeled dimeric RGD peptides. Mol Imaging Biol 6:350–359CrossRefPubMed
24.
go back to reference Mammen M, Chio S-K, Whitesides GM (1998). Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed Engl 37:2755–2794CrossRef Mammen M, Chio S-K, Whitesides GM (1998). Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed Engl 37:2755–2794CrossRef
25.
go back to reference Li ZB, Cai W, Cao Q, Chen K, Wu Z, He L, et al (2007) 64Cu-labeled tetrameric and octameric RGD peptides for small-animal PET of tumor αvβ3 integrin expression. J Nucl Med 48:1162–1171CrossRefPubMed Li ZB, Cai W, Cao Q, Chen K, Wu Z, He L, et al (2007) 64Cu-labeled tetrameric and octameric RGD peptides for small-animal PET of tumor αvβ3 integrin expression. J Nucl Med 48:1162–1171CrossRefPubMed
26.
go back to reference Wu Z, Li ZB, Cai W, He L, Chin FT, Li F, et al (2007) 18F-labeled mini-PEG spacered RGD dimer (18F-FPRGD2): synthesis and microPET imaging of αvβ3 integrin expression. Eur J Nucl Med Mol Imaging 34:1823–1831CrossRefPubMed Wu Z, Li ZB, Cai W, He L, Chin FT, Li F, et al (2007) 18F-labeled mini-PEG spacered RGD dimer (18F-FPRGD2): synthesis and microPET imaging of αvβ3 integrin expression. Eur J Nucl Med Mol Imaging 34:1823–1831CrossRefPubMed
27.
go back to reference Wu Z, Li ZB, Chen K, Cai W, He L, Chin FT, et al (2007) microPET of tumor integrin αvβ3 expression using 18F-labeled PEGylated tetrameric RGD peptide (18F-FPRGD4). J Nucl Med 48:1536–1544CrossRefPubMed Wu Z, Li ZB, Chen K, Cai W, He L, Chin FT, et al (2007) microPET of tumor integrin αvβ3 expression using 18F-labeled PEGylated tetrameric RGD peptide (18F-FPRGD4). J Nucl Med 48:1536–1544CrossRefPubMed
28.
go back to reference Poethko T, Schottelius M, Thumshirn G, Hersel U, Herz M, Henriksen G, et al (2004) Two-step methodology for high-yield routine radiohalogenation of peptides: 18F-labeled RGD and octreotide analogs. J Nucl Med 45:892–902PubMed Poethko T, Schottelius M, Thumshirn G, Hersel U, Herz M, Henriksen G, et al (2004) Two-step methodology for high-yield routine radiohalogenation of peptides: 18F-labeled RGD and octreotide analogs. J Nucl Med 45:892–902PubMed
29.
go back to reference Thumshirn G, Hersel U, Goodman SL, Kessler H (2003) Multimeric cyclic RGD peptides as potential tools for tumor targeting: solid-phase peptide synthesis and chemoselective oxime ligation. Chemistry 9:2717–2725CrossRefPubMed Thumshirn G, Hersel U, Goodman SL, Kessler H (2003) Multimeric cyclic RGD peptides as potential tools for tumor targeting: solid-phase peptide synthesis and chemoselective oxime ligation. Chemistry 9:2717–2725CrossRefPubMed
30.
go back to reference Haubner R, Kuhnast B, Mang C, Weber WA, Kessler H, Wester HJ, et al (2004) [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjug Chem 15:61–69CrossRefPubMed Haubner R, Kuhnast B, Mang C, Weber WA, Kessler H, Wester HJ, et al (2004) [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjug Chem 15:61–69CrossRefPubMed
31.
go back to reference Cai W, Zhang X, Wu Y, Chen X (2006) A thiol-reactive 18F-labeling agent, N-[2-(4-18F-fluorobenzamido)ethyl]maleimide, and synthesis of RGD peptide-based tracer for PET imaging of αvβ3 integrin expression. J Nucl Med 47:1172–1180PubMed Cai W, Zhang X, Wu Y, Chen X (2006) A thiol-reactive 18F-labeling agent, N-[2-(4-18F-fluorobenzamido)ethyl]maleimide, and synthesis of RGD peptide-based tracer for PET imaging of αvβ3 integrin expression. J Nucl Med 47:1172–1180PubMed
32.
go back to reference Wu Y, Zhang X, Xiong Z, Cheng Z, Fisher DR, Liu S, et al (2005) microPET imaging of glioma integrin αvβ3 expression using 64Cu-labeled tetrameric RGD peptide. J Nucl Med 46:1707–1718PubMed Wu Y, Zhang X, Xiong Z, Cheng Z, Fisher DR, Liu S, et al (2005) microPET imaging of glioma integrin αvβ3 expression using 64Cu-labeled tetrameric RGD peptide. J Nucl Med 46:1707–1718PubMed
33.
go back to reference Liu Z, Liu S, Wang F, Chen X (2009) Noninvasive imaging of tumor integrin expression using 18F-labeled RGD dimer peptide with PEG4 linkers. Eur J Nucl Med Mol Imaging 36:1296–1307 Liu Z, Liu S, Wang F, Chen X (2009) Noninvasive imaging of tumor integrin expression using 18F-labeled RGD dimer peptide with PEG4 linkers. Eur J Nucl Med Mol Imaging 36:1296–1307
34.
go back to reference Dijkgraaf I, Kruijtzer JA, Liu S, Soede AC, Oyen WJ, Corstens FH, et al (2007) Improved targeting of the αvβ3 integrin by multimerisation of RGD peptides. Eur J Nucl Med Mol Imaging 34:267–273CrossRefPubMed Dijkgraaf I, Kruijtzer JA, Liu S, Soede AC, Oyen WJ, Corstens FH, et al (2007) Improved targeting of the αvβ3 integrin by multimerisation of RGD peptides. Eur J Nucl Med Mol Imaging 34:267–273CrossRefPubMed
35.
go back to reference Janssen ML, Oyen WJ, Dijkgraaf I, Massuger LF, Frielink C, Edwards DS, et al (2002) Tumor targeting with radiolabeled αvβ3 integrin binding peptides in a nude mouse model. Cancer Res 62:6146–6151PubMed Janssen ML, Oyen WJ, Dijkgraaf I, Massuger LF, Frielink C, Edwards DS, et al (2002) Tumor targeting with radiolabeled αvβ3 integrin binding peptides in a nude mouse model. Cancer Res 62:6146–6151PubMed
36.
go back to reference Haubner R, Finsinger D, Kessler H (1997) Stereoisomeric peptide libraries and peptidomimetics for designing selective inhibitors of the αvβ3 integrin for a new cancer therapy. Angew Chem Int Ed Engl 36:1374–1389CrossRef Haubner R, Finsinger D, Kessler H (1997) Stereoisomeric peptide libraries and peptidomimetics for designing selective inhibitors of the αvβ3 integrin for a new cancer therapy. Angew Chem Int Ed Engl 36:1374–1389CrossRef
37.
go back to reference Haubner R, Wester HJ, Reuning U, Senekowitsch-Schmidtke R, Diefenbach B, Kessler H, et al (1999) Radiolabeled αvβ3 integrin antagonists: a new class of tracers for tumor targeting. J Nucl Med 40:1061–1071PubMed Haubner R, Wester HJ, Reuning U, Senekowitsch-Schmidtke R, Diefenbach B, Kessler H, et al (1999) Radiolabeled αvβ3 integrin antagonists: a new class of tracers for tumor targeting. J Nucl Med 40:1061–1071PubMed
38.
go back to reference Harris JM, Martin NE, Modi M (2001) Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmacokinet 40:539–551CrossRefPubMed Harris JM, Martin NE, Modi M (2001) Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmacokinet 40:539–551CrossRefPubMed
39.
go back to reference Chen X, Park R, Shahinian AH, Bading JR, Conti PS (2004) Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by PEGylation. Nucl Med Biol 31:11–19CrossRefPubMed Chen X, Park R, Shahinian AH, Bading JR, Conti PS (2004) Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by PEGylation. Nucl Med Biol 31:11–19CrossRefPubMed
40.
go back to reference Schipper ML, Iyer G, Koh AL, Cheng Z, Ebenstein Y, Aharoni A, et al (2008) Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small 5:126–134CrossRef Schipper ML, Iyer G, Koh AL, Cheng Z, Ebenstein Y, Aharoni A, et al (2008) Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small 5:126–134CrossRef
41.
go back to reference Boturyn D, Coll JL, Garanger E, Favrot MC, Dumy P (2004) Template assembled cyclopeptides as multimeric system for integrin targeting and endocytosis. J Am Chem Soc 126:5730–5739CrossRefPubMed Boturyn D, Coll JL, Garanger E, Favrot MC, Dumy P (2004) Template assembled cyclopeptides as multimeric system for integrin targeting and endocytosis. J Am Chem Soc 126:5730–5739CrossRefPubMed
42.
go back to reference Li ZB, Chen K, Chen X (2008) 68Ga-labeled multimeric RGD peptides for microPET imaging of integrin αvβ3 expression. Eur J Nucl Med Mol Imaging 35:1100–1108CrossRefPubMed Li ZB, Chen K, Chen X (2008) 68Ga-labeled multimeric RGD peptides for microPET imaging of integrin αvβ3 expression. Eur J Nucl Med Mol Imaging 35:1100–1108CrossRefPubMed
Metadata
Title
18F-Labeled Galacto and PEGylated RGD Dimers for PET Imaging of αvβ3 Integrin Expression
Authors
Shuanglong Liu
Zhaofei Liu
Kai Chen
Yongjun Yan
Petra Watzlowik
Hans-Jürgen Wester
Frederick T. Chin
Xiaoyuan Chen
Publication date
01-10-2010
Publisher
Springer-Verlag
Published in
Molecular Imaging and Biology / Issue 5/2010
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-009-0284-2

Other articles of this Issue 5/2010

Molecular Imaging and Biology 5/2010 Go to the issue