Skip to main content
Top
Published in: Molecular Imaging and Biology 3/2008

01-05-2008 | Research Article

SPECT Imaging with 99mTc-Labeled EGFR-Specific Nanobody for In Vivo Monitoring of EGFR Expression

Authors: Lieven Huang, Lea Olive Tchouate Gainkam, Vicky Caveliers, Chris Vanhove, Marleen Keyaerts, Patrick De Baetselier, Axel Bossuyt, Hilde Revets, Tony Lahoutte

Published in: Molecular Imaging and Biology | Issue 3/2008

Login to get access

Abstract

Purpose

Overexpression of the epidermal growth factor receptor (EGFR) occurs with high incidence in various carcinomas. The oncogenic expression of the receptor has been exploited for immunoglobulin-based diagnostics and therapeutics. We describe the use of a llama single-domain antibody fragment, termed Nanobody®, for the in vivo radioimmunodetection of EGFR overexpressing tumors using single photon emission computed tomography (SPECT) in mice.

Methods

Fluorescence-activated cell sorting (FACS) analysis was performed to evaluate the specificity and selectivity of 8B6 Nanobody to bind EGFR on EGFR overexpressing cells. The Nanobody was then labeled with 99mTc via its C-terminal histidine tail. Uptake in normal organs and tissues was assessed by ex vivo analysis. In vivo tumor targeting of 99mTc-8B6 Nanobody was evaluated via pinhole SPECT in mice bearing xenografts of tumor cells with either high (A431) or moderate (DU145) overexpression of EGFR.

Results

FACS analysis indicated that the 8B6 Nanobody only recognizes cells overexpressing EGFR. In vivo blood clearance of 99mTc-8B6 Nanobody is relatively fast (half-life, 1.5 h) and mainly via the kidneys. At 3 h postinjection, total kidney accumulation is high (46.6 ± 0.9%IA) compared to total liver uptake (18.9 ± 0.6%IA). Pinhole SPECT imaging of mice bearing A431 xenografts showed higher average tumor uptake (5.2 ± 0.5%IA/cm3) of 99mTc-8B6 Nanobody compared to DU145 xenografts (1.8 ± 0.3%IA/cm3, p < 0.001).

Conclusion

The EGFR-binding Nanobody investigated in this study shows high specificity and selectivity towards EGFR overexpressing cells. Pinhole SPECT analysis with 99mTc-8B6 Nanobody enabled in vivo discrimination between tumors with high and moderate EGFR overexpression. The favorable biodistribution further corroborates the suitability of Nanobodies for in vivo tumor imaging.
Literature
1.
go back to reference Beekman F, Van der Have F (2006) The pinhole: gateway to ultra-high-resolution three-dimensional radionuclide imaging. Eur J Nucl Med Mol Imaging 34:151–161CrossRef Beekman F, Van der Have F (2006) The pinhole: gateway to ultra-high-resolution three-dimensional radionuclide imaging. Eur J Nucl Med Mol Imaging 34:151–161CrossRef
3.
go back to reference Van de Wiele C, Revets H, Mertens N (2004) Radioimmunoimaging. Advances and prospects. Q J Nucl Med Mol Imaging 48:317–325PubMed Van de Wiele C, Revets H, Mertens N (2004) Radioimmunoimaging. Advances and prospects. Q J Nucl Med Mol Imaging 48:317–325PubMed
4.
go back to reference Kenanova V, Wu AM (2006) Tailoring antibodies for radionuclide delivery. Expert Opin Drug Deliv 3:53–70PubMedCrossRef Kenanova V, Wu AM (2006) Tailoring antibodies for radionuclide delivery. Expert Opin Drug Deliv 3:53–70PubMedCrossRef
5.
go back to reference Mallender WD, Carrero J, Voss EWJ (1996) Comparative properties of the single chain antibody and Fv derivatives of mAb 4–4–20. Relationship between interdomain interactions and the high affinity for fluorescein ligand. J Biol Chem 271:5338–5346PubMedCrossRef Mallender WD, Carrero J, Voss EWJ (1996) Comparative properties of the single chain antibody and Fv derivatives of mAb 4–4–20. Relationship between interdomain interactions and the high affinity for fluorescein ligand. J Biol Chem 271:5338–5346PubMedCrossRef
6.
go back to reference Whitlow M, Bell BA, Feng SL, et al. (1993) An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability. Protein Eng 6:989–995PubMedCrossRef Whitlow M, Bell BA, Feng SL, et al. (1993) An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability. Protein Eng 6:989–995PubMedCrossRef
7.
go back to reference Hamers-Casterman C, Atarhouch T, Muyldermans S, et al. (1993) Naturally occurring antibodies devoid of light chains. Nature 363:446–448PubMedCrossRef Hamers-Casterman C, Atarhouch T, Muyldermans S, et al. (1993) Naturally occurring antibodies devoid of light chains. Nature 363:446–448PubMedCrossRef
8.
go back to reference Nguyen VK, Desmyter A, Muyldermans S (2001) Functional heavy-chain antibodies in Camelidae. Adv Immunol 79:261–296PubMedCrossRef Nguyen VK, Desmyter A, Muyldermans S (2001) Functional heavy-chain antibodies in Camelidae. Adv Immunol 79:261–296PubMedCrossRef
9.
go back to reference Huang L, Reekmans G, Saerens D, et al. (2005) Prostate-specific antigen immunosensing based on mixed self-assembled monolayers, camel antibodies and colloidal gold enhanced sandwich assays. Biosens Bioelectron 21:483–490PubMedCrossRef Huang L, Reekmans G, Saerens D, et al. (2005) Prostate-specific antigen immunosensing based on mixed self-assembled monolayers, camel antibodies and colloidal gold enhanced sandwich assays. Biosens Bioelectron 21:483–490PubMedCrossRef
10.
go back to reference Revets H, De Baetselier P, Muyldermans S (2005) Nanobodies as novel agents for cancer therapy. Expert Opin Biol Ther 5:111–124PubMedCrossRef Revets H, De Baetselier P, Muyldermans S (2005) Nanobodies as novel agents for cancer therapy. Expert Opin Biol Ther 5:111–124PubMedCrossRef
11.
go back to reference Davies J, Riechmann L (1996) Single antibody domains as small recognition units: design and in vitro antigen selection of camelized, human VH domains with improved protein stability. Protein Eng 9:531–537PubMedCrossRef Davies J, Riechmann L (1996) Single antibody domains as small recognition units: design and in vitro antigen selection of camelized, human VH domains with improved protein stability. Protein Eng 9:531–537PubMedCrossRef
12.
go back to reference Arbabi Ghahroudi M, Desmyter A, Wyns L, Hamers R, Muyldermans S (1997) Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett 414:521–526PubMedCrossRef Arbabi Ghahroudi M, Desmyter A, Wyns L, Hamers R, Muyldermans S (1997) Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett 414:521–526PubMedCrossRef
13.
go back to reference Frenken LG, van der Linden RH, Hermans PW, et al. (2000) Isolation of antigen specific llama VHH antibody fragments and their high level secretion by Saccharomyces cerevisiae. J Biotechnol 78:11–21PubMedCrossRef Frenken LG, van der Linden RH, Hermans PW, et al. (2000) Isolation of antigen specific llama VHH antibody fragments and their high level secretion by Saccharomyces cerevisiae. J Biotechnol 78:11–21PubMedCrossRef
14.
go back to reference Joosten V, Gouka RJ, van den Hondel CA, Verrips CT, Lokman BC (2005) Expression and production of llama variable heavy-chain antibody fragments (VHHs) by Aspergillus awamori. Appl Microbiol Biotechnol 66:384–392PubMedCrossRef Joosten V, Gouka RJ, van den Hondel CA, Verrips CT, Lokman BC (2005) Expression and production of llama variable heavy-chain antibody fragments (VHHs) by Aspergillus awamori. Appl Microbiol Biotechnol 66:384–392PubMedCrossRef
15.
go back to reference Ismaili A, Jalali-Javaran M, Rasaee MJ, Rahbarizadeh F, Forouzandeh-Moghadam M, Memari HR (2007) Production and characterization of anti-(mucin MUC1) single-domain antibody in tobacco (Nicotiana tabacum cultivar Xanthi). Biotechnol Appl Biochem 47:11–19PubMedCrossRef Ismaili A, Jalali-Javaran M, Rasaee MJ, Rahbarizadeh F, Forouzandeh-Moghadam M, Memari HR (2007) Production and characterization of anti-(mucin MUC1) single-domain antibody in tobacco (Nicotiana tabacum cultivar Xanthi). Biotechnol Appl Biochem 47:11–19PubMedCrossRef
16.
go back to reference Abulrob A, Sprong H, en Henegouwen PVB, Stanimirovic D (2005) The blood-brain barrier transmigrating single domain antibody: mechanisms of transport and antigenic epitopes in human brain endothelial cells. J Neurochem 95:1201–1214PubMedCrossRef Abulrob A, Sprong H, en Henegouwen PVB, Stanimirovic D (2005) The blood-brain barrier transmigrating single domain antibody: mechanisms of transport and antigenic epitopes in human brain endothelial cells. J Neurochem 95:1201–1214PubMedCrossRef
17.
go back to reference Cortez-Retamozo V, Lauwereys M, Gholamreza Hassanzadeh G, et al. (2002) Efficient tumor targeting by single-domain antibody fragments of camels. Int J Cancer 98:456–462PubMedCrossRef Cortez-Retamozo V, Lauwereys M, Gholamreza Hassanzadeh G, et al. (2002) Efficient tumor targeting by single-domain antibody fragments of camels. Int J Cancer 98:456–462PubMedCrossRef
18.
go back to reference Nguyen VK, Hamers R, Wyns L, Muyldermans S (2000) Camel heavy-chain antibodies: diverse germline V(H)H and specific mechanisms enlarge the antigen-binding repertoire. EMBO J 19:921–930PubMedCrossRef Nguyen VK, Hamers R, Wyns L, Muyldermans S (2000) Camel heavy-chain antibodies: diverse germline V(H)H and specific mechanisms enlarge the antigen-binding repertoire. EMBO J 19:921–930PubMedCrossRef
19.
go back to reference Roovers RC, Laeremans T, Huang L, et al. (2006) Efficient inhibition of EGFR signalling and of tumour growth by antagonistic anti-EGFR Nanobodies. Cancer Immunol Immunother 56:303–317CrossRef Roovers RC, Laeremans T, Huang L, et al. (2006) Efficient inhibition of EGFR signalling and of tumour growth by antagonistic anti-EGFR Nanobodies. Cancer Immunol Immunother 56:303–317CrossRef
20.
go back to reference Ellis LM (2004) Epidermal growth factor receptor in tumor angiogenesis. Hematol Oncol Clin North Am 18:1007–1021PubMedCrossRef Ellis LM (2004) Epidermal growth factor receptor in tumor angiogenesis. Hematol Oncol Clin North Am 18:1007–1021PubMedCrossRef
21.
go back to reference Grandis JR, Sok JC (2004) Signaling through the epidermal growth factor receptor during the development of malignancy. Pharmacol Ther 102:37–46PubMedCrossRef Grandis JR, Sok JC (2004) Signaling through the epidermal growth factor receptor during the development of malignancy. Pharmacol Ther 102:37–46PubMedCrossRef
22.
go back to reference Kim H, Muller WJ (1999) The role of the epidermal growth factor receptor family in mammary tumorigenesis and metastasis. Exp Cell Res 253:78–87PubMedCrossRef Kim H, Muller WJ (1999) The role of the epidermal growth factor receptor family in mammary tumorigenesis and metastasis. Exp Cell Res 253:78–87PubMedCrossRef
23.
24.
go back to reference Haigler H, Ash JF, Singer SJ, Cohen S (1978) Visualization by fluorescence of the binding and internalization of epidermal growth factor in human carcinoma cells A-431. Proc Natl Acad Sci U S A 75:3317–3321PubMedCrossRef Haigler H, Ash JF, Singer SJ, Cohen S (1978) Visualization by fluorescence of the binding and internalization of epidermal growth factor in human carcinoma cells A-431. Proc Natl Acad Sci U S A 75:3317–3321PubMedCrossRef
25.
go back to reference MacDonald A, Chisholm GD, Habib FK (1990) Production and response of a human prostatic cancer line to transforming growth factor-like molecules. Br J Cancer 62:579–584PubMed MacDonald A, Chisholm GD, Habib FK (1990) Production and response of a human prostatic cancer line to transforming growth factor-like molecules. Br J Cancer 62:579–584PubMed
26.
go back to reference Honegger AM, Dull TJ, Felder S, et al. (1987) Point mutation at the ATP binding site of EGF receptor abolishes protein-tyrosine kinase activity and alters cellular routing. Cell 51:199–209PubMedCrossRef Honegger AM, Dull TJ, Felder S, et al. (1987) Point mutation at the ATP binding site of EGF receptor abolishes protein-tyrosine kinase activity and alters cellular routing. Cell 51:199–209PubMedCrossRef
27.
go back to reference Honegger AM, Schmidt A, Ullrich A, Schlessinger J (1990) Evidence for epidermal growth factor (EGF)-induced intermolecular autophosphorylation of the EGF receptors in living cells. Mol Cell Biol 10:4035–4044PubMed Honegger AM, Schmidt A, Ullrich A, Schlessinger J (1990) Evidence for epidermal growth factor (EGF)-induced intermolecular autophosphorylation of the EGF receptors in living cells. Mol Cell Biol 10:4035–4044PubMed
28.
go back to reference Aguilar Z, Akita RW, Finn RS, et al. (1999) Biologic effects of heregulin/neu differentiation factor on normal and malignant human breast and ovarian epithelial cells. Oncogene 18:6050–6062PubMedCrossRef Aguilar Z, Akita RW, Finn RS, et al. (1999) Biologic effects of heregulin/neu differentiation factor on normal and malignant human breast and ovarian epithelial cells. Oncogene 18:6050–6062PubMedCrossRef
29.
go back to reference Desmyter A, Transue TR, Ghahroudi MA, et al. (1996) Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nat Struct Biol 3:803–811PubMedCrossRef Desmyter A, Transue TR, Ghahroudi MA, et al. (1996) Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nat Struct Biol 3:803–811PubMedCrossRef
30.
go back to reference Vanhove C, Defrise M, Franken PR, Everaert H, Deconinck F, Bossuyt A (2000) Interest of the ordered subsets expectation maximization (OS-EM) algorithm in pinhole single-photon emission tomography reconstruction: a phantom study. Eur J Nucl Med 27:140–146PubMedCrossRef Vanhove C, Defrise M, Franken PR, Everaert H, Deconinck F, Bossuyt A (2000) Interest of the ordered subsets expectation maximization (OS-EM) algorithm in pinhole single-photon emission tomography reconstruction: a phantom study. Eur J Nucl Med 27:140–146PubMedCrossRef
31.
go back to reference Loening AM, Gambhir SS (2003) AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2:131–137PubMedCrossRef Loening AM, Gambhir SS (2003) AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2:131–137PubMedCrossRef
32.
go back to reference De Genst E, Silence K, Decanniere K, et al. (2006) Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci U S A 103:4586–4591PubMedCrossRef De Genst E, Silence K, Decanniere K, et al. (2006) Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci U S A 103:4586–4591PubMedCrossRef
33.
go back to reference Smith JM, Sporn MB, Roberts AB, Derynck R, Winkler ME, Gregory H (1985) Human transforming growth factor-alpha causes precocious eyelid opening in newborn mice. Nature 315:515–516PubMedCrossRef Smith JM, Sporn MB, Roberts AB, Derynck R, Winkler ME, Gregory H (1985) Human transforming growth factor-alpha causes precocious eyelid opening in newborn mice. Nature 315:515–516PubMedCrossRef
34.
go back to reference Sundberg AL, Gedda L, Orlova A, et al. (2004) [177Lu]Bz-DTPA-EGF: Preclinical characterization of a potential radionuclide targeting agent against glioma. Cancer Biother Radiopharm 19:195–204PubMedCrossRef Sundberg AL, Gedda L, Orlova A, et al. (2004) [177Lu]Bz-DTPA-EGF: Preclinical characterization of a potential radionuclide targeting agent against glioma. Cancer Biother Radiopharm 19:195–204PubMedCrossRef
35.
go back to reference Tolmachev V, Orlova A, Wei Q, Bruskin A, Carlsson J, Gedda L (2004) Comparative biodistribution of potential anti-glioblastoma conjugates [111In]DTPA-hEGF and [111In]Bz-DTPA-hEGF in normal mice. Cancer Biother Radiopharm 19:491–501PubMed Tolmachev V, Orlova A, Wei Q, Bruskin A, Carlsson J, Gedda L (2004) Comparative biodistribution of potential anti-glioblastoma conjugates [111In]DTPA-hEGF and [111In]Bz-DTPA-hEGF in normal mice. Cancer Biother Radiopharm 19:491–501PubMed
36.
go back to reference Behr TM, Behe M, Becker W (1999) Diagnostic applications of radiolabeled peptides in nuclear endocrinology. Q J Nucl Med 43:268–280PubMed Behr TM, Behe M, Becker W (1999) Diagnostic applications of radiolabeled peptides in nuclear endocrinology. Q J Nucl Med 43:268–280PubMed
37.
go back to reference Decristoforo C, Mather SJ (2002) The influence of chelator on the pharmacokinetics of 99mTc-labelled peptides. Q J Nucl Med 46:195–205PubMed Decristoforo C, Mather SJ (2002) The influence of chelator on the pharmacokinetics of 99mTc-labelled peptides. Q J Nucl Med 46:195–205PubMed
38.
go back to reference Ballinger JR, Cooper MS, Mather SJ (2004) Re: controversies–[Tc(CO)3] chemistry: a promising new concept for SPET? Eur J Nucl Med Mol Imaging 31:304–305PubMedCrossRef Ballinger JR, Cooper MS, Mather SJ (2004) Re: controversies–[Tc(CO)3] chemistry: a promising new concept for SPET? Eur J Nucl Med Mol Imaging 31:304–305PubMedCrossRef
39.
go back to reference Orlova A, Magnusson M, Eriksson TLJ, et al. (2006) Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res 66:4339–4348PubMedCrossRef Orlova A, Magnusson M, Eriksson TLJ, et al. (2006) Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res 66:4339–4348PubMedCrossRef
40.
go back to reference Cai W, Chen K, He L, Cao Q, Koong A, Chen X (2007) Quantitative PET of EGFR expression in xenograft-bearing mice using (64)Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody. Eur J Nucl Med Mol Imaging 34:850–858PubMedCrossRef Cai W, Chen K, He L, Cao Q, Koong A, Chen X (2007) Quantitative PET of EGFR expression in xenograft-bearing mice using (64)Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody. Eur J Nucl Med Mol Imaging 34:850–858PubMedCrossRef
41.
go back to reference Senekowitsch-Schmidtke R, Steiner K, Haunschild J, Mollenstadt S, Truckenbrodt R (1996) In vivo evaluation of epidermal growth factor (EGF) receptor density on human tumor xenografts using radiolabeled EGF and anti-(EGF receptor) mAb 425. Cancer Immunol Immunother 42:108–114PubMedCrossRef Senekowitsch-Schmidtke R, Steiner K, Haunschild J, Mollenstadt S, Truckenbrodt R (1996) In vivo evaluation of epidermal growth factor (EGF) receptor density on human tumor xenografts using radiolabeled EGF and anti-(EGF receptor) mAb 425. Cancer Immunol Immunother 42:108–114PubMedCrossRef
42.
go back to reference Reilly RM, Kiarash R, Sandhu J, et al. (2000) A comparison of EGF and MAb 528 labeled with 111In for imaging human breast cancer. J Nucl Med 41:903–911PubMed Reilly RM, Kiarash R, Sandhu J, et al. (2000) A comparison of EGF and MAb 528 labeled with 111In for imaging human breast cancer. J Nucl Med 41:903–911PubMed
43.
go back to reference Meenakshi A, Ganesh V, Suresh Kumar R, Siva Kumar N (2003) Radioimmuno targetting (99 m)technetium labeled anti-epidermal growth factor receptor monoclonal antibodies in experimental tumor models. Q J Nucl Med 47:139–144PubMed Meenakshi A, Ganesh V, Suresh Kumar R, Siva Kumar N (2003) Radioimmuno targetting (99 m)technetium labeled anti-epidermal growth factor receptor monoclonal antibodies in experimental tumor models. Q J Nucl Med 47:139–144PubMed
44.
go back to reference Schechter NR, Yang DJ, Azhdarinia A, et al. (2003) Assessment of epidermal growth factor receptor with 99mTc-ethylenedicysteine-C225 monoclonal antibody. Anticancer Drugs 14:49–56PubMedCrossRef Schechter NR, Yang DJ, Azhdarinia A, et al. (2003) Assessment of epidermal growth factor receptor with 99mTc-ethylenedicysteine-C225 monoclonal antibody. Anticancer Drugs 14:49–56PubMedCrossRef
45.
go back to reference Pnwar P, Iznaga-Escobar N, Mishra P, et al. (2005) Radiolabeling and biological evaluation of DOTA-Ph-Al derivative conjugated to anti-EGFR antibody ior egf/r3 for targeted tumor imaging and therapy. Cancer Biol Ther 4:854–860PubMedCrossRef Pnwar P, Iznaga-Escobar N, Mishra P, et al. (2005) Radiolabeling and biological evaluation of DOTA-Ph-Al derivative conjugated to anti-EGFR antibody ior egf/r3 for targeted tumor imaging and therapy. Cancer Biol Ther 4:854–860PubMedCrossRef
46.
go back to reference Torres LA, Perera A, Batista JF, et al. (2005) Phase I/II clinical trial of the humanized anti-EGF-r monoclonal antibody h-R3 labeled with 99mTc in patients with tumour of epithelial origin. Nucl Med Commun 26:1049–1057PubMedCrossRef Torres LA, Perera A, Batista JF, et al. (2005) Phase I/II clinical trial of the humanized anti-EGF-r monoclonal antibody h-R3 labeled with 99mTc in patients with tumour of epithelial origin. Nucl Med Commun 26:1049–1057PubMedCrossRef
47.
go back to reference Goldenberg A, Masui H, Divgi C, Kamrath H, Pentlow K, Mendelsohn J (1989) Imaging of human tumor xenografts with an indium-111-labeled anti-epidermal growth factor receptor monoclonal antibody. J Natl Cancer Inst 81:1616–1625PubMedCrossRef Goldenberg A, Masui H, Divgi C, Kamrath H, Pentlow K, Mendelsohn J (1989) Imaging of human tumor xenografts with an indium-111-labeled anti-epidermal growth factor receptor monoclonal antibody. J Natl Cancer Inst 81:1616–1625PubMedCrossRef
48.
go back to reference Steiner K, Haunschild J, Faro HP, Senekowitsch R (1995) Distribution of humanized MAb 425 (EMD 62,000) in rats and specific localization in tumor-bearing nude mice. Cell Mol Biol (Noisy-le-grand) 41:179–184 Steiner K, Haunschild J, Faro HP, Senekowitsch R (1995) Distribution of humanized MAb 425 (EMD 62,000) in rats and specific localization in tumor-bearing nude mice. Cell Mol Biol (Noisy-le-grand) 41:179–184
49.
go back to reference Scopinaro F, De Vincentis G, Banci M, et al. (1997) In vivo study of a technetium labeled anti-EGFr MoAB. Anticancer Res 17:1761–1765PubMed Scopinaro F, De Vincentis G, Banci M, et al. (1997) In vivo study of a technetium labeled anti-EGFr MoAB. Anticancer Res 17:1761–1765PubMed
50.
go back to reference Morales-Morales A, Duconge J, Caballero-Torres I, Nunez-Gandolff G, Fernandez E, Iznaga-Escobar N (1999) Biodistribution of 99mTc-labeled anti-human epidermal growth factor receptor (EGF-R) humanized monoclonal antibody h-R3 in a xenograft model of human lung adenocarcinoma. Nucl Med Biol 26:275–279PubMedCrossRef Morales-Morales A, Duconge J, Caballero-Torres I, Nunez-Gandolff G, Fernandez E, Iznaga-Escobar N (1999) Biodistribution of 99mTc-labeled anti-human epidermal growth factor receptor (EGF-R) humanized monoclonal antibody h-R3 in a xenograft model of human lung adenocarcinoma. Nucl Med Biol 26:275–279PubMedCrossRef
51.
go back to reference Schillaci O, Danieli R, Picardi V, Bagni O, Di Loreto M, Scopinaro F (2001) Immunoscintigraphy with a technetium-99m labeled anti-epithelial growth factor receptor antibody in patients with non-small cell lung cancer. Anticancer Res 21:3571–3574PubMed Schillaci O, Danieli R, Picardi V, Bagni O, Di Loreto M, Scopinaro F (2001) Immunoscintigraphy with a technetium-99m labeled anti-epithelial growth factor receptor antibody in patients with non-small cell lung cancer. Anticancer Res 21:3571–3574PubMed
52.
go back to reference Panousis C, Rayzman VM, Johns TG, et al. (2005) Engineering and characterisation of chimeric monoclonal antibody 806 (ch806) for targeted immunotherapy of tumors expressing de2–7 EGFR or amplified EGFR. Br J Cancer 92:1069–1077PubMedCrossRef Panousis C, Rayzman VM, Johns TG, et al. (2005) Engineering and characterisation of chimeric monoclonal antibody 806 (ch806) for targeted immunotherapy of tumors expressing de2–7 EGFR or amplified EGFR. Br J Cancer 92:1069–1077PubMedCrossRef
53.
go back to reference Perk LR, Visser GWM, Vosjan MJWD, et al. (2005) (89)Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals (90)Y and (177)Lu in tumor-bearing nude mice after coupling to the internalizing antibody cetuximab. J Nucl Med 46:1898–1906PubMed Perk LR, Visser GWM, Vosjan MJWD, et al. (2005) (89)Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals (90)Y and (177)Lu in tumor-bearing nude mice after coupling to the internalizing antibody cetuximab. J Nucl Med 46:1898–1906PubMed
54.
go back to reference Rusckowski M, Qu T, Chang F, Hnatowich DJ (1997) Technetium-99m labeled epidermal growth factor-tumor imaging in mice. J Pept Res 50:393–401PubMedCrossRef Rusckowski M, Qu T, Chang F, Hnatowich DJ (1997) Technetium-99m labeled epidermal growth factor-tumor imaging in mice. J Pept Res 50:393–401PubMedCrossRef
55.
go back to reference Reilly RM, Kiarash R, Cameron RG, et al. (2000) 111In-labeled EGF is selectively radiotoxic to human breast cancer cells overexpressing EGFR. J Nucl Med 41:429–438PubMed Reilly RM, Kiarash R, Cameron RG, et al. (2000) 111In-labeled EGF is selectively radiotoxic to human breast cancer cells overexpressing EGFR. J Nucl Med 41:429–438PubMed
56.
go back to reference Abourbeh G, Dissoki S, Jacobson O, et al. (2007) Evaluation of radiolabeled ML04, a putative irreversible inhibitor of epidermal growth factor receptor, as a bioprobe for PET imaging of EGFR-overexpressing tumors. Nucl Med Biol 34:55–70PubMedCrossRef Abourbeh G, Dissoki S, Jacobson O, et al. (2007) Evaluation of radiolabeled ML04, a putative irreversible inhibitor of epidermal growth factor receptor, as a bioprobe for PET imaging of EGFR-overexpressing tumors. Nucl Med Biol 34:55–70PubMedCrossRef
57.
go back to reference Friedman M, Nordberg E, Höidén-Guthenberg I, et al. (2007) Phage display selection of Affibody molecules with specific binding to the extracellular domain of the epidermal growth factor receptor. Protein Eng Des Sel 20:189–199PubMedCrossRef Friedman M, Nordberg E, Höidén-Guthenberg I, et al. (2007) Phage display selection of Affibody molecules with specific binding to the extracellular domain of the epidermal growth factor receptor. Protein Eng Des Sel 20:189–199PubMedCrossRef
58.
go back to reference Tolmachev V, Orlova A, Nilsson FY, Feldwisch J, Wennborg A, Abrahmsen L (2007) Affibody molecules: potential for in vivo imaging of molecular targets for cancer therapy. Expert Opin Biol Ther 7:555–568PubMedCrossRef Tolmachev V, Orlova A, Nilsson FY, Feldwisch J, Wennborg A, Abrahmsen L (2007) Affibody molecules: potential for in vivo imaging of molecular targets for cancer therapy. Expert Opin Biol Ther 7:555–568PubMedCrossRef
59.
go back to reference Lundberg E, Hoiden-Guthenberg I, Larsson B, Uhlen M, Graslund T (2007) Site-specifically conjugated anti-HER2 Affibody molecules as one-step reagents for target expression analyses on cells and xenograft samples. J Immunol Methods 319:53–63PubMedCrossRef Lundberg E, Hoiden-Guthenberg I, Larsson B, Uhlen M, Graslund T (2007) Site-specifically conjugated anti-HER2 Affibody molecules as one-step reagents for target expression analyses on cells and xenograft samples. J Immunol Methods 319:53–63PubMedCrossRef
60.
go back to reference Orlova A, Tolmachev V, Pehrson R, et al. (2007) Synthetic affibody molecules: a novel class of affinity ligands for molecular imaging of HER2-expressing malignant tumors. Cancer Res 67:2178–2186PubMedCrossRef Orlova A, Tolmachev V, Pehrson R, et al. (2007) Synthetic affibody molecules: a novel class of affinity ligands for molecular imaging of HER2-expressing malignant tumors. Cancer Res 67:2178–2186PubMedCrossRef
61.
go back to reference Steffen A-C, Orlova A, Wikman M, et al. (2006) Affibody-mediated tumour targeting of HER-2 expressing xenografts in mice. Eur J Nucl Med Mol Imaging 33:631–638PubMedCrossRef Steffen A-C, Orlova A, Wikman M, et al. (2006) Affibody-mediated tumour targeting of HER-2 expressing xenografts in mice. Eur J Nucl Med Mol Imaging 33:631–638PubMedCrossRef
62.
go back to reference Britten CD (2004) Targeting ErbB receptor signaling: a pan-ErbB approach to cancer. Mol Cancer Ther 3:1335–1342PubMed Britten CD (2004) Targeting ErbB receptor signaling: a pan-ErbB approach to cancer. Mol Cancer Ther 3:1335–1342PubMed
63.
go back to reference Cunningham D, Humblet Y, Siena S, et al. (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351:337–345PubMedCrossRef Cunningham D, Humblet Y, Siena S, et al. (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351:337–345PubMedCrossRef
64.
go back to reference Vincenzi B, Santini D, Rabitti C, et al. (2006) Cetuximab and irinotecan as third-line therapy in advanced colorectal cancer patients: a single centre phase II trial. Br J Cancer 94:792–797PubMedCrossRef Vincenzi B, Santini D, Rabitti C, et al. (2006) Cetuximab and irinotecan as third-line therapy in advanced colorectal cancer patients: a single centre phase II trial. Br J Cancer 94:792–797PubMedCrossRef
65.
go back to reference Chung KY, Shia J, Kemeny NE, et al. (2005) Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol 23:1803–1810PubMedCrossRef Chung KY, Shia J, Kemeny NE, et al. (2005) Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol 23:1803–1810PubMedCrossRef
66.
go back to reference Dei Tos AP, Ellis I (2005) Assessing epidermal growth factor receptor expression in tumors: what is the value of current test methods? Eur J Cancer 41:1383–1392PubMedCrossRef Dei Tos AP, Ellis I (2005) Assessing epidermal growth factor receptor expression in tumors: what is the value of current test methods? Eur J Cancer 41:1383–1392PubMedCrossRef
67.
go back to reference Fruehauf J (2006) EGFR function and detection in cancer therapy. J Exp Ther Oncol 5:231–246PubMed Fruehauf J (2006) EGFR function and detection in cancer therapy. J Exp Ther Oncol 5:231–246PubMed
68.
go back to reference Penault-Llorca F, Cayre A, Arnould L, et al. (2006) Is there an immunohistochemical technique definitively valid in epidermal growth factor receptor assessment? Oncol Rep 16:1173–1179PubMed Penault-Llorca F, Cayre A, Arnould L, et al. (2006) Is there an immunohistochemical technique definitively valid in epidermal growth factor receptor assessment? Oncol Rep 16:1173–1179PubMed
69.
go back to reference Atkins D, Reiffen K-A, Tegtmeier CL, Winther H, Bonato MS, Storkel S (2004) Immunohistochemical detection of EGFR in paraffin-embedded tumor tissues: variation in staining intensity due to choice of fixative and storage time of tissue sections. J Histochem Cytochem 52:893–901PubMedCrossRef Atkins D, Reiffen K-A, Tegtmeier CL, Winther H, Bonato MS, Storkel S (2004) Immunohistochemical detection of EGFR in paraffin-embedded tumor tissues: variation in staining intensity due to choice of fixative and storage time of tissue sections. J Histochem Cytochem 52:893–901PubMedCrossRef
70.
go back to reference Hoff J (2000) Methods of blood collection in the mouse. Lab Anim 29:47–53 Hoff J (2000) Methods of blood collection in the mouse. Lab Anim 29:47–53
Metadata
Title
SPECT Imaging with 99mTc-Labeled EGFR-Specific Nanobody for In Vivo Monitoring of EGFR Expression
Authors
Lieven Huang
Lea Olive Tchouate Gainkam
Vicky Caveliers
Chris Vanhove
Marleen Keyaerts
Patrick De Baetselier
Axel Bossuyt
Hilde Revets
Tony Lahoutte
Publication date
01-05-2008
Publisher
Springer-Verlag
Published in
Molecular Imaging and Biology / Issue 3/2008
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-008-0133-8

Other articles of this Issue 3/2008

Molecular Imaging and Biology 3/2008 Go to the issue