Skip to main content
Top
Published in: Molecular Imaging and Biology 4/2007

01-07-2007 | Review Article

Animal Models of Neurodegenerative Disease: Insights from In vivo Imaging Studies

Authors: Elissa M. Strome, Doris J. Doudet

Published in: Molecular Imaging and Biology | Issue 4/2007

Login to get access

Abstract

Animal models have been used extensively to understand the etiology and pathophysiology of human neurodegenerative diseases, and are an essential component in the development of therapeutic interventions for these disorders. In recent years, technical advances in imaging modalities such as positron emission tomography (PET) and magnetic resonance imaging (MRI) have allowed the use of these techniques for the evaluation of functional, neurochemical, and anatomical changes in the brains of animals. Combining animal models of neurodegenerative disorders with neuroimaging provides a powerful tool to follow the disease process, to examine compensatory mechanisms, and to investigate the effects of potential treatments preclinically to derive knowledge that will ultimately inform our clinical decisions. This article reviews the literature on the use of PET and MRI in animal models of Parkinson’s disease, Huntington’s disease, and Alzheimer’s disease, and evaluates the strengths and limitations of brain imaging in animal models of neurodegenerative diseases.
Literature
1.
go back to reference Sanchez-Pernaute R, Brownell AL, Jenkins BG, Isacson O (2005) Insights into Parkinson’s disease models and neurotoxicity using non-invasive imaging. Toxicol Appl Pharmacol 207:251–256PubMedCrossRef Sanchez-Pernaute R, Brownell AL, Jenkins BG, Isacson O (2005) Insights into Parkinson’s disease models and neurotoxicity using non-invasive imaging. Toxicol Appl Pharmacol 207:251–256PubMedCrossRef
2.
go back to reference Doudet DJ, Chan GL, Holden JE et al. (1998) 6-[18F]Fluoro-L-DOPA PET studies of the turnover of dopamine in MPTP-induced parkinsonism in monkeys. Synapse 29:225–232PubMedCrossRef Doudet DJ, Chan GL, Holden JE et al. (1998) 6-[18F]Fluoro-L-DOPA PET studies of the turnover of dopamine in MPTP-induced parkinsonism in monkeys. Synapse 29:225–232PubMedCrossRef
3.
go back to reference Melega WP, Raleigh MJ, Stout DB et al. (1996) Longitudinal behavioral and 6-[18F]fluoro-L-DOPA-PET assessment in MPTP-hemiparkinsonian monkeys. Exp Neurol 141:318–329PubMedCrossRef Melega WP, Raleigh MJ, Stout DB et al. (1996) Longitudinal behavioral and 6-[18F]fluoro-L-DOPA-PET assessment in MPTP-hemiparkinsonian monkeys. Exp Neurol 141:318–329PubMedCrossRef
4.
go back to reference Schneider JS, Lidsky TI, Hawks T, Mazziotta JC, Hoffman JM (1995) Differential recovery of volitional motor function, lateralized cognitive function, dopamine agonist-induced rotation and dopaminergic parameters in monkeys made hemi-parkinsonian by intracarotid MPTP infusion. Brain Res 672:112–117PubMedCrossRef Schneider JS, Lidsky TI, Hawks T, Mazziotta JC, Hoffman JM (1995) Differential recovery of volitional motor function, lateralized cognitive function, dopamine agonist-induced rotation and dopaminergic parameters in monkeys made hemi-parkinsonian by intracarotid MPTP infusion. Brain Res 672:112–117PubMedCrossRef
5.
go back to reference Doudet DJ, Wyatt RJ, Cannon-Spoor E et al. (1993) 6-[18F]fluoro-L-dopa and cerebral blood flow in unilaterally MPTP-treated monkeys. J Neural Transpl Plast 4:27–38CrossRef Doudet DJ, Wyatt RJ, Cannon-Spoor E et al. (1993) 6-[18F]fluoro-L-dopa and cerebral blood flow in unilaterally MPTP-treated monkeys. J Neural Transpl Plast 4:27–38CrossRef
6.
go back to reference Yee RE, Irwin I, Milonas C et al. (2001) Novel observations with FDOPA-PET imaging after early nigrostriatal damage. Mov Disord 16:838–848PubMedCrossRef Yee RE, Irwin I, Milonas C et al. (2001) Novel observations with FDOPA-PET imaging after early nigrostriatal damage. Mov Disord 16:838–848PubMedCrossRef
7.
go back to reference Guttman M, Yong VW, Kim SU et al. (1988) Asymptomatic striatal dopamine depletion: PET scans in unilateral MPTP monkeys. Synapse 2:469–473PubMedCrossRef Guttman M, Yong VW, Kim SU et al. (1988) Asymptomatic striatal dopamine depletion: PET scans in unilateral MPTP monkeys. Synapse 2:469–473PubMedCrossRef
8.
go back to reference Doudet DJ, Miyake H, Finn RT et al. (1989) 6-18F-L-dopa imaging of the dopamine neostriatal system in normal and clinically normal MPTP-treated rhesus monkeys. Exp Brain Res 78:69–80PubMedCrossRef Doudet DJ, Miyake H, Finn RT et al. (1989) 6-18F-L-dopa imaging of the dopamine neostriatal system in normal and clinically normal MPTP-treated rhesus monkeys. Exp Brain Res 78:69–80PubMedCrossRef
9.
go back to reference Eberling JL, Pivirotto P, Bringas J, Bankiewicz KS (2000) Tremor is associated with PET measures of nigrostriatal dopamine function in MPTP-lesioned monkeys. Exp Neurol 165:342–346PubMedCrossRef Eberling JL, Pivirotto P, Bringas J, Bankiewicz KS (2000) Tremor is associated with PET measures of nigrostriatal dopamine function in MPTP-lesioned monkeys. Exp Neurol 165:342–346PubMedCrossRef
10.
go back to reference Eberling JL, Bankiewicz KS, Jordan S, VanBrocklin HF, Jagust WJ (1997) PET studies of functional compensation in a primate model of Parkinson’s disease. Neuroreport 8:2727–2733PubMedCrossRef Eberling JL, Bankiewicz KS, Jordan S, VanBrocklin HF, Jagust WJ (1997) PET studies of functional compensation in a primate model of Parkinson’s disease. Neuroreport 8:2727–2733PubMedCrossRef
11.
go back to reference Hantraye P, Brownell AL, Elmaleh D et al. (1992) Dopamine fiber detection by [11C]-CFT and PET in a primate model of parkinsonism. NeuroReport 3:265–268PubMedCrossRef Hantraye P, Brownell AL, Elmaleh D et al. (1992) Dopamine fiber detection by [11C]-CFT and PET in a primate model of parkinsonism. NeuroReport 3:265–268PubMedCrossRef
12.
go back to reference Wullner U, Pakzaban P, Brownell AL et al. (1994) Dopamine terminal loss and onset of motor symptoms in MPTP-treated monkeys: a positron emission tomography study with 11C-CFT. Exp Neurol 126:305–309PubMedCrossRef Wullner U, Pakzaban P, Brownell AL et al. (1994) Dopamine terminal loss and onset of motor symptoms in MPTP-treated monkeys: a positron emission tomography study with 11C-CFT. Exp Neurol 126:305–309PubMedCrossRef
13.
go back to reference Brownell AL, Canales K, Chen YI et al. (2003) Mapping of brain function after MPTP-induced neurotoxicity in a primate Parkinson’s disease model. NeuroImage 20:1064–1075PubMedCrossRef Brownell AL, Canales K, Chen YI et al. (2003) Mapping of brain function after MPTP-induced neurotoxicity in a primate Parkinson’s disease model. NeuroImage 20:1064–1075PubMedCrossRef
14.
go back to reference Brownell AL, Jenkins BG, Isacson O (1999) Dopamine imaging markers and predictive mathematical models for progressive degeneration in Parkinson’s disease. Biomed Pharmacother 53:131–140PubMedCrossRef Brownell AL, Jenkins BG, Isacson O (1999) Dopamine imaging markers and predictive mathematical models for progressive degeneration in Parkinson’s disease. Biomed Pharmacother 53:131–140PubMedCrossRef
15.
go back to reference Brownell AL, Jenkins BG, Elmaleh DR et al. (1998) Combined PET/MRS brain studies show dynamic and long-term physiological changes in a primate model of Parkinson disease. Nat Med 4:1308–1312PubMedCrossRef Brownell AL, Jenkins BG, Elmaleh DR et al. (1998) Combined PET/MRS brain studies show dynamic and long-term physiological changes in a primate model of Parkinson disease. Nat Med 4:1308–1312PubMedCrossRef
16.
go back to reference Poyot T, Conde F, Gregoire MC et al. (2001) Anatomic and biochemical correlates of the dopamine transporter ligand 11C-PE2I in normal and parkinsonian primates: comparison with 6-[18F]fluoro-L-dopa. J Cereb Blood Flow Metab 21:782–792PubMedCrossRef Poyot T, Conde F, Gregoire MC et al. (2001) Anatomic and biochemical correlates of the dopamine transporter ligand 11C-PE2I in normal and parkinsonian primates: comparison with 6-[18F]fluoro-L-dopa. J Cereb Blood Flow Metab 21:782–792PubMedCrossRef
17.
go back to reference Doudet DJ, Jivan S, Ruth TJ, Holden JE (2002) Density and affinity of the dopamine D2 receptors in aged symptomatic and asymptomatic MPTP-treated monkeys: PET studies with [11C]raclopride. Synapse 44:198–202PubMedCrossRef Doudet DJ, Jivan S, Ruth TJ, Holden JE (2002) Density and affinity of the dopamine D2 receptors in aged symptomatic and asymptomatic MPTP-treated monkeys: PET studies with [11C]raclopride. Synapse 44:198–202PubMedCrossRef
18.
go back to reference Hantraye P, Loc’h C, Tacke U et al. (1986) “In vivo” visualization by positron emission tomography of the progressive striatal dopamine receptor damage occurring in MPTP-intoxicated non-human primates. Life Sci 39:1375–1382PubMedCrossRef Hantraye P, Loc’h C, Tacke U et al. (1986) “In vivo” visualization by positron emission tomography of the progressive striatal dopamine receptor damage occurring in MPTP-intoxicated non-human primates. Life Sci 39:1375–1382PubMedCrossRef
19.
go back to reference Doudet DJ, Jivan S, Ruth TJ, Wyatt RJ (2002) In vivo PET studies of the dopamine D1 receptors in rhesus monkeys with long-term MPTP-induced Parkinsonism. Synapse 44:111–115PubMedCrossRef Doudet DJ, Jivan S, Ruth TJ, Wyatt RJ (2002) In vivo PET studies of the dopamine D1 receptors in rhesus monkeys with long-term MPTP-induced Parkinsonism. Synapse 44:111–115PubMedCrossRef
20.
go back to reference Cohen RM, Carson RE, Wyatt RJ, Doudet DJ (1999) Opiate receptor avidity is reduced bilaterally in rhesus monkeys unilaterally lesioned with MPTP. Synapse 33:282–288PubMedCrossRef Cohen RM, Carson RE, Wyatt RJ, Doudet DJ (1999) Opiate receptor avidity is reduced bilaterally in rhesus monkeys unilaterally lesioned with MPTP. Synapse 33:282–288PubMedCrossRef
21.
go back to reference Yee RE, Huang SC, Togasaki DM et al. (2002) Imaging and therapeutics: the role of neuronal transport in the regional specificity of L-DOPA accumulation in brain. Mol Imaging Biol 4:208–218PubMedCrossRef Yee RE, Huang SC, Togasaki DM et al. (2002) Imaging and therapeutics: the role of neuronal transport in the regional specificity of L-DOPA accumulation in brain. Mol Imaging Biol 4:208–218PubMedCrossRef
22.
go back to reference Doudet DJ, Rosa-Neto P, Munk OL et al. (2006) Effect of age on markers for monoaminergic neurons of normal and MPTP-lesioned rhesus monkeys: a multi-tracer PET study. NeuroImage 30:26–35PubMedCrossRef Doudet DJ, Rosa-Neto P, Munk OL et al. (2006) Effect of age on markers for monoaminergic neurons of normal and MPTP-lesioned rhesus monkeys: a multi-tracer PET study. NeuroImage 30:26–35PubMedCrossRef
23.
go back to reference Lee CS, Samii A, Sossi V et al. (2000) In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson’s disease. Ann Neurol 47:493–503PubMedCrossRef Lee CS, Samii A, Sossi V et al. (2000) In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson’s disease. Ann Neurol 47:493–503PubMedCrossRef
24.
go back to reference Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20:415–455PubMedCrossRef Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20:415–455PubMedCrossRef
25.
go back to reference Cohen RM, Carson RE, Aigner TG, Doudet DJ (1998) Opiate receptor avidity is reduced in non-motor impaired MPTP-lesioned rhesus monkeys. Brain Res 806:292–296PubMedCrossRef Cohen RM, Carson RE, Aigner TG, Doudet DJ (1998) Opiate receptor avidity is reduced in non-motor impaired MPTP-lesioned rhesus monkeys. Brain Res 806:292–296PubMedCrossRef
26.
go back to reference Miletich RS, Bankiewicz KS, Quarantelli M et al (1994) MRI detects acute degeneration of the nigrostriatal dopamine system after MPTP exposure in hemiparkinsonian monkeys. Ann Neurol 35:689–697PubMedCrossRef Miletich RS, Bankiewicz KS, Quarantelli M et al (1994) MRI detects acute degeneration of the nigrostriatal dopamine system after MPTP exposure in hemiparkinsonian monkeys. Ann Neurol 35:689–697PubMedCrossRef
27.
go back to reference Zhang Z, Zhang M, Ai Y, Avison C, Gash DM (1999) MPTP-Induced pallidal lesions in rhesus monkeys. Exp Neurol 155:140–149PubMedCrossRef Zhang Z, Zhang M, Ai Y, Avison C, Gash DM (1999) MPTP-Induced pallidal lesions in rhesus monkeys. Exp Neurol 155:140–149PubMedCrossRef
28.
go back to reference Sharma SK, Ebadi M (2005) Distribution kinetics of 18F-DOPA in weaver mutant mice. Brain Res Mol Brain Res 139:23–30PubMedCrossRef Sharma SK, Ebadi M (2005) Distribution kinetics of 18F-DOPA in weaver mutant mice. Brain Res Mol Brain Res 139:23–30PubMedCrossRef
29.
go back to reference Sharma SK, El Refaey H, Ebadi M (2006) Complex-1 activity and (18)F-DOPA uptake in genetically engineered mouse model of Parkinson’s disease and the neuroprotective role of coenzyme Q(10). Brain Res Bull 70:22–32PubMedCrossRef Sharma SK, El Refaey H, Ebadi M (2006) Complex-1 activity and (18)F-DOPA uptake in genetically engineered mouse model of Parkinson’s disease and the neuroprotective role of coenzyme Q(10). Brain Res Bull 70:22–32PubMedCrossRef
30.
go back to reference Honer M, Hengerer B, Blagoev M et al. (2006) Comparison of [18F]FDOPA, [18F]FMT and [18F]FECNT for imaging dopaminergic neurotransmission in mice. Nucl Med Biol 33:607–614PubMed Honer M, Hengerer B, Blagoev M et al. (2006) Comparison of [18F]FDOPA, [18F]FMT and [18F]FECNT for imaging dopaminergic neurotransmission in mice. Nucl Med Biol 33:607–614PubMed
31.
go back to reference Hume SP, Lammertsma AA, Myers R et al. (1996) The potential of high-resolution positron emission tomography to monitor striatal dopaminergic function in rat models of disease. J Neurosci Methods 67:103–112PubMed Hume SP, Lammertsma AA, Myers R et al. (1996) The potential of high-resolution positron emission tomography to monitor striatal dopaminergic function in rat models of disease. J Neurosci Methods 67:103–112PubMed
32.
go back to reference Forsback S, Niemi R, Marjamaki P et al. (2004) Uptake of 6-[18F]fluoro-L-dopa and [18F]CFT reflect nigral neuronal loss in a rat model of Parkinson’s disease. Synapse 51:119-127PubMedCrossRef Forsback S, Niemi R, Marjamaki P et al. (2004) Uptake of 6-[18F]fluoro-L-dopa and [18F]CFT reflect nigral neuronal loss in a rat model of Parkinson’s disease. Synapse 51:119-127PubMedCrossRef
33.
go back to reference Strome EM, Cepeda IL, Sossi V, Doudet DJ (2006) Evaluation of the integrity of the dopamine system in a rodent model of Parkinson’s disease: small animal PET compared to behavioral assessment and autoradiography. Mol Imaging Biol 8:292–299PubMedCrossRef Strome EM, Cepeda IL, Sossi V, Doudet DJ (2006) Evaluation of the integrity of the dopamine system in a rodent model of Parkinson’s disease: small animal PET compared to behavioral assessment and autoradiography. Mol Imaging Biol 8:292–299PubMedCrossRef
34.
go back to reference Sossi V, Holden JE, Topping GJ et al. (2007) In vivo measurement of density and affinity of the monoamine vesicular transporter in a unilateral 6-hydroxydopamine rat model of PD. J Cereb Blood Flow Metab (in press). DOI 10.1038/sj.jcbfm.9600446 Sossi V, Holden JE, Topping GJ et al. (2007) In vivo measurement of density and affinity of the monoamine vesicular transporter in a unilateral 6-hydroxydopamine rat model of PD. J Cereb Blood Flow Metab (in press). DOI 10.​1038/​sj.​jcbfm.​9600446
35.
go back to reference Nguyen TV, Brownell AL, Iris Chen YC et al. (2000) Detection of the effects of dopamine receptor supersensitivity using pharmacological MRI and correlations with PET. Synapse 36:57–65PubMedCrossRef Nguyen TV, Brownell AL, Iris Chen YC et al. (2000) Detection of the effects of dopamine receptor supersensitivity using pharmacological MRI and correlations with PET. Synapse 36:57–65PubMedCrossRef
36.
go back to reference Hume SP, Opacka-Juffry J, Myers R et al. (1995) Effect of L-dopa and 6-hydroxydopamine lesioning on [11C]raclopride binding in rat striatum, quantified using PET. Synapse 21:45–53PubMedCrossRef Hume SP, Opacka-Juffry J, Myers R et al. (1995) Effect of L-dopa and 6-hydroxydopamine lesioning on [11C]raclopride binding in rat striatum, quantified using PET. Synapse 21:45–53PubMedCrossRef
37.
go back to reference Nikolaus S, Larisch R, Beu M et al. (2003) Bilateral increase in striatal dopamine D2 receptor density in the 6-hydroxydopamine-lesioned rat: a serial in vivo investigation with small animal PET. Eur J Nucl Med Mol Imaging 30:390–395PubMedCrossRef Nikolaus S, Larisch R, Beu M et al. (2003) Bilateral increase in striatal dopamine D2 receptor density in the 6-hydroxydopamine-lesioned rat: a serial in vivo investigation with small animal PET. Eur J Nucl Med Mol Imaging 30:390–395PubMedCrossRef
38.
go back to reference Inaji M, Okauchi T, Ando K et al. (2005) Correlation between quantitative imaging and behavior in unilaterally 6-OHDA-lesioned rats. Brain Res 1064:136–145PubMedCrossRef Inaji M, Okauchi T, Ando K et al. (2005) Correlation between quantitative imaging and behavior in unilaterally 6-OHDA-lesioned rats. Brain Res 1064:136–145PubMedCrossRef
39.
go back to reference Cicchetti F, Brownell AL, Williams K et al. (2002) Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging. Eur J Neurosci 15:991–998PubMedCrossRef Cicchetti F, Brownell AL, Williams K et al. (2002) Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging. Eur J Neurosci 15:991–998PubMedCrossRef
40.
go back to reference Sanchez-Pernaute R, Ferree A, Cooper O et al. (2004) Selective COX-2 inhibition prevents progressive dopamine neuron degeneration in a rat model of Parkinson’s disease. J Neuroinflammation 1:6PubMedCrossRef Sanchez-Pernaute R, Ferree A, Cooper O et al. (2004) Selective COX-2 inhibition prevents progressive dopamine neuron degeneration in a rat model of Parkinson’s disease. J Neuroinflammation 1:6PubMedCrossRef
41.
go back to reference Chen YC, Galpern WR, Brownell AL et al. (1997) Detection of dopaminergic neurotransmitter activity using pharmacologic MRI: correlation with PET, microdialysis, and behavioral data. Magn Reson Med 38:389–398PubMedCrossRef Chen YC, Galpern WR, Brownell AL et al. (1997) Detection of dopaminergic neurotransmitter activity using pharmacologic MRI: correlation with PET, microdialysis, and behavioral data. Magn Reson Med 38:389–398PubMedCrossRef
42.
go back to reference Chen YI, Brownell AL, Galpern W et al. (1999) Detection of dopaminergic cell loss and neural transplantation using pharmacological MRI, PET and behavioral assessment. NeuroReport 10:2881–2886PubMedCrossRef Chen YI, Brownell AL, Galpern W et al. (1999) Detection of dopaminergic cell loss and neural transplantation using pharmacological MRI, PET and behavioral assessment. NeuroReport 10:2881–2886PubMedCrossRef
43.
go back to reference Brownell AL, Livni E, Galpern W, Isacson O (1998) In vivo PET imaging in rat of dopamine terminals reveals functional neural transplants. Ann Neurol 43:387–390PubMedCrossRef Brownell AL, Livni E, Galpern W, Isacson O (1998) In vivo PET imaging in rat of dopamine terminals reveals functional neural transplants. Ann Neurol 43:387–390PubMedCrossRef
44.
45.
go back to reference Doudet DJ, Cornfeldt ML, Honey CR, Schweikert AW, Allen RC (2004) PET imaging of implanted human retinal pigment epithelial cells in the MPTP-induced primate model of Parkinson’s disease. Exp Neurol 189:361–368PubMedCrossRef Doudet DJ, Cornfeldt ML, Honey CR, Schweikert AW, Allen RC (2004) PET imaging of implanted human retinal pigment epithelial cells in the MPTP-induced primate model of Parkinson’s disease. Exp Neurol 189:361–368PubMedCrossRef
46.
go back to reference Danielsen EH, Cumming P, Andersen F et al. (2000) The DaNeX study of embryonic mesencephalic, dopaminergic tissue grafted to a minipig model of Parkinson’s disease: preliminary findings of effect of MPTP poisoning on striatal dopaminergic markers. Cell Transplant 9:247–259PubMed Danielsen EH, Cumming P, Andersen F et al. (2000) The DaNeX study of embryonic mesencephalic, dopaminergic tissue grafted to a minipig model of Parkinson’s disease: preliminary findings of effect of MPTP poisoning on striatal dopaminergic markers. Cell Transplant 9:247–259PubMed
47.
go back to reference Cumming P, Danielsen EH, Vafaee M et al. (2001) Normalization of markers for dopamine innervation in striatum of MPTP-lesioned miniature pigs with intrastriatal grafts. Acta Neurol Scand 103:309–315PubMedCrossRef Cumming P, Danielsen EH, Vafaee M et al. (2001) Normalization of markers for dopamine innervation in striatum of MPTP-lesioned miniature pigs with intrastriatal grafts. Acta Neurol Scand 103:309–315PubMedCrossRef
48.
go back to reference Dall AM, Danielsen EH, Sorensen JC et al. (2002) Quantitative [18F]fluorodopa/PET and histology of fetal mesencephalic dopaminergic grafts to the striatum of MPTP-poisoned minipigs. Cell Transplant 11:733–746PubMed Dall AM, Danielsen EH, Sorensen JC et al. (2002) Quantitative [18F]fluorodopa/PET and histology of fetal mesencephalic dopaminergic grafts to the striatum of MPTP-poisoned minipigs. Cell Transplant 11:733–746PubMed
49.
go back to reference Bjorklund LM, Sanchez-Pernaute R, Chung S et al. (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A 99:2344–2349PubMedCrossRef Bjorklund LM, Sanchez-Pernaute R, Chung S et al. (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A 99:2344–2349PubMedCrossRef
50.
go back to reference Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132PubMedCrossRef Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132PubMedCrossRef
51.
go back to reference Kishima H, Poyot T, Bloch J et al (2004) Encapsulated GDNF-producing C2C12 cells for Parkinson’s disease: a pre-clinical study in chronic MPTP-treated baboons. Neurobiol Dis 16:428–439PubMedCrossRef Kishima H, Poyot T, Bloch J et al (2004) Encapsulated GDNF-producing C2C12 cells for Parkinson’s disease: a pre-clinical study in chronic MPTP-treated baboons. Neurobiol Dis 16:428–439PubMedCrossRef
52.
go back to reference Opacka-Juffry J, Ashworth S, Hume SP et al. (1995) GDNF protects against 6-OHDA nigrostriatal lesion: in vivo study with microdialysis and PET. NeuroReport 7:348–352PubMed Opacka-Juffry J, Ashworth S, Hume SP et al. (1995) GDNF protects against 6-OHDA nigrostriatal lesion: in vivo study with microdialysis and PET. NeuroReport 7:348–352PubMed
53.
go back to reference Sullivan AM, Opacka-Juffry J, Blunt SB (1998) Long-term protection of the rat nigrostriatal dopaminergic system by glial cell line-derived neurotrophic factor against 6-hydroxydopamine in vivo. Eur J Neurosci 10:57–63PubMedCrossRef Sullivan AM, Opacka-Juffry J, Blunt SB (1998) Long-term protection of the rat nigrostriatal dopaminergic system by glial cell line-derived neurotrophic factor against 6-hydroxydopamine in vivo. Eur J Neurosci 10:57–63PubMedCrossRef
54.
go back to reference Kordower JH, Emborg ME, Bloch J et al. (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290:767–773PubMedCrossRef Kordower JH, Emborg ME, Bloch J et al. (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290:767–773PubMedCrossRef
55.
go back to reference Bankiewicz KS, Eberling JL, Kohutnicka M et al. (2000) Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp Neurol 164:2–14PubMedCrossRef Bankiewicz KS, Eberling JL, Kohutnicka M et al. (2000) Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp Neurol 164:2–14PubMedCrossRef
56.
go back to reference Emborg ME, Carbon M, Holden JE et al. (2006) Subthalamic glutamic acid decarboxylase gene therapy: changes in motor function and cortical metabolism. J Cereb Blood Flow Metab 27:501–509PubMedCrossRef Emborg ME, Carbon M, Holden JE et al. (2006) Subthalamic glutamic acid decarboxylase gene therapy: changes in motor function and cortical metabolism. J Cereb Blood Flow Metab 27:501–509PubMedCrossRef
57.
go back to reference Lee WT, Chang C (2004) Magnetic resonance imaging and spectroscopy in assessing 3-nitropropionic acid-induced brain lesions: an animal model of Huntington’s disease. Prog Neurobiol 72:87–110PubMedCrossRef Lee WT, Chang C (2004) Magnetic resonance imaging and spectroscopy in assessing 3-nitropropionic acid-induced brain lesions: an animal model of Huntington’s disease. Prog Neurobiol 72:87–110PubMedCrossRef
58.
go back to reference The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983CrossRef The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983CrossRef
59.
go back to reference Rubinsztein DC, Barton DE, Davison BC, Ferguson-Smith MA (1993) Analysis of the huntingtin gene reveals a trinucleotide-length polymorphism in the region of the gene that contains two CCG-rich stretches and a correlation between decreased age of onset of Huntington’s disease and CAG repeat number. Hum Mol Genet 2:1713–1715PubMedCrossRef Rubinsztein DC, Barton DE, Davison BC, Ferguson-Smith MA (1993) Analysis of the huntingtin gene reveals a trinucleotide-length polymorphism in the region of the gene that contains two CCG-rich stretches and a correlation between decreased age of onset of Huntington’s disease and CAG repeat number. Hum Mol Genet 2:1713–1715PubMedCrossRef
60.
go back to reference Hoogeveen AT, Willemsen R, Meyer N et al. (1993) Characterization and localization of the Huntington disease gene product. Hum Mol Genet 2:2069–2073PubMedCrossRef Hoogeveen AT, Willemsen R, Meyer N et al. (1993) Characterization and localization of the Huntington disease gene product. Hum Mol Genet 2:2069–2073PubMedCrossRef
61.
go back to reference Roitberg BZ, Emborg ME, Sramek JG, Palfi S, Kordower JH (2002) Behavioral and morphological comparison of two nonhuman primate models of Huntington’s disease. Neurosurgery 50:137–145PubMedCrossRef Roitberg BZ, Emborg ME, Sramek JG, Palfi S, Kordower JH (2002) Behavioral and morphological comparison of two nonhuman primate models of Huntington’s disease. Neurosurgery 50:137–145PubMedCrossRef
62.
go back to reference Brownell AL, Hantraye P, Wullner U et al. (1994) PET- and MRI-based assessment of glucose utilization, dopamine receptor binding, and hemodynamic changes after lesions to the caudate-putamen in primates. Exp Neurol 125:41–51PubMedCrossRef Brownell AL, Hantraye P, Wullner U et al. (1994) PET- and MRI-based assessment of glucose utilization, dopamine receptor binding, and hemodynamic changes after lesions to the caudate-putamen in primates. Exp Neurol 125:41–51PubMedCrossRef
63.
go back to reference Burns LH, Pakzaban P, Deacon TW et al. (1995) Selective putaminal excitotoxic lesions in non-human primates model the movement disorder of Huntington disease. Neuroscience 64:1007–1017PubMedCrossRef Burns LH, Pakzaban P, Deacon TW et al. (1995) Selective putaminal excitotoxic lesions in non-human primates model the movement disorder of Huntington disease. Neuroscience 64:1007–1017PubMedCrossRef
64.
go back to reference Hantraye P, Loc’h C, Maziere B et al. (1992) 6-[18F]fluoro-L-dopa uptake and [76Br]bromolisuride binding in the excitotoxically lesioned caudate-putamen of nonhuman primates studied using positron emission tomography. Exp Neurol 115:218–227PubMedCrossRef Hantraye P, Loc’h C, Maziere B et al. (1992) 6-[18F]fluoro-L-dopa uptake and [76Br]bromolisuride binding in the excitotoxically lesioned caudate-putamen of nonhuman primates studied using positron emission tomography. Exp Neurol 115:218–227PubMedCrossRef
65.
go back to reference Hantraye P, Leroy-Willig A, Denys A et al. (1992) Magnetic resonance imaging to monitor pathology of caudate-putamen after excitotoxin-induced neuronal loss in the nonhuman primate brain. Exp Neurol 118:18–23PubMedCrossRef Hantraye P, Leroy-Willig A, Denys A et al. (1992) Magnetic resonance imaging to monitor pathology of caudate-putamen after excitotoxin-induced neuronal loss in the nonhuman primate brain. Exp Neurol 118:18–23PubMedCrossRef
66.
go back to reference Hantraye P, Riche D, Maziere M et al. (1989) Anatomical, behavioral and positron emission tomography studies of unilateral excitotoxic lesions of the baboon caudate-putamen as a primate model of Huntington’s disease. In: Crossman AR, Sambrook MA (eds) Neural mechanisms in disorders of movement. London: Libbey Hantraye P, Riche D, Maziere M et al. (1989) Anatomical, behavioral and positron emission tomography studies of unilateral excitotoxic lesions of the baboon caudate-putamen as a primate model of Huntington’s disease. In: Crossman AR, Sambrook MA (eds) Neural mechanisms in disorders of movement. London: Libbey
67.
go back to reference Araujo DM, Cherry SR, Tatsukawa KJ, Toyokuni T, Kornblum HI (2000) Deficits in striatal dopamine D(2) receptors and energy metabolism detected by in vivo microPET imaging in a rat model of Huntington’s disease. Exp Neurol 166:287–297PubMedCrossRef Araujo DM, Cherry SR, Tatsukawa KJ, Toyokuni T, Kornblum HI (2000) Deficits in striatal dopamine D(2) receptors and energy metabolism detected by in vivo microPET imaging in a rat model of Huntington’s disease. Exp Neurol 166:287–297PubMedCrossRef
68.
go back to reference Ishiwata K, Ogi N, Hayakawa N et al. (2002) Adenosine A2A receptor imaging with [11C]KF18446 PET in the rat brain after quinolinic acid lesion: comparison with the dopamine receptor imaging. Ann Nucl Med 16:467–475PubMedCrossRef Ishiwata K, Ogi N, Hayakawa N et al. (2002) Adenosine A2A receptor imaging with [11C]KF18446 PET in the rat brain after quinolinic acid lesion: comparison with the dopamine receptor imaging. Ann Nucl Med 16:467–475PubMedCrossRef
69.
go back to reference Brownell AL, Chen YI, Yu M et al. (2004) 3-Nitropropionic acid-induced neurotoxicity—assessed by ultra high resolution positron emission tomography with comparison to magnetic resonance spectroscopy. J Neurochem 89:1206–1214PubMedCrossRef Brownell AL, Chen YI, Yu M et al. (2004) 3-Nitropropionic acid-induced neurotoxicity—assessed by ultra high resolution positron emission tomography with comparison to magnetic resonance spectroscopy. J Neurochem 89:1206–1214PubMedCrossRef
70.
go back to reference Jenkins BG, Andreassen OA, Dedeoglu A et al. (2005) Effects of CAG repeat length, HTT protein length and protein context on cerebral metabolism measured using magnetic resonance spectroscopy in transgenic mouse models of Huntington’s disease. J Neurochem 95:553–562PubMedCrossRef Jenkins BG, Andreassen OA, Dedeoglu A et al. (2005) Effects of CAG repeat length, HTT protein length and protein context on cerebral metabolism measured using magnetic resonance spectroscopy in transgenic mouse models of Huntington’s disease. J Neurochem 95:553–562PubMedCrossRef
71.
go back to reference Wang X, Sarkar A, Cicchetti F et al. (2005) Cerebral PET imaging and histological evidence of transglutaminase inhibitor cystamine induced neuroprotection in transgenic R6/2 mouse model of Huntington’s disease. J Neurol Sci 231:57–66PubMedCrossRef Wang X, Sarkar A, Cicchetti F et al. (2005) Cerebral PET imaging and histological evidence of transglutaminase inhibitor cystamine induced neuroprotection in transgenic R6/2 mouse model of Huntington’s disease. J Neurol Sci 231:57–66PubMedCrossRef
72.
go back to reference Meguro K, Blaizot X, Kondoh Y et al. (1999) Neocortical and hippocampal glucose hypometabolism following neurotoxic lesions of the entorhinal and perirhinal cortices in the non-human primate as shown by PET. Implications for Alzheimer’s disease. Brain 122:1519–1531PubMedCrossRef Meguro K, Blaizot X, Kondoh Y et al. (1999) Neocortical and hippocampal glucose hypometabolism following neurotoxic lesions of the entorhinal and perirhinal cortices in the non-human primate as shown by PET. Implications for Alzheimer’s disease. Brain 122:1519–1531PubMedCrossRef
73.
go back to reference Millien I, Blaizot X, Giffard C et al. (2002) Brain glucose hypometabolism after perirhinal lesions in baboons: implications for Alzheimer disease and aging. J Cereb Blood Flow Metab 22:1248–1261PubMedCrossRef Millien I, Blaizot X, Giffard C et al. (2002) Brain glucose hypometabolism after perirhinal lesions in baboons: implications for Alzheimer disease and aging. J Cereb Blood Flow Metab 22:1248–1261PubMedCrossRef
74.
go back to reference Noda A, Murakami Y, Tsukada H, Nishimura S (2006) Amyloid imaging in aged and young macaques with PIB and FDDNP. Soc Nucl Med Abstr 34 Noda A, Murakami Y, Tsukada H, Nishimura S (2006) Amyloid imaging in aged and young macaques with PIB and FDDNP. Soc Nucl Med Abstr 34
75.
go back to reference Xiao-Chuan W, Zheng-Hui H, Zheng-Yu F et al. (2004) Correlation of Alzheimer-like tau hyperphosphorylation and fMRI bold intensity. Curr Alzheimer Res 1:143–148PubMedCrossRef Xiao-Chuan W, Zheng-Hui H, Zheng-Yu F et al. (2004) Correlation of Alzheimer-like tau hyperphosphorylation and fMRI bold intensity. Curr Alzheimer Res 1:143–148PubMedCrossRef
76.
go back to reference Bhagat YA, Obenaus A, Richardson JS, Kendall EJ (2002) Evolution of beta-amyloid induced neuropathology: magnetic resonance imaging and anatomical comparisons in the rodent hippocampus. Magma 14:223–232PubMed Bhagat YA, Obenaus A, Richardson JS, Kendall EJ (2002) Evolution of beta-amyloid induced neuropathology: magnetic resonance imaging and anatomical comparisons in the rodent hippocampus. Magma 14:223–232PubMed
77.
go back to reference Song Y, Morikawa S, Morita M et al. (2006) Comparison of MR images and histochemical localization of intra-arterially administered microglia surrounding beta-amyloid deposits in the rat brain. Histol Histopathol 21:705–711PubMed Song Y, Morikawa S, Morita M et al. (2006) Comparison of MR images and histochemical localization of intra-arterially administered microglia surrounding beta-amyloid deposits in the rat brain. Histol Histopathol 21:705–711PubMed
78.
go back to reference Codita A, Winblad B, Mohammed AH (2006) Of mice and men: more neurobiology in dementia. Curr Opin Psychiatry 19:555–563PubMedCrossRef Codita A, Winblad B, Mohammed AH (2006) Of mice and men: more neurobiology in dementia. Curr Opin Psychiatry 19:555–563PubMedCrossRef
79.
go back to reference Klunk WE, Lopresti BJ, Ikonomovic MD et al. (2005) Binding of the positron emission tomography tracer Pittsburgh compound-B reflects the amount of amyloid-beta in Alzheimer’s disease brain but not in transgenic mouse brain. J Neurosci 25:10598–10606PubMedCrossRef Klunk WE, Lopresti BJ, Ikonomovic MD et al. (2005) Binding of the positron emission tomography tracer Pittsburgh compound-B reflects the amount of amyloid-beta in Alzheimer’s disease brain but not in transgenic mouse brain. J Neurosci 25:10598–10606PubMedCrossRef
80.
go back to reference Toyama H, Ye D, Ichise M et al. (2005) PET imaging of brain with the beta-amyloid probe, [11C]6-OH-BTA-1, in a transgenic mouse model of Alzheimer’s disease. Eur J Nucl Med Mol Imaging 32:593–600PubMedCrossRef Toyama H, Ye D, Ichise M et al. (2005) PET imaging of brain with the beta-amyloid probe, [11C]6-OH-BTA-1, in a transgenic mouse model of Alzheimer’s disease. Eur J Nucl Med Mol Imaging 32:593–600PubMedCrossRef
81.
go back to reference Valla J, Chen K, Berndt JD et al. (2002) Effects of image resolution on autoradiographic measurements of posterior cingulate activity in PDAPP mice: implications for functional brain imaging studies of transgenic mouse models of Alzheimer’s disease. NeuroImage 16:1–6PubMedCrossRef Valla J, Chen K, Berndt JD et al. (2002) Effects of image resolution on autoradiographic measurements of posterior cingulate activity in PDAPP mice: implications for functional brain imaging studies of transgenic mouse models of Alzheimer’s disease. NeuroImage 16:1–6PubMedCrossRef
82.
go back to reference Heneka MT, Ramanathan M, Jacobs AH et al. (2006) Locus ceruleus degeneration promotes Alzheimer pathogenesis in amyloid precursor protein 23 transgenic mice. J Neurosci 26:1343–1354PubMedCrossRef Heneka MT, Ramanathan M, Jacobs AH et al. (2006) Locus ceruleus degeneration promotes Alzheimer pathogenesis in amyloid precursor protein 23 transgenic mice. J Neurosci 26:1343–1354PubMedCrossRef
83.
go back to reference Falangola MF, Lee SP, Nixon RA, Duff K, Helpern JA (2005) Histological co-localization of iron in Abeta plaques of PS/APP transgenic mice. Neurochem Res 30:201–205PubMedCrossRef Falangola MF, Lee SP, Nixon RA, Duff K, Helpern JA (2005) Histological co-localization of iron in Abeta plaques of PS/APP transgenic mice. Neurochem Res 30:201–205PubMedCrossRef
84.
go back to reference Jack CR, Jr., Wengenack TM, Reyes DA et al. (2005) In vivo magnetic resonance microimaging of individual amyloid plaques in Alzheimer’s transgenic mice. J Neurosci 25:10041–10048PubMedCrossRef Jack CR, Jr., Wengenack TM, Reyes DA et al. (2005) In vivo magnetic resonance microimaging of individual amyloid plaques in Alzheimer’s transgenic mice. J Neurosci 25:10041–10048PubMedCrossRef
85.
go back to reference Vanhoutte G, Dewachter I, Borghgraef P, Van Leuven F, Van der LA (2005) Noninvasive in vivo MRI detection of neuritic plaques associated with iron in APP[V717I] transgenic mice, a model for Alzheimer’s disease. Magn Reson Med 53:607–613PubMedCrossRef Vanhoutte G, Dewachter I, Borghgraef P, Van Leuven F, Van der LA (2005) Noninvasive in vivo MRI detection of neuritic plaques associated with iron in APP[V717I] transgenic mice, a model for Alzheimer’s disease. Magn Reson Med 53:607–613PubMedCrossRef
86.
go back to reference Jack CR, Jr., Garwood M, Wengenack TM et al. (2004) In vivo visualization of Alzheimer’s amyloid plaques by magnetic resonance imaging in transgenic mice without a contrast agent. Magn Reson Med 52:1263–1271PubMedCrossRef Jack CR, Jr., Garwood M, Wengenack TM et al. (2004) In vivo visualization of Alzheimer’s amyloid plaques by magnetic resonance imaging in transgenic mice without a contrast agent. Magn Reson Med 52:1263–1271PubMedCrossRef
87.
go back to reference Helpern JA, Lee SP, Falangola MF et al. (2004) MRI assessment of neuropathology in a transgenic mouse model of Alzheimer’s disease. Magn Reson Med 51:794–798PubMedCrossRef Helpern JA, Lee SP, Falangola MF et al. (2004) MRI assessment of neuropathology in a transgenic mouse model of Alzheimer’s disease. Magn Reson Med 51:794–798PubMedCrossRef
88.
go back to reference Wadghiri YZ, Sigurdsson EM, Sadowski M et al. (2003) Detection of Alzheimer’s amyloid in transgenic mice using magnetic resonance microimaging. Magn Reson Med 50:293–302PubMedCrossRef Wadghiri YZ, Sigurdsson EM, Sadowski M et al. (2003) Detection of Alzheimer’s amyloid in transgenic mice using magnetic resonance microimaging. Magn Reson Med 50:293–302PubMedCrossRef
89.
go back to reference Weiss C, Venkatasubramanian PN, Aguado AS et al (2002) Impaired eyeblink conditioning and decreased hippocampal volume in PDAPP V717F mice. Neurobiol Dis 11:425–433PubMedCrossRef Weiss C, Venkatasubramanian PN, Aguado AS et al (2002) Impaired eyeblink conditioning and decreased hippocampal volume in PDAPP V717F mice. Neurobiol Dis 11:425–433PubMedCrossRef
90.
go back to reference Koistinaho M, Kettunen MI, Goldsteins G et al. (2002) Beta-amyloid precursor protein transgenic mice that harbor diffuse A beta deposits but do not form plaques show increased ischemic vulnerability: role of inflammation. Proc Natl Acad Sci U S A 99:1610–1615 PubMedCrossRef Koistinaho M, Kettunen MI, Goldsteins G et al. (2002) Beta-amyloid precursor protein transgenic mice that harbor diffuse A beta deposits but do not form plaques show increased ischemic vulnerability: role of inflammation. Proc Natl Acad Sci U S A 99:1610–1615 PubMedCrossRef
91.
go back to reference Sykova E, Vorisek I, Antonova T et al. (2005) Changes in extracellular space size and geometry in APP23 transgenic mice: a model of Alzheimer’s disease. Proc Natl Acad Sci U S A 102:479–484PubMedCrossRef Sykova E, Vorisek I, Antonova T et al. (2005) Changes in extracellular space size and geometry in APP23 transgenic mice: a model of Alzheimer’s disease. Proc Natl Acad Sci U S A 102:479–484PubMedCrossRef
92.
go back to reference Sun SW, Song SK, Harms MP et al (2005) Detection of age-dependent brain injury in a mouse model of brain amyloidosis associated with Alzheimer’s disease using magnetic resonance diffusion tensor imaging. Exp Neurol 191:77–85PubMedCrossRef Sun SW, Song SK, Harms MP et al (2005) Detection of age-dependent brain injury in a mouse model of brain amyloidosis associated with Alzheimer’s disease using magnetic resonance diffusion tensor imaging. Exp Neurol 191:77–85PubMedCrossRef
93.
go back to reference Mueggler T, Meyer-Luehmann M, Rausch M et al (2004) Restricted diffusion in the brain of transgenic mice with cerebral amyloidosis. Eur J Neurosci 20:811–817PubMedCrossRef Mueggler T, Meyer-Luehmann M, Rausch M et al (2004) Restricted diffusion in the brain of transgenic mice with cerebral amyloidosis. Eur J Neurosci 20:811–817PubMedCrossRef
94.
go back to reference Song SK, Kim JH, Lin SJ, Brendza RP, Holtzman DM (2004) Diffusion tensor imaging detects age-dependent white matter changes in a transgenic mouse model with amyloid deposition. Neurobiol Dis 15:640–647PubMedCrossRef Song SK, Kim JH, Lin SJ, Brendza RP, Holtzman DM (2004) Diffusion tensor imaging detects age-dependent white matter changes in a transgenic mouse model with amyloid deposition. Neurobiol Dis 15:640–647PubMedCrossRef
95.
go back to reference Krucker T, Schuler A, Meyer EP, Staufenbiel M, Beckmann N (2004) Magnetic resonance angiography and vascular corrosion casting as tools in biomedical research: application to transgenic mice modeling Alzheimer’s disease. Neurol Res 26:507–516PubMedCrossRef Krucker T, Schuler A, Meyer EP, Staufenbiel M, Beckmann N (2004) Magnetic resonance angiography and vascular corrosion casting as tools in biomedical research: application to transgenic mice modeling Alzheimer’s disease. Neurol Res 26:507–516PubMedCrossRef
96.
go back to reference Higuchi M, Iwata N, Matsuba Y et al. (2005) 19F and 1H MRI detection of amyloid beta plaques in vivo. Nat Neurosci 8:527–533CrossRef Higuchi M, Iwata N, Matsuba Y et al. (2005) 19F and 1H MRI detection of amyloid beta plaques in vivo. Nat Neurosci 8:527–533CrossRef
97.
go back to reference von Kienlin M, Kunnecke B, Metzger F et al. (2005) Altered metabolic profile in the frontal cortex of PS2APP transgenic mice, monitored throughout their life span. Neurobiol Dis 18:32–39CrossRef von Kienlin M, Kunnecke B, Metzger F et al. (2005) Altered metabolic profile in the frontal cortex of PS2APP transgenic mice, monitored throughout their life span. Neurobiol Dis 18:32–39CrossRef
98.
go back to reference Dedeoglu A, Choi JK, Cormier K, Kowall NW, Jenkins BG (2004) Magnetic resonance spectroscopic analysis of Alzheimer’s disease mouse brain that express mutant human APP shows altered neurochemical profile. Brain Res 1012:60–65PubMedCrossRef Dedeoglu A, Choi JK, Cormier K, Kowall NW, Jenkins BG (2004) Magnetic resonance spectroscopic analysis of Alzheimer’s disease mouse brain that express mutant human APP shows altered neurochemical profile. Brain Res 1012:60–65PubMedCrossRef
99.
go back to reference Sherer TB, Fiske BK, Svendsen CN, Lang AE, Langston JW (2006) Crossroads in GDNF therapy for Parkinson’s disease. Mov Disord 21:136–141PubMedCrossRef Sherer TB, Fiske BK, Svendsen CN, Lang AE, Langston JW (2006) Crossroads in GDNF therapy for Parkinson’s disease. Mov Disord 21:136–141PubMedCrossRef
100.
go back to reference Ravina B, Eidelberg D, Ahlskog JE et al. (2005) The role of radiotracer imaging in Parkinson’s disease. Neurology 64:208–215PubMed Ravina B, Eidelberg D, Ahlskog JE et al. (2005) The role of radiotracer imaging in Parkinson’s disease. Neurology 64:208–215PubMed
101.
go back to reference Willner P (1984) The validity of animal models of depression. Psychopharmacology (Berl) 83:1–16CrossRef Willner P (1984) The validity of animal models of depression. Psychopharmacology (Berl) 83:1–16CrossRef
Metadata
Title
Animal Models of Neurodegenerative Disease: Insights from In vivo Imaging Studies
Authors
Elissa M. Strome
Doris J. Doudet
Publication date
01-07-2007
Publisher
Springer-Verlag
Published in
Molecular Imaging and Biology / Issue 4/2007
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-007-0093-4

Other articles of this Issue 4/2007

Molecular Imaging and Biology 4/2007 Go to the issue