Skip to main content
Top
Published in: Molecular Imaging and Biology 4/2006

01-07-2006 | Research Article

Near-Infrared Fluorescence Imaging of Tumor Integrin αvβ3 Expression with Cy7-Labeled RGD Multimers

Authors: Yun Wu, Weibo Cai, Xiaoyuan Chen

Published in: Molecular Imaging and Biology | Issue 4/2006

Login to get access

Abstract

Purpose

Cell adhesion molecule integrin αvβ3 is an excellent target for tumor interventions because of its unique expression on the surface of several types of solid tumor cells and on almost all sprouting tumor vasculatures. Here, we describe the development of near-infrared (NIR) fluorochrome Cy7-labeled RGD peptides for tumor integrin targeting.

Procedures

Mono-, di-, and tetrameric RGD peptides were synthesized and conjugated with Cy7. The integrin specificity of these fluorescent probes was tested in vitro for receptor binding assay and fluorescence microscopy and in vivo for subcutaneous U87MG tumor targeting.

Results

The tetrameric RGD peptide probe with the highest integrin affinity showed the highest tumor activity accumulation and strongest tumor-to-normal tissue contrast. This uptake is integrin-specific as the signal accumulated in the tumor can be effectively blocked by unconjugated RGD peptide antagonist of integrin αvβ3.

Conclusions

Noninvasive NIR fluorescence imaging is able to detect and semiquantify tumor integrin expression based upon the highly potent tetrameric RGD peptide probe.
Literature
1.
go back to reference Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715CrossRefPubMed Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715CrossRefPubMed
2.
go back to reference Xiong JP, Stehle T, Zhang R, et al. (2002) Crystal structure of the extracellular segment of integrin αvβ3 in complex with an Arg–Gly–Asp ligand. Science 296:151–155CrossRefPubMed Xiong JP, Stehle T, Zhang R, et al. (2002) Crystal structure of the extracellular segment of integrin αvβ3 in complex with an Arg–Gly–Asp ligand. Science 296:151–155CrossRefPubMed
3.
go back to reference Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin αvβ3 for angiogenesis. Science 264:569–571PubMedCrossRef Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin αvβ3 for angiogenesis. Science 264:569–571PubMedCrossRef
4.
go back to reference Kumar CC (2003) Integrin αvβ3 as a therapeutic target for blocking tumor-induced angiogenesis. Curr Drug Targets 4:123–131CrossRefPubMed Kumar CC (2003) Integrin αvβ3 as a therapeutic target for blocking tumor-induced angiogenesis. Curr Drug Targets 4:123–131CrossRefPubMed
5.
go back to reference Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2:91–100CrossRefPubMed Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2:91–100CrossRefPubMed
6.
go back to reference Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174CrossRefPubMed Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174CrossRefPubMed
7.
go back to reference Jin H, Varner J (2004) Integrins: Roles in cancer development and as treatment targets. Br J Cancer 90:561–565CrossRefPubMed Jin H, Varner J (2004) Integrins: Roles in cancer development and as treatment targets. Br J Cancer 90:561–565CrossRefPubMed
8.
go back to reference Brooks PC, Stromblad S, Sanders LC, et al. (1996) Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ3. Cell 85:683–693CrossRefPubMed Brooks PC, Stromblad S, Sanders LC, et al. (1996) Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ3. Cell 85:683–693CrossRefPubMed
9.
go back to reference Schmieder AH, Winter PM, Caruthers SD, et al. (2005) Molecular MR imaging of melanoma angiogenesis with αvβ3-targeted paramagnetic nanoparticles. Magn Reson Med 53:621–627CrossRefPubMed Schmieder AH, Winter PM, Caruthers SD, et al. (2005) Molecular MR imaging of melanoma angiogenesis with αvβ3-targeted paramagnetic nanoparticles. Magn Reson Med 53:621–627CrossRefPubMed
10.
go back to reference Chen X, Park R, Hou Y, et al. (2004) MicroPET imaging of brain tumor angiogenesis with 18F-labeled PEGylated RGD peptide. Eur J Nucl Med Mol Imaging 31:1081–1089CrossRefPubMed Chen X, Park R, Hou Y, et al. (2004) MicroPET imaging of brain tumor angiogenesis with 18F-labeled PEGylated RGD peptide. Eur J Nucl Med Mol Imaging 31:1081–1089CrossRefPubMed
11.
go back to reference Beck V, Herold H, Benge A, et al. (2005) ADAM15 decreases integrin αvβ3/vitronectin-mediated ovarian cancer cell adhesion and motility in an RGD-dependent fashion. Int J Biochem Cell Biol 37:590–603CrossRefPubMed Beck V, Herold H, Benge A, et al. (2005) ADAM15 decreases integrin αvβ3/vitronectin-mediated ovarian cancer cell adhesion and motility in an RGD-dependent fashion. Int J Biochem Cell Biol 37:590–603CrossRefPubMed
12.
go back to reference Chen X, Park R, Tohme M, et al. (2004) MicroPET and autoradiographic imaging of breast cancer alpha v-integrin expression using 18F- and 64Cu-labeled RGD peptide. Bioconjug Chem 15:41–49CrossRefPubMed Chen X, Park R, Tohme M, et al. (2004) MicroPET and autoradiographic imaging of breast cancer alpha v-integrin expression using 18F- and 64Cu-labeled RGD peptide. Bioconjug Chem 15:41–49CrossRefPubMed
13.
go back to reference Chen X, Liu S, Hou Y, et al. (2004) MicroPET imaging of breast cancer alphav-integrin expression with 64Cu-labeled dimeric RGD peptides. Mol Imaging Biol 6:350–359CrossRefPubMed Chen X, Liu S, Hou Y, et al. (2004) MicroPET imaging of breast cancer alphav-integrin expression with 64Cu-labeled dimeric RGD peptides. Mol Imaging Biol 6:350–359CrossRefPubMed
14.
go back to reference Meerovitch K, Bergeron F, Leblond L, et al. (2003) A novel RGD antagonist that targets both αvβ3 and α5β1 induces apoptosis of angiogenic endothelial cells on type I collagen. Vascul Pharmacol 40:77–89CrossRefPubMed Meerovitch K, Bergeron F, Leblond L, et al. (2003) A novel RGD antagonist that targets both αvβ3 and α5β1 induces apoptosis of angiogenic endothelial cells on type I collagen. Vascul Pharmacol 40:77–89CrossRefPubMed
15.
go back to reference Qiao RL, Yan W, Lum H, et al. (1995) Arg–Gly–Asp peptide increases endothelial hydraulic conductivity: Comparison with thrombin response. Am J Physiol 269:C110–C117PubMed Qiao RL, Yan W, Lum H, et al. (1995) Arg–Gly–Asp peptide increases endothelial hydraulic conductivity: Comparison with thrombin response. Am J Physiol 269:C110–C117PubMed
16.
go back to reference Haubner R, Wester HJ (2004) Radiolabeled tracers for imaging of tumor angiogenesis and evaluation of anti-angiogenic therapies. Curr Pharm Des 10:1439–1455CrossRefPubMed Haubner R, Wester HJ (2004) Radiolabeled tracers for imaging of tumor angiogenesis and evaluation of anti-angiogenic therapies. Curr Pharm Des 10:1439–1455CrossRefPubMed
17.
go back to reference Leong-Poi H, Christiansen J, Klibanov AL, et al. (2003) Noninvasive assessment of angiogenesis by ultrasound and microbubbles targeted to αv-integrins. Circulation 107:455–460CrossRefPubMed Leong-Poi H, Christiansen J, Klibanov AL, et al. (2003) Noninvasive assessment of angiogenesis by ultrasound and microbubbles targeted to αv-integrins. Circulation 107:455–460CrossRefPubMed
18.
go back to reference Ellegala DB, Leong-Poi H, Carpenter JE, et al. (2003) Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to αvβ3. Circulation 108:336–341CrossRefPubMed Ellegala DB, Leong-Poi H, Carpenter JE, et al. (2003) Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to αvβ3. Circulation 108:336–341CrossRefPubMed
19.
go back to reference Sipkins DA, Cheresh DA, Kazemi MR, et al. (1998) Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging. Nat Med 4:623–626CrossRefPubMed Sipkins DA, Cheresh DA, Kazemi MR, et al. (1998) Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging. Nat Med 4:623–626CrossRefPubMed
20.
go back to reference Winter PM, Morawski AM, Caruthers SD, et al. (2003) Molecular imaging of angiogenesis in early-stage atherosclerosis with αvβ3-integrin-targeted nanoparticles. Circulation 108:2270–2274CrossRefPubMed Winter PM, Morawski AM, Caruthers SD, et al. (2003) Molecular imaging of angiogenesis in early-stage atherosclerosis with αvβ3-integrin-targeted nanoparticles. Circulation 108:2270–2274CrossRefPubMed
21.
go back to reference Haubner R, Weber WA, Beer AJ, et al. (2005) Noninvasive visualization of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med 2:e70CrossRefPubMed Haubner R, Weber WA, Beer AJ, et al. (2005) Noninvasive visualization of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med 2:e70CrossRefPubMed
22.
go back to reference Chen X, Sievers E, Hou Y, et al. (2005) Integrin αvβ3-targeted imaging of lung cancer. Neoplasia 7:271–279PubMedCrossRef Chen X, Sievers E, Hou Y, et al. (2005) Integrin αvβ3-targeted imaging of lung cancer. Neoplasia 7:271–279PubMedCrossRef
23.
go back to reference Chen X, Tohme M, Park R, et al. (2004) Micro-PET imaging of αvβ3-integrin expression with 18F-labeled dimeric RGD peptide. Mol Imaging 3:96–104CrossRefPubMed Chen X, Tohme M, Park R, et al. (2004) Micro-PET imaging of αvβ3-integrin expression with 18F-labeled dimeric RGD peptide. Mol Imaging 3:96–104CrossRefPubMed
24.
go back to reference Chen X, Hou Y, Tohme M, et al. (2004) Pegylated Arg–Gly–Asp peptide: 64Cu labeling and PET imaging of brain tumor αvβ3-integrin expression. J Nucl Med 45:1776–1783PubMed Chen X, Hou Y, Tohme M, et al. (2004) Pegylated Arg–Gly–Asp peptide: 64Cu labeling and PET imaging of brain tumor αvβ3-integrin expression. J Nucl Med 45:1776–1783PubMed
25.
go back to reference Chen X, Park R, Shahinian AH, et al. (2004) 18F-labeled RGD peptide: Initial evaluation for imaging brain tumor angiogenesis. Nucl Med Biol 31:179–189CrossRefPubMed Chen X, Park R, Shahinian AH, et al. (2004) 18F-labeled RGD peptide: Initial evaluation for imaging brain tumor angiogenesis. Nucl Med Biol 31:179–189CrossRefPubMed
26.
go back to reference Chen X, Conti PS, Moats RA (2004) In vivo near-infrared fluorescence imaging of integrin αvβ3 in brain tumor xenografts. Cancer Res 64:8009–8014CrossRefPubMed Chen X, Conti PS, Moats RA (2004) In vivo near-infrared fluorescence imaging of integrin αvβ3 in brain tumor xenografts. Cancer Res 64:8009–8014CrossRefPubMed
27.
go back to reference Wang W, Ke S, Wu Q, et al. (2004) Near-infrared optical imaging of integrin αvβ3 in human tumor xenografts. Mol Imaging 3:343–351CrossRefPubMed Wang W, Ke S, Wu Q, et al. (2004) Near-infrared optical imaging of integrin αvβ3 in human tumor xenografts. Mol Imaging 3:343–351CrossRefPubMed
28.
go back to reference Sunkuk K, Shi K, Houston JP, et al. (2005) Imaging dose-dependent pharmacokinetics of an RGD-fluorescent dye conjugate targeted to αvβ3 receptor expressed in Kaposi's sarcoma. Mol Imaging 4:75–87PubMed Sunkuk K, Shi K, Houston JP, et al. (2005) Imaging dose-dependent pharmacokinetics of an RGD-fluorescent dye conjugate targeted to αvβ3 receptor expressed in Kaposi's sarcoma. Mol Imaging 4:75–87PubMed
29.
go back to reference Achilefu S, Bloch S, Markiewicz MA, et al. (2005) Synergistic effects of light-emitting probes and peptides for targeting and monitoring integrin expression. Proc Natl Acad Sci USA 102:7976–7981CrossRefPubMed Achilefu S, Bloch S, Markiewicz MA, et al. (2005) Synergistic effects of light-emitting probes and peptides for targeting and monitoring integrin expression. Proc Natl Acad Sci USA 102:7976–7981CrossRefPubMed
30.
go back to reference Xiong JP, Stehle T, Diefenbach B, et al. (2001) Crystal structure of the extracellular segment of integrin αvβ3. Science 294:339–345CrossRefPubMed Xiong JP, Stehle T, Diefenbach B, et al. (2001) Crystal structure of the extracellular segment of integrin αvβ3. Science 294:339–345CrossRefPubMed
31.
go back to reference Vagner J, Handl HL, Gillies RJ, et al. (2004) Novel targeting strategy based on multimeric ligands for drug delivery and molecular imaging: Homooligomers of α-MSH. Bioorg Med Chem Lett 14:211–215CrossRefPubMed Vagner J, Handl HL, Gillies RJ, et al. (2004) Novel targeting strategy based on multimeric ligands for drug delivery and molecular imaging: Homooligomers of α-MSH. Bioorg Med Chem Lett 14:211–215CrossRefPubMed
32.
go back to reference Rao J, Lahiri J, Isaacs L, et al. (1998) A trivalent system from vancomycin. D-Ala–D-Ala with higher affinity than avidin–biotin. Science 280:708–711CrossRefPubMed Rao J, Lahiri J, Isaacs L, et al. (1998) A trivalent system from vancomycin. D-Ala–D-Ala with higher affinity than avidin–biotin. Science 280:708–711CrossRefPubMed
33.
go back to reference Wu Y, Zhang X, Xiong Z, et al. (2005) MicroPET imaging of glioma integrin αvβ3 expression using 64Cu-labeled tetrameric RGD peptide. J Nucl Med 46:1707–1718PubMed Wu Y, Zhang X, Xiong Z, et al. (2005) MicroPET imaging of glioma integrin αvβ3 expression using 64Cu-labeled tetrameric RGD peptide. J Nucl Med 46:1707–1718PubMed
34.
go back to reference Cheng Z, Wu Y, Xiong Z, Gambhir SS, Chen X (2005) Near-infrared fluorescent RGD peptides for optical imaging of integrin αvβ3 expression in living mice. Bioconjug Chem 16:1433–1441CrossRefPubMed Cheng Z, Wu Y, Xiong Z, Gambhir SS, Chen X (2005) Near-infrared fluorescent RGD peptides for optical imaging of integrin αvβ3 expression in living mice. Bioconjug Chem 16:1433–1441CrossRefPubMed
35.
go back to reference Chen X, Park R, Shahinian AH, Bading JR, Conti PS (2004) Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by PEGylation. Nucl Med Biol 31:11–19CrossRefPubMed Chen X, Park R, Shahinian AH, Bading JR, Conti PS (2004) Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by PEGylation. Nucl Med Biol 31:11–19CrossRefPubMed
36.
go back to reference Maheshwari G, Brown G, Lauffenburger DA, et al. (2000) Cell adhesion and motility depend on nanoscale RGD clustering. J Cell Sci 113:1677–1686PubMed Maheshwari G, Brown G, Lauffenburger DA, et al. (2000) Cell adhesion and motility depend on nanoscale RGD clustering. J Cell Sci 113:1677–1686PubMed
37.
go back to reference Reynolds JS, Troy TL, Mayer RH, et al. (1999) Imaging of spontaneous canine mammary tumors using fluorescent contrast agents. Photochem Photobiol 70:87–94CrossRefPubMed Reynolds JS, Troy TL, Mayer RH, et al. (1999) Imaging of spontaneous canine mammary tumors using fluorescent contrast agents. Photochem Photobiol 70:87–94CrossRefPubMed
38.
go back to reference Haglund MM, Berger MS, Hochman DW (1996) Enhanced optical imaging of human gliomas and tumor margins. Neurosurgery 38:308–317CrossRefPubMed Haglund MM, Berger MS, Hochman DW (1996) Enhanced optical imaging of human gliomas and tumor margins. Neurosurgery 38:308–317CrossRefPubMed
39.
go back to reference Licha K, Riefke B, Ntziachristos V, et al. (2000) Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: Synthesis, photophysical properties and spectroscopic in vivo characterization. Photochem Photobiol 72:392–398CrossRefPubMed Licha K, Riefke B, Ntziachristos V, et al. (2000) Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: Synthesis, photophysical properties and spectroscopic in vivo characterization. Photochem Photobiol 72:392–398CrossRefPubMed
40.
go back to reference Ntziachristos V, Bremer C, Weissleder R (2003) Fluorescence imaging with near-infrared light: New technological advances that enable in vivo molecular imaging. Eur Radiol 13:195–208PubMed Ntziachristos V, Bremer C, Weissleder R (2003) Fluorescence imaging with near-infrared light: New technological advances that enable in vivo molecular imaging. Eur Radiol 13:195–208PubMed
41.
go back to reference Montet X, Ntziachristos V, Grimm J, Weissleder R (2005) Tomographic fluorescence mapping of tumor targets. Cancer Res 65:6330–6336CrossRefPubMed Montet X, Ntziachristos V, Grimm J, Weissleder R (2005) Tomographic fluorescence mapping of tumor targets. Cancer Res 65:6330–6336CrossRefPubMed
42.
go back to reference De Grand AM, Frangioni JV (2003) An operational near-infrared fluorescence imaging system prototype for large animal surgery. Technol Cancer Res Treat 2:553–562PubMed De Grand AM, Frangioni JV (2003) An operational near-infrared fluorescence imaging system prototype for large animal surgery. Technol Cancer Res Treat 2:553–562PubMed
Metadata
Title
Near-Infrared Fluorescence Imaging of Tumor Integrin αvβ3 Expression with Cy7-Labeled RGD Multimers
Authors
Yun Wu
Weibo Cai
Xiaoyuan Chen
Publication date
01-07-2006
Publisher
Springer-Verlag
Published in
Molecular Imaging and Biology / Issue 4/2006
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-006-0041-8

Other articles of this Issue 4/2006

Molecular Imaging and Biology 4/2006 Go to the issue