Skip to main content
Top
Published in: Reviews in Endocrine and Metabolic Disorders 2/2009

Open Access 01-06-2009

Potential of retinoic acid derivatives for the treatment of corticotroph pituitary adenomas

Authors: Marta Labeur, Marcelo Paez-Pereda, Eduardo Arzt, Günter K. Stalla

Published in: Reviews in Endocrine and Metabolic Disorders | Issue 2/2009

Login to get access

Abstract

Cushing’s disease is a severe clinical condition caused by hypersecretion of corticosteroids due to excessive ACTH secretion from a pituitary adenoma. This complex endocrine disorder still represents a major challenge for the physician in terms of efficient treatment. In the last years there was only little progress in elucidating the molecular mechanisms responsible for the constitutive and autonomous ACTH secretion of pituitary corticotrophinomas. As a consequence, no effective drug therapy is currently available, particularly if surgical excision is not successful. In the present article we examine recent studies that have investigated the therapeutic potential of retinoic acid receptors as nuclear receptor targets for the treatment of Cushing’s disease. Retinoic acid is an efficient drug used for the treatment of different types of cancers and it proved to act in animal models of Cushing’s disease. The efficiency of this treatment in patients with this disorder still needs to be tested in clinical trials.
Literature
1.
go back to reference Ambrosi B, Faglia G. Epidemiology of pituitary tumors I. In: Faglia G et al, editor. Pituitary adenomas: new trends in basic and clinical research. Amsterdam New York: Elsevier; 1991. p. 159–68. Ambrosi B, Faglia G. Epidemiology of pituitary tumors I. In: Faglia G et al, editor. Pituitary adenomas: new trends in basic and clinical research. Amsterdam New York: Elsevier; 1991. p. 159–68.
5.
9.
go back to reference Melmed S. Mechanisms for pituitary tumorigenesis: the plastic pituitary. J Clin Invest. 2003;112:1603–18.PubMed Melmed S. Mechanisms for pituitary tumorigenesis: the plastic pituitary. J Clin Invest. 2003;112:1603–18.PubMed
11.
12.
go back to reference Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J. 1996;10:940–54.PubMed Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J. 1996;10:940–54.PubMed
13.
go back to reference Zhang XK, Hoffmann B, Tran PB, Graupner G, Pfahl M. Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptors. Nature. 1992;355:441–6. doi:10.1038/355441a0.PubMedCrossRef Zhang XK, Hoffmann B, Tran PB, Graupner G, Pfahl M. Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptors. Nature. 1992;355:441–6. doi:10.​1038/​355441a0.PubMedCrossRef
14.
go back to reference Gudas LJ, Sporn MB, Roberts AB. The retinoids biology, chemistry and medicine. In: Sporn MB, Roberts AG, and Goodman DS, editors. New York, Raven; 1994. pp 443–520. Gudas LJ, Sporn MB, Roberts AB. The retinoids biology, chemistry and medicine. In: Sporn MB, Roberts AG, and Goodman DS, editors. New York, Raven; 1994. pp 443–520.
15.
16.
go back to reference Laudet V, Gronemeyer H. The nuclear receptor facts book. San Diego: Academic Press; 2002. Laudet V, Gronemeyer H. The nuclear receptor facts book. San Diego: Academic Press; 2002.
18.
go back to reference Lippman SM, Lotan R. Advances in the development of retinoids as chemopreventive agents. J Nutr. 2000;130:479S–82S.PubMed Lippman SM, Lotan R. Advances in the development of retinoids as chemopreventive agents. J Nutr. 2000;130:479S–82S.PubMed
24.
go back to reference Muindi JR, Frankel SR, Huselton C, DeGrazia F, Garland WA, Young CW, et al. Clinical pharmacology of oral all-trans retinoic acid in patients with acute promyelocytic leukemia. Cancer Res. 1992;52:2138–42.PubMed Muindi JR, Frankel SR, Huselton C, DeGrazia F, Garland WA, Young CW, et al. Clinical pharmacology of oral all-trans retinoic acid in patients with acute promyelocytic leukemia. Cancer Res. 1992;52:2138–42.PubMed
25.
go back to reference Smith MA, Adamson PC, Balis FM, Feusner J, Aronson L, Murphy RF, et al. Phase I and pharmacokinetic evaluation of all-trans-retinoic acid in pediatric patients with cancer. J Clin Oncol. 1992;10:1666–73.PubMed Smith MA, Adamson PC, Balis FM, Feusner J, Aronson L, Murphy RF, et al. Phase I and pharmacokinetic evaluation of all-trans-retinoic acid in pediatric patients with cancer. J Clin Oncol. 1992;10:1666–73.PubMed
26.
go back to reference Trump DL, Smith DC, Stiff D, Adedoyin A, Day R, Bahnson RR, et al. A phase II trial of all-trans-retinoic acid in hormone-refractory prostate cancer: a clinical trial with detailed pharmacokinetic analysis. Cancer Chemother Pharmacol. 1997;39:349–56. doi:10.1007/s002800050582.PubMedCrossRef Trump DL, Smith DC, Stiff D, Adedoyin A, Day R, Bahnson RR, et al. A phase II trial of all-trans-retinoic acid in hormone-refractory prostate cancer: a clinical trial with detailed pharmacokinetic analysis. Cancer Chemother Pharmacol. 1997;39:349–56. doi:10.​1007/​s002800050582.PubMedCrossRef
27.
go back to reference Conley BA, Egorin MJ, Sridhara R, Finley R, Hemady R, Wu S, et al. Phase I clinical trial of all-trans-retinoic acid with correlation of its pharmacokinetics and pharmacodynamics. Cancer Chemother Pharmacol. 1997;39:291–9. doi:10.1007/s002800050575.PubMedCrossRef Conley BA, Egorin MJ, Sridhara R, Finley R, Hemady R, Wu S, et al. Phase I clinical trial of all-trans-retinoic acid with correlation of its pharmacokinetics and pharmacodynamics. Cancer Chemother Pharmacol. 1997;39:291–9. doi:10.​1007/​s002800050575.PubMedCrossRef
28.
go back to reference Muindi J, Frankel SR, Miller WH Jr, Jakubowski A, Scheinberg DA, Young CW, et al. Continuous treatment with all-trans retinoic acid causes a progressive reduction in plasma drug concentrations: implications for relapse and retinoid “resistance” in patients with acute promyelocytic leukemia. Blood. 1992;79:299–303.PubMed Muindi J, Frankel SR, Miller WH Jr, Jakubowski A, Scheinberg DA, Young CW, et al. Continuous treatment with all-trans retinoic acid causes a progressive reduction in plasma drug concentrations: implications for relapse and retinoid “resistance” in patients with acute promyelocytic leukemia. Blood. 1992;79:299–303.PubMed
29.
go back to reference Kerr IG, Lippman ME, Jenkins J, Myers CE. Pharmacology of 13-cis-retinoic acid in humans. Cancer Res. 1982;42:2069–73.PubMed Kerr IG, Lippman ME, Jenkins J, Myers CE. Pharmacology of 13-cis-retinoic acid in humans. Cancer Res. 1982;42:2069–73.PubMed
30.
go back to reference Goodman GE, Einspahr JG, Alberts DS, Davis TP, Leigh SA, Chen HS, et al. Pharmacokinetics of 13-cis-retinoic acid in patients with advanced cancer. Cancer Res. 1982;42:2087–91.PubMed Goodman GE, Einspahr JG, Alberts DS, Davis TP, Leigh SA, Chen HS, et al. Pharmacokinetics of 13-cis-retinoic acid in patients with advanced cancer. Cancer Res. 1982;42:2087–91.PubMed
31.
go back to reference Muindi JR, Roth MD, Wise RA, Connett JE, O’Connor GT, Ramsdell JW, et al. Pharmacokinetics and metabolism of all-trans- and 13-cis-retinoic acid in pulmonary emphysema patients. J Clin Pharmacol. 2008;48:96–107. doi:10.1177/0091270007309701.PubMedCrossRef Muindi JR, Roth MD, Wise RA, Connett JE, O’Connor GT, Ramsdell JW, et al. Pharmacokinetics and metabolism of all-trans- and 13-cis-retinoic acid in pulmonary emphysema patients. J Clin Pharmacol. 2008;48:96–107. doi:10.​1177/​0091270007309701​.PubMedCrossRef
32.
go back to reference Takitani K, Koh M, Inoue A, Kawakami C, Kuno T, Tamai H. Pharmacokinetics of all-trans retinoic acid in adults and children with acute promyelocytic leukemia. Am J Hematol. 2006;81:720–1. doi:10.1002/ajh.20717.PubMedCrossRef Takitani K, Koh M, Inoue A, Kawakami C, Kuno T, Tamai H. Pharmacokinetics of all-trans retinoic acid in adults and children with acute promyelocytic leukemia. Am J Hematol. 2006;81:720–1. doi:10.​1002/​ajh.​20717.PubMedCrossRef
33.
go back to reference Miller VA, Benedetti FM, Rigas JR, Verret AL, Pfister DG, Straus D, et al. Initial clinical trial of a selective retinoid X receptor ligand, LGD1069. J Clin Oncol. 1997;15:790–5.PubMed Miller VA, Benedetti FM, Rigas JR, Verret AL, Pfister DG, Straus D, et al. Initial clinical trial of a selective retinoid X receptor ligand, LGD1069. J Clin Oncol. 1997;15:790–5.PubMed
38.
go back to reference Kovalovsky D, Refojo D, Liberman AC, Hochbaum D, Pereda MP, Coso OA, et al. Activation and induction of NUR77/NURR1 in corticotrophs by CRH/cAMP: involvement of calcium, protein kinase A, and MAPK pathways. Mol Endocrinol. 2002;16:1638–51. doi:10.1210/me.16.7.1638.PubMedCrossRef Kovalovsky D, Refojo D, Liberman AC, Hochbaum D, Pereda MP, Coso OA, et al. Activation and induction of NUR77/NURR1 in corticotrophs by CRH/cAMP: involvement of calcium, protein kinase A, and MAPK pathways. Mol Endocrinol. 2002;16:1638–51. doi:10.​1210/​me.​16.​7.​1638.PubMedCrossRef
39.
go back to reference Therrien M, Drouin J. Pituitary pro-opiomelanocortin gene expression requires synergistic interactions of several regulatory elements. Mol Cell Biol. 1991;11:3492–503.PubMed Therrien M, Drouin J. Pituitary pro-opiomelanocortin gene expression requires synergistic interactions of several regulatory elements. Mol Cell Biol. 1991;11:3492–503.PubMed
40.
go back to reference Boutillier AL, Monnier D, Lorang D, Lundblad JR, Roberts JL, Loeffler JP. Corticotropin-releasing hormone stimulates proopiomelanocortin transcription by cFos-dependent and -independent pathways: characterization of an AP1 site in exon 1. Mol Endocrinol. 1995;9:745–55. doi:10.1210/me.9.6.745.PubMedCrossRef Boutillier AL, Monnier D, Lorang D, Lundblad JR, Roberts JL, Loeffler JP. Corticotropin-releasing hormone stimulates proopiomelanocortin transcription by cFos-dependent and -independent pathways: characterization of an AP1 site in exon 1. Mol Endocrinol. 1995;9:745–55. doi:10.​1210/​me.​9.​6.​745.PubMedCrossRef
41.
go back to reference Bousquet C, Zatelli MC, Melmed S. Direct regulation of pituitary proopiomelanocortin by STAT3 provides a novel mechanism for immuno-neuroendocrine interfacing. J Clin Invest. 2000;106:1417–25. doi:10.1172/JCI11182.PubMedCrossRef Bousquet C, Zatelli MC, Melmed S. Direct regulation of pituitary proopiomelanocortin by STAT3 provides a novel mechanism for immuno-neuroendocrine interfacing. J Clin Invest. 2000;106:1417–25. doi:10.​1172/​JCI11182.PubMedCrossRef
42.
go back to reference Maira M, Martens C, Philips A, Drouin J. Heterodimerization between members of the Nur subfamily of orphan nuclear receptors as a novel mechanism for gene activation. Mol Cell Biol. 1999;19:7549–57.PubMed Maira M, Martens C, Philips A, Drouin J. Heterodimerization between members of the Nur subfamily of orphan nuclear receptors as a novel mechanism for gene activation. Mol Cell Biol. 1999;19:7549–57.PubMed
44.
go back to reference Philips A, Lesage S, Gingras R, Maira MH, Gauthier Y, Hugo P, et al. Novel dimeric Nur77 signaling mechanism in endocrine and lymphoid cells. Mol Cell Biol. 1997;17:5946–51.PubMed Philips A, Lesage S, Gingras R, Maira MH, Gauthier Y, Hugo P, et al. Novel dimeric Nur77 signaling mechanism in endocrine and lymphoid cells. Mol Cell Biol. 1997;17:5946–51.PubMed
45.
46.
go back to reference Paez-Pereda M, Kovalovsky D, Hopfner U, Theodoropoulou M, Pagotto U, Uhl E, et al. Retinoic acid prevents experimental Cushing syndrome. J Clin Invest. 2001;108:1123–31.PubMed Paez-Pereda M, Kovalovsky D, Hopfner U, Theodoropoulou M, Pagotto U, Uhl E, et al. Retinoic acid prevents experimental Cushing syndrome. J Clin Invest. 2001;108:1123–31.PubMed
47.
go back to reference Wu Q, Li Y, Liu R, Agadir A, Lee MO, Liu Y, et al. Modulation of retinoic acid sensitivity in lung cancer cells through dynamic balance of orphan receptors nur77 and COUP-TF and their heterodimerization. EMBO J. 1997;16:1656–69. doi:10.1093/emboj/16.7.1656.PubMedCrossRef Wu Q, Li Y, Liu R, Agadir A, Lee MO, Liu Y, et al. Modulation of retinoic acid sensitivity in lung cancer cells through dynamic balance of orphan receptors nur77 and COUP-TF and their heterodimerization. EMBO J. 1997;16:1656–69. doi:10.​1093/​emboj/​16.​7.​1656.PubMedCrossRef
49.
go back to reference Tran P, Zhang XK, Salbert G, Hermann T, Lehmann JM, Pfahl M. COUP orphan receptors are negative regulators of retinoic acid response pathways. Mol Cell Biol. 1992;12:4666–76.PubMed Tran P, Zhang XK, Salbert G, Hermann T, Lehmann JM, Pfahl M. COUP orphan receptors are negative regulators of retinoic acid response pathways. Mol Cell Biol. 1992;12:4666–76.PubMed
50.
go back to reference Cooney AJ, Leng X, Tsai SY, O’Malley BW, Tsai MJ. Multiple mechanisms of chicken ovalbumin upstream promoter transcription factor-dependent repression of transactivation by the vitamin D, thyroid hormone, and retinoic acid receptors. J Biol Chem. 1993;268:4152–60.PubMed Cooney AJ, Leng X, Tsai SY, O’Malley BW, Tsai MJ. Multiple mechanisms of chicken ovalbumin upstream promoter transcription factor-dependent repression of transactivation by the vitamin D, thyroid hormone, and retinoic acid receptors. J Biol Chem. 1993;268:4152–60.PubMed
51.
go back to reference Fanjul A, Dawson MI, Hobbs PD, Jong L, Cameron JF, Harlev E, et al. A new class of retinoids with selective inhibition of AP-1 inhibits proliferation. Nature. 1994;372:107–11. doi:10.1038/372107a0.PubMedCrossRef Fanjul A, Dawson MI, Hobbs PD, Jong L, Cameron JF, Harlev E, et al. A new class of retinoids with selective inhibition of AP-1 inhibits proliferation. Nature. 1994;372:107–11. doi:10.​1038/​372107a0.PubMedCrossRef
52.
go back to reference Morita S, Fernandez-Mejia C, Melmed S. Retinoic acid selectively stimulates growth hormone secretion and messenger ribonucleic acid levels in rat pituitary cells. Endocrinology. 1989;124:2052–6.PubMedCrossRef Morita S, Fernandez-Mejia C, Melmed S. Retinoic acid selectively stimulates growth hormone secretion and messenger ribonucleic acid levels in rat pituitary cells. Endocrinology. 1989;124:2052–6.PubMedCrossRef
54.
go back to reference Feldman EC, Bruyette DS, Nelson RW, Farver TB. Plasma cortisol response to ketoconazole administration in dogs with hyperadrenocorticism. J Am Vet Med Assoc. 1990;197:71–8.PubMed Feldman EC, Bruyette DS, Nelson RW, Farver TB. Plasma cortisol response to ketoconazole administration in dogs with hyperadrenocorticism. J Am Vet Med Assoc. 1990;197:71–8.PubMed
55.
go back to reference Stalla GK, Stalla J, von WK, Muller OA, Gerzer R, Hollt V, et al. Nitroimidazole derivatives inhibit anterior pituitary cell function apparently by a direct effect on the catalytic subunit of the adenylate cyclase holoenzyme. Endocrinology. 1989;125:699–706.PubMed Stalla GK, Stalla J, von WK, Muller OA, Gerzer R, Hollt V, et al. Nitroimidazole derivatives inhibit anterior pituitary cell function apparently by a direct effect on the catalytic subunit of the adenylate cyclase holoenzyme. Endocrinology. 1989;125:699–706.PubMed
56.
go back to reference Stalla GK, Stalla J, Huber M, Loeffler JP, Hollt V. von WK, and Muller OA: Ketoconazole inhibits corticotropic cell function in vitro. Endocrinology. 1988;122:618–23.PubMed Stalla GK, Stalla J, Huber M, Loeffler JP, Hollt V. von WK, and Muller OA: Ketoconazole inhibits corticotropic cell function in vitro. Endocrinology. 1988;122:618–23.PubMed
58.
go back to reference Castillo V, Giacomini D, Paez-Pereda M, Stalla J, Labeur M, Theodoropoulou M, et al. Retinoic acid as a novel medical therapy for Cushing’s disease in dogs. Endocrinology. 2006;147:4438–44. doi:10.1210/en.2006-0414.PubMedCrossRef Castillo V, Giacomini D, Paez-Pereda M, Stalla J, Labeur M, Theodoropoulou M, et al. Retinoic acid as a novel medical therapy for Cushing’s disease in dogs. Endocrinology. 2006;147:4438–44. doi:10.​1210/​en.​2006-0414.PubMedCrossRef
60.
go back to reference Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature. 2005;438:803–19. doi:10.1038/nature04338.PubMedCrossRef Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature. 2005;438:803–19. doi:10.​1038/​nature04338.PubMedCrossRef
62.
go back to reference Giacomini D, Paez-Pereda M, Theodoropoulou M, Labeur M, Refojo D, Gerez J, et al. Bone morphogenetic protein-4 inhibits corticotroph tumor cells: involvement in the retinoic acid inhibitory action. Endocrinology. 2006;147:247–56. doi:10.1210/en.2005-0958.PubMedCrossRef Giacomini D, Paez-Pereda M, Theodoropoulou M, Labeur M, Refojo D, Gerez J, et al. Bone morphogenetic protein-4 inhibits corticotroph tumor cells: involvement in the retinoic acid inhibitory action. Endocrinology. 2006;147:247–56. doi:10.​1210/​en.​2005-0958.PubMedCrossRef
Metadata
Title
Potential of retinoic acid derivatives for the treatment of corticotroph pituitary adenomas
Authors
Marta Labeur
Marcelo Paez-Pereda
Eduardo Arzt
Günter K. Stalla
Publication date
01-06-2009
Publisher
Springer US
Published in
Reviews in Endocrine and Metabolic Disorders / Issue 2/2009
Print ISSN: 1389-9155
Electronic ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-008-9080-6

Other articles of this Issue 2/2009

Reviews in Endocrine and Metabolic Disorders 2/2009 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine