Skip to main content
Top
Published in: Reviews in Endocrine and Metabolic Disorders 1/2008

01-03-2008

Clinical and molecular genetics of acromegaly: MEN1, Carney complex, McCune–Albright syndrome, familial acromegaly and genetic defects in sporadic tumors

Authors: Anelia Horvath, Constantine A. Stratakis

Published in: Reviews in Endocrine and Metabolic Disorders | Issue 1/2008

Login to get access

Abstract

Pituitary tumors are among the most common neoplasms in man; they account for approximately 15% of all primary intracranial lesions (Jagannathan et al., Neurosurg Focus, 19:E4, 2005). Although almost never malignant and rarely clinically expressed, pituitary tumors may cause significant morbidity in affected patients. First, given the critical location of the gland, large tumors may lead to mass effects, and, second, proliferation of hormone-secreting pituitary cells leads to endocrine syndromes. Acromegaly results from oversecretion of growth hormone (GH) by the proliferating somatotrophs. Despite the significant efforts made over the last decade, still little is known about the genetic causes of common pituitary tumors and even less is applied from this knowledge therapeutically. In this review, we present an update on the genetic syndromes associated with pituitary adenomas and discuss the related genetic defects. We next review findings on sporadic, non-genetic, pituitary tumors with an emphasis on pathways and animal models of pituitary disease. In conclusion, we attempt to present an overall, integrative approach to the human molecular genetics of both familiar and sporadic pituitary tumors.
Literature
1.
go back to reference Jagannathan J, Dumont AS, Prevedello DM, Lopes B, Oskouian RJ, Jane JA Jr, et al. Genetics of pituitary adenomas: current theories and future implications. Neurosurg Focus 2005;19(5):E4.PubMed Jagannathan J, Dumont AS, Prevedello DM, Lopes B, Oskouian RJ, Jane JA Jr, et al. Genetics of pituitary adenomas: current theories and future implications. Neurosurg Focus 2005;19(5):E4.PubMed
2.
go back to reference Lania A, Mantovani G, Spada A. Genetics of pituitary tumors: Focus on G-protein mutations. Exp Biol Med (Maywood) 2003;228(9):1004–17. Lania A, Mantovani G, Spada A. Genetics of pituitary tumors: Focus on G-protein mutations. Exp Biol Med (Maywood) 2003;228(9):1004–17.
3.
go back to reference Heaney AP, Melmed S. Molecular targets in pituitary tumours. Nat Rev Cancer 2004;4(4):285–95.PubMed Heaney AP, Melmed S. Molecular targets in pituitary tumours. Nat Rev Cancer 2004;4(4):285–95.PubMed
4.
go back to reference Arafah BM, Nasrallah MP. Pituitary tumors: pathophysiology, clinical manifestations and management. Endocr Relat Cancer 2001;8(4):287–305.PubMed Arafah BM, Nasrallah MP. Pituitary tumors: pathophysiology, clinical manifestations and management. Endocr Relat Cancer 2001;8(4):287–305.PubMed
5.
go back to reference Asa SL, Ezzat S. The pathogenesis of pituitary tumours. Nat Rev Cancer 2002;2(11):836–49.PubMed Asa SL, Ezzat S. The pathogenesis of pituitary tumours. Nat Rev Cancer 2002;2(11):836–49.PubMed
6.
go back to reference Alexander JM, Biller BM, Bikkal H, Zervas NT, Arnold A, Klibanski A. Clinically nonfunctioning pituitary tumors are monoclonal in origin. J Clin Invest 1990;86(1):336–40.PubMed Alexander JM, Biller BM, Bikkal H, Zervas NT, Arnold A, Klibanski A. Clinically nonfunctioning pituitary tumors are monoclonal in origin. J Clin Invest 1990;86(1):336–40.PubMed
7.
go back to reference Koch G, Tiwisina T. Beitrag zur Erblichkeit der Akromegalie und der Hyperostosis generalisata mit Pachydermie. Aerztl Forsch 1959;13:489–504. Koch G, Tiwisina T. Beitrag zur Erblichkeit der Akromegalie und der Hyperostosis generalisata mit Pachydermie. Aerztl Forsch 1959;13:489–504.
8.
go back to reference Pestell RG, Alford FP, Best JD. Familial acromegaly. Acta Endocrinol (Copenh) 1989;121(2):286–9. Pestell RG, Alford FP, Best JD. Familial acromegaly. Acta Endocrinol (Copenh) 1989;121(2):286–9.
9.
go back to reference McCarthy MI, Noonan K, Wass JA, Monson JP. Familial acromegaly: studies in three families. Clin Endocrinol (Oxf) 1990;32(6):719–28. McCarthy MI, Noonan K, Wass JA, Monson JP. Familial acromegaly: studies in three families. Clin Endocrinol (Oxf) 1990;32(6):719–28.
10.
go back to reference Singh H, Uniyal JP, Jha P, Takker D, Murguesan K, Hingorani V, et al. Pharmacokinetics of norethindrone acetate in women after the insertion of a single subdermal implant releasing norethindrone acetate. Acta Endocrinol (Copenh) 1982;99(2):302–8. Singh H, Uniyal JP, Jha P, Takker D, Murguesan K, Hingorani V, et al. Pharmacokinetics of norethindrone acetate in women after the insertion of a single subdermal implant releasing norethindrone acetate. Acta Endocrinol (Copenh) 1982;99(2):302–8.
11.
go back to reference Carney JA, Gordon H, Carpenter PC, Shenoy BV, Go VL. The complex of myxomas, spotty pigmentation, and endocrine overactivity. Medicine (Baltimore) 1985;64(4):270–83. Carney JA, Gordon H, Carpenter PC, Shenoy BV, Go VL. The complex of myxomas, spotty pigmentation, and endocrine overactivity. Medicine (Baltimore) 1985;64(4):270–83.
12.
go back to reference Akintoye SO, Chebli C, Booher S, Feuillan P, Kushner H, Leroith D, et al. Characterization of gsp-mediated growth hormone excess in the context of McCune–Albright syndrome. J Clin Endocrinol Metab 2002;87(11):5104–12.PubMed Akintoye SO, Chebli C, Booher S, Feuillan P, Kushner H, Leroith D, et al. Characterization of gsp-mediated growth hormone excess in the context of McCune–Albright syndrome. J Clin Endocrinol Metab 2002;87(11):5104–12.PubMed
13.
go back to reference Thakker RV. Multiple endocrine neoplasia—syndromes of the twentieth century. J Clin Endocrinol Metab 1998;83:2617–20.PubMed Thakker RV. Multiple endocrine neoplasia—syndromes of the twentieth century. J Clin Endocrinol Metab 1998;83:2617–20.PubMed
14.
go back to reference Guru SC, Agarwal SK, Manickam P, Olufemi SE, Crabtree JS, Weisemann JM, et al. A transcript map for the 2.8-Mb region containing the multiple endocrine neoplasia type 1 locus. Genome Res 1997;7(7):725–35.PubMed Guru SC, Agarwal SK, Manickam P, Olufemi SE, Crabtree JS, Weisemann JM, et al. A transcript map for the 2.8-Mb region containing the multiple endocrine neoplasia type 1 locus. Genome Res 1997;7(7):725–35.PubMed
15.
go back to reference Brown MA, Solomon E. Studies on inherited cancers: outcomes and challenges of 25 years. Trends Genet 1997;13(5):202–6.PubMed Brown MA, Solomon E. Studies on inherited cancers: outcomes and challenges of 25 years. Trends Genet 1997;13(5):202–6.PubMed
16.
go back to reference Larsson C, Skogseid B, Oberg K, Nakamura Y, Nordenskjold M. Multiple endocrine neoplasia type 1 gene maps to chromosome 11 and is lost in insulinoma. Nature 1988;332(6159):85–7.PubMed Larsson C, Skogseid B, Oberg K, Nakamura Y, Nordenskjold M. Multiple endocrine neoplasia type 1 gene maps to chromosome 11 and is lost in insulinoma. Nature 1988;332(6159):85–7.PubMed
17.
go back to reference Thakker RV, Bouloux P, Wooding C, Chotai K, Broad PM, Spurr NK, Besser GM, O’Riordan JL. Association of parathyroid tumors in multiple endocrine neoplasia type 1 with loss of alleles on chromosome 11. N Engl J Med 1989;321(4):218–24.PubMedCrossRef Thakker RV, Bouloux P, Wooding C, Chotai K, Broad PM, Spurr NK, Besser GM, O’Riordan JL. Association of parathyroid tumors in multiple endocrine neoplasia type 1 with loss of alleles on chromosome 11. N Engl J Med 1989;321(4):218–24.PubMedCrossRef
18.
go back to reference Agarwal SK, Kennedy PA, Scacheri PC, Novotny EA, Hickman AB, Cerrato A, et al. Menin molecular interactions: insights into normal functions and tumorigenesis. Horm Metab Res 2005;37(6):369–74.PubMed Agarwal SK, Kennedy PA, Scacheri PC, Novotny EA, Hickman AB, Cerrato A, et al. Menin molecular interactions: insights into normal functions and tumorigenesis. Horm Metab Res 2005;37(6):369–74.PubMed
19.
go back to reference Khodaei-O’Brien S, Zablewska B, Fromaget M, Bylund L, Weber G, Gaudray P. Heterogeneity at the 5′-end of MEN1 transcripts. Biochem Biophys Res Commun 2000;276(2):508–14.PubMed Khodaei-O’Brien S, Zablewska B, Fromaget M, Bylund L, Weber G, Gaudray P. Heterogeneity at the 5′-end of MEN1 transcripts. Biochem Biophys Res Commun 2000;276(2):508–14.PubMed
20.
go back to reference Lemos MC, Thakker RV. Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations reported in the first decade following identification of the gene. Hum Mutat 2007 (in press) Lemos MC, Thakker RV. Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations reported in the first decade following identification of the gene. Hum Mutat 2007 (in press)
21.
go back to reference Marx SJ, Agarwal SK, Kester MB, Heppner C, Kim YS, Skarulis MC, et al. Multiple endocrine neoplasia type 1: clinical and genetic features of the hereditary endocrine neoplasias. Recent Prog Horm Res 1999;54:397–438.PubMed Marx SJ, Agarwal SK, Kester MB, Heppner C, Kim YS, Skarulis MC, et al. Multiple endocrine neoplasia type 1: clinical and genetic features of the hereditary endocrine neoplasias. Recent Prog Horm Res 1999;54:397–438.PubMed
22.
go back to reference Tsukada T, Yamaguchi K, Kameya T. The MEN1 gene and associated diseases: an update. Endocr Pathol 2001;12(3):259–73.PubMed Tsukada T, Yamaguchi K, Kameya T. The MEN1 gene and associated diseases: an update. Endocr Pathol 2001;12(3):259–73.PubMed
23.
go back to reference Verges B, Boureille F, Goudet P, Murat A, Beckers A, Sassolas G, et al. Pituitary disease in MEN type 1 (MEN1): data from the France–Belgium MEN1 multicenter study. J Clin Endocrinol Metab 2002;87(2):457–65.PubMed Verges B, Boureille F, Goudet P, Murat A, Beckers A, Sassolas G, et al. Pituitary disease in MEN type 1 (MEN1): data from the France–Belgium MEN1 multicenter study. J Clin Endocrinol Metab 2002;87(2):457–65.PubMed
24.
go back to reference Daly AF, Jaffrain-Rea ML, Beckers A. Clinical and genetic features of familial pituitary adenomas. Horm Metab Res 2005;37(6):347–54.PubMed Daly AF, Jaffrain-Rea ML, Beckers A. Clinical and genetic features of familial pituitary adenomas. Horm Metab Res 2005;37(6):347–54.PubMed
25.
go back to reference Wautot V, Vercherat C, Lespinasse J, Chambe B, Lenoir GM, Zhang CX, et al. Germline mutation profile of MEN1 in multiple endocrine neoplasia type 1: search for correlation between phenotype and the functional domains of the MEN1 protein. Hum Mutat 2002;20(1):35–47.PubMed Wautot V, Vercherat C, Lespinasse J, Chambe B, Lenoir GM, Zhang CX, et al. Germline mutation profile of MEN1 in multiple endocrine neoplasia type 1: search for correlation between phenotype and the functional domains of the MEN1 protein. Hum Mutat 2002;20(1):35–47.PubMed
26.
go back to reference Pellegata NS, Quintanilla-Martinez L, Siggelkow H, Samson E, Bink K, Hofler H, et al. Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci USA 2006;103(42):15558–63.PubMed Pellegata NS, Quintanilla-Martinez L, Siggelkow H, Samson E, Bink K, Hofler H, et al. Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci USA 2006;103(42):15558–63.PubMed
27.
go back to reference Georgitsi M, Raitila A, Karhu A, van der Luijt RB, Aalfs CM, Sane T, et al. Germline CDKN1B/p27Kip1 mutation in multiple endocrine neoplasia. J Clin Endocrinol Metab. 2007;92:3321–5.PubMed Georgitsi M, Raitila A, Karhu A, van der Luijt RB, Aalfs CM, Sane T, et al. Germline CDKN1B/p27Kip1 mutation in multiple endocrine neoplasia. J Clin Endocrinol Metab. 2007;92:3321–5.PubMed
28.
go back to reference Guru SC, Goldsmith PK, Burns AL, Marx SJ, Spiegel AM, Collins FS, et al. Menin, the product of the MEN1 gene, is a nuclear protein. Proc Natl Acad Sci USA 1998;95(4):1630–4.PubMed Guru SC, Goldsmith PK, Burns AL, Marx SJ, Spiegel AM, Collins FS, et al. Menin, the product of the MEN1 gene, is a nuclear protein. Proc Natl Acad Sci USA 1998;95(4):1630–4.PubMed
29.
go back to reference Huang SC, Zhuang Z, Weil RJ, Pack S, Wang C, Krutzsch HC, et al. Nuclear/cytoplasmic localization of the multiple endocrine neoplasia type 1 gene product, menin. Lab Invest 1999;79(3):301–10.PubMed Huang SC, Zhuang Z, Weil RJ, Pack S, Wang C, Krutzsch HC, et al. Nuclear/cytoplasmic localization of the multiple endocrine neoplasia type 1 gene product, menin. Lab Invest 1999;79(3):301–10.PubMed
30.
go back to reference La P, Desmond A, Hou Z, Silva AC, Schnepp RW, Hua X. Tumor suppressor menin: the essential role of nuclear localization signal domains in coordinating gene expression. Oncogene 2006;25(25):3537–46.PubMed La P, Desmond A, Hou Z, Silva AC, Schnepp RW, Hua X. Tumor suppressor menin: the essential role of nuclear localization signal domains in coordinating gene expression. Oncogene 2006;25(25):3537–46.PubMed
31.
go back to reference La P, Silva AC, Hou Z, Wang H, Schnepp RW, Yan N, et al. Direct binding of DNA by tumor suppressor menin. J Biol Chem 2004;279(47):49045–54.PubMed La P, Silva AC, Hou Z, Wang H, Schnepp RW, Yan N, et al. Direct binding of DNA by tumor suppressor menin. J Biol Chem 2004;279(47):49045–54.PubMed
32.
go back to reference Pfarr CM, Mechta F, Spyrou G, Lallemand D, Carillo S, Yaniv M. Mouse JunD negatively regulates fibroblast growth and antagonizes transformation by ras. Cell 1994;76(4):747–60.PubMed Pfarr CM, Mechta F, Spyrou G, Lallemand D, Carillo S, Yaniv M. Mouse JunD negatively regulates fibroblast growth and antagonizes transformation by ras. Cell 1994;76(4):747–60.PubMed
33.
go back to reference Heppner C, Bilimoria KY, Agarwal SK, Kester M, Whitty LJ, Guru SC, et al. The tumor suppressor protein menin interacts with NF-kappaB proteins and inhibits NF-kappaB-mediated transactivation. Oncogene 2001;20(36):4917–25.PubMed Heppner C, Bilimoria KY, Agarwal SK, Kester M, Whitty LJ, Guru SC, et al. The tumor suppressor protein menin interacts with NF-kappaB proteins and inhibits NF-kappaB-mediated transactivation. Oncogene 2001;20(36):4917–25.PubMed
34.
go back to reference Kaji H, Canaff L, Lebrun JJ, Goltzman D, Hendy GN. Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor type beta signaling. Proc Natl Acad Sci USA 2001;98(7):3837–42.PubMed Kaji H, Canaff L, Lebrun JJ, Goltzman D, Hendy GN. Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor type beta signaling. Proc Natl Acad Sci USA 2001;98(7):3837–42.PubMed
35.
go back to reference Sowa H, Kaji H, Hendy GN, Canaff L, Komori T, Sugimoto T, et al. Menin is required for bone morphogenetic protein 2- and transforming growth factor beta-regulated osteoblastic differentiation through interaction with Smads and Runx2. J Biol Chem 2004;279(39):40267–75.PubMed Sowa H, Kaji H, Hendy GN, Canaff L, Komori T, Sugimoto T, et al. Menin is required for bone morphogenetic protein 2- and transforming growth factor beta-regulated osteoblastic differentiation through interaction with Smads and Runx2. J Biol Chem 2004;279(39):40267–75.PubMed
36.
go back to reference Lemmens IH, Forsberg L, Pannett AA, Meyen E, Piehl F, Turner JJ, et al. Menin interacts directly with the homeobox-containing protein Pem. Biochem Biophys Res Commun 2001;286(2):426–31.PubMed Lemmens IH, Forsberg L, Pannett AA, Meyen E, Piehl F, Turner JJ, et al. Menin interacts directly with the homeobox-containing protein Pem. Biochem Biophys Res Commun 2001;286(2):426–31.PubMed
37.
go back to reference Hughes CM, Rozenblatt-Rosen O, Milne TA, Copeland TD, Levine SS, Lee JC, et al. Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol Cell 2004;13(4):587–97.PubMed Hughes CM, Rozenblatt-Rosen O, Milne TA, Copeland TD, Levine SS, Lee JC, et al. Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol Cell 2004;13(4):587–97.PubMed
38.
go back to reference Yokoyama A, Wang Z, Wysocka J, Sanyal M, Aufiero DJ, Kitabayashi I, et al. Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 2004;24(13):5639–49.PubMed Yokoyama A, Wang Z, Wysocka J, Sanyal M, Aufiero DJ, Kitabayashi I, et al. Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 2004;24(13):5639–49.PubMed
39.
go back to reference Bai F, Pei XH, Nishikawa T, Smith MD, Xiong Y. p18Ink4c, but not p27Kip1, collaborates with Men1 to suppress neuroendocrine organ tumors. Mol Cell Biol 2007;27(4):1495–504.PubMed Bai F, Pei XH, Nishikawa T, Smith MD, Xiong Y. p18Ink4c, but not p27Kip1, collaborates with Men1 to suppress neuroendocrine organ tumors. Mol Cell Biol 2007;27(4):1495–504.PubMed
40.
go back to reference Yoshino A, Katayama Y, Ogino A, Watanabe T, Yachi K, Ohta T, et al. Promoter hypermethylation profile of cell cycle regulator genes in pituitary adenomas. J Neurooncol 2007;83(2):153–62.PubMed Yoshino A, Katayama Y, Ogino A, Watanabe T, Yachi K, Ohta T, et al. Promoter hypermethylation profile of cell cycle regulator genes in pituitary adenomas. J Neurooncol 2007;83(2):153–62.PubMed
41.
go back to reference Sukhodolets KE, Hickman AB, Agarwal SK, Sukhodolets MV, Obungu VH, Novotny EA, et al. The 32-kilodalton subunit of replication protein A interacts with menin, the product of the MEN1 tumor suppressor gene. Mol Cell Biol 2003;23(2):493–509.PubMed Sukhodolets KE, Hickman AB, Agarwal SK, Sukhodolets MV, Obungu VH, Novotny EA, et al. The 32-kilodalton subunit of replication protein A interacts with menin, the product of the MEN1 tumor suppressor gene. Mol Cell Biol 2003;23(2):493–509.PubMed
42.
go back to reference Jin S, Mao H, Schnepp RW, Sykes SM, Silva AC, D’Andrea AD, et al. Menin associates with FANCD2, a protein involved in repair of DNA damage. Cancer Res 2003;63(14):4204–10.PubMed Jin S, Mao H, Schnepp RW, Sykes SM, Silva AC, D’Andrea AD, et al. Menin associates with FANCD2, a protein involved in repair of DNA damage. Cancer Res 2003;63(14):4204–10.PubMed
43.
go back to reference Obungu VH, Lee Burns A, Agarwal SK, Chandrasekharapa SC, Adelstein RS, Marx SJ. Menin, a tumor suppressor, associates with nonmuscle myosin II-A heavy chain. Oncogene 2003;22(41):6347–58.PubMed Obungu VH, Lee Burns A, Agarwal SK, Chandrasekharapa SC, Adelstein RS, Marx SJ. Menin, a tumor suppressor, associates with nonmuscle myosin II-A heavy chain. Oncogene 2003;22(41):6347–58.PubMed
44.
go back to reference Lopez-Egido J, Cunningham J, Berg M, Oberg K, Bongcam-Rudloff E, Gobl A. Menin’s interaction with glial fibrillary acidic protein and vimentin suggests a role for the intermediate filament network in regulating menin activity. Exp Cell Res 2002;278(2):175–83.PubMed Lopez-Egido J, Cunningham J, Berg M, Oberg K, Bongcam-Rudloff E, Gobl A. Menin’s interaction with glial fibrillary acidic protein and vimentin suggests a role for the intermediate filament network in regulating menin activity. Exp Cell Res 2002;278(2):175–83.PubMed
45.
go back to reference Poisson A, Zablewska B, Gaudray P. Menin interacting proteins as clues toward the understanding of multiple endocrine neoplasia type 1. Cancer Lett 2003;189(1):1–10.PubMed Poisson A, Zablewska B, Gaudray P. Menin interacting proteins as clues toward the understanding of multiple endocrine neoplasia type 1. Cancer Lett 2003;189(1):1–10.PubMed
46.
go back to reference Lin SY, Elledge SJ. Multiple tumor suppressor pathways negatively regulate telomerase. Cell 2003;113(7):881–9.PubMed Lin SY, Elledge SJ. Multiple tumor suppressor pathways negatively regulate telomerase. Cell 2003;113(7):881–9.PubMed
47.
go back to reference Kim YS, Burns AL, Goldsmith PK, Heppner C, Park SY, Chandrasekharappa SC, et al. Stable overexpression of MEN1 suppresses tumorigenicity of RAS. Oncogene 1999;18(43):5936–42.PubMed Kim YS, Burns AL, Goldsmith PK, Heppner C, Park SY, Chandrasekharappa SC, et al. Stable overexpression of MEN1 suppresses tumorigenicity of RAS. Oncogene 1999;18(43):5936–42.PubMed
48.
go back to reference Stalberg P, Grimfjard P, Santesson M, Zhou Y, Lindberg D, Gobl A, et al. Transfection of the multiple endocrine neoplasia type 1 gene to a human endocrine pancreatic tumor cell line inhibits cell growth and affects expression of JunD, delta-like protein 1/preadipocyte factor-1, proliferating cell nuclear antigen, and QM/Jif-1. J Clin Endocrinol Metab 2004;89(5):2326–37.PubMed Stalberg P, Grimfjard P, Santesson M, Zhou Y, Lindberg D, Gobl A, et al. Transfection of the multiple endocrine neoplasia type 1 gene to a human endocrine pancreatic tumor cell line inhibits cell growth and affects expression of JunD, delta-like protein 1/preadipocyte factor-1, proliferating cell nuclear antigen, and QM/Jif-1. J Clin Endocrinol Metab 2004;89(5):2326–37.PubMed
49.
go back to reference Yumita W, Ikeo Y, Yamauchi K, Sakurai A, Hashizume K. Suppression of insulin-induced AP-1 transactivation by menin accompanies inhibition of c-Fos induction. Int J Cancer 2003;103(6):738–44.PubMed Yumita W, Ikeo Y, Yamauchi K, Sakurai A, Hashizume K. Suppression of insulin-induced AP-1 transactivation by menin accompanies inhibition of c-Fos induction. Int J Cancer 2003;103(6):738–44.PubMed
50.
go back to reference Boikos SA, Stratakis CA. Carney complex: the first 20 years. Curr Opin Oncol 2007;19(1):24–9.PubMed Boikos SA, Stratakis CA. Carney complex: the first 20 years. Curr Opin Oncol 2007;19(1):24–9.PubMed
51.
go back to reference Kirschner LS, Carney JA, Pack SD, Taymans SE, Giatzakis C, Cho YS, et al. Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nat Genet 2000;26(1):89–92.PubMed Kirschner LS, Carney JA, Pack SD, Taymans SE, Giatzakis C, Cho YS, et al. Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nat Genet 2000;26(1):89–92.PubMed
52.
go back to reference Bossis I, Voutetakis A, Matyakhina L, Pack S, Abu-Asab M, Bourdeau I, et al. A pleiomorphic GH pituitary adenoma from a Carney complex patient displays universal allelic loss at the protein kinase A regulatory subunit 1A (PRKARIA) locus. J Med Genet 2004;41(8):596–600.PubMed Bossis I, Voutetakis A, Matyakhina L, Pack S, Abu-Asab M, Bourdeau I, et al. A pleiomorphic GH pituitary adenoma from a Carney complex patient displays universal allelic loss at the protein kinase A regulatory subunit 1A (PRKARIA) locus. J Med Genet 2004;41(8):596–600.PubMed
53.
go back to reference Stratakis CA, Carney JA, Lin JP, Papanicolaou DA, Karl M, Kastner DL, et al. Carney complex, a familial multiple neoplasia and lentiginosis syndrome. Analysis of 11 kindreds and linkage to the short arm of chromosome 2. J Clin Invest 1996;97(3):699–705.PubMed Stratakis CA, Carney JA, Lin JP, Papanicolaou DA, Karl M, Kastner DL, et al. Carney complex, a familial multiple neoplasia and lentiginosis syndrome. Analysis of 11 kindreds and linkage to the short arm of chromosome 2. J Clin Invest 1996;97(3):699–705.PubMed
54.
go back to reference Boikos SA, Stratakis CA. Pituitary pathology in patients with Carney Complex: growth-hormone producing hyperplasia or tumors and their association with other abnormalities. Pituitary 2006;9(3):203–9.PubMed Boikos SA, Stratakis CA. Pituitary pathology in patients with Carney Complex: growth-hormone producing hyperplasia or tumors and their association with other abnormalities. Pituitary 2006;9(3):203–9.PubMed
55.
go back to reference Pack SD, Qin LX, Pak E, Wang Y, Ault DO, Mannan P, et al. Common genetic changes in hereditary and sporadic pituitary adenomas detected by comparative genomic hybridization. Genes Chromosomes Cancer 2005;43(1):72–82.PubMed Pack SD, Qin LX, Pak E, Wang Y, Ault DO, Mannan P, et al. Common genetic changes in hereditary and sporadic pituitary adenomas detected by comparative genomic hybridization. Genes Chromosomes Cancer 2005;43(1):72–82.PubMed
56.
go back to reference Stergiopoulos SG, Abu-Asab MS, Tsokos M, Stratakis CA. Pituitary pathology in Carney complex patients. Pituitary 2004;7(2):73–82.PubMed Stergiopoulos SG, Abu-Asab MS, Tsokos M, Stratakis CA. Pituitary pathology in Carney complex patients. Pituitary 2004;7(2):73–82.PubMed
57.
go back to reference Stratakis CA, Matyakhina L, Courkoutsakis N, Patronas N, Voutetakis A, Stergiopoulos S, et al. Pathology and molecular genetics of the pituitary gland in patients with the ‘complex of spotty skin pigmentation, myxomas, endocrine overactivity and schwannomas’ (Carney complex). Front Horm Res 2004;32:253–64.PubMed Stratakis CA, Matyakhina L, Courkoutsakis N, Patronas N, Voutetakis A, Stergiopoulos S, et al. Pathology and molecular genetics of the pituitary gland in patients with the ‘complex of spotty skin pigmentation, myxomas, endocrine overactivity and schwannomas’ (Carney complex). Front Horm Res 2004;32:253–64.PubMed
58.
go back to reference Kirschner LS, Sandrini F, Monbo J, Lin JP, Carney JA, Stratakis CA. Genetic heterogeneity and spectrum of mutations of the PRKAR1A gene in patients with the Carney complex. Hum Mol Genet 2000;9(20):3037–46.PubMed Kirschner LS, Sandrini F, Monbo J, Lin JP, Carney JA, Stratakis CA. Genetic heterogeneity and spectrum of mutations of the PRKAR1A gene in patients with the Carney complex. Hum Mol Genet 2000;9(20):3037–46.PubMed
59.
go back to reference Groussin L, Kirschner LS, Vincent-Dejean C, Perlemoine K, Jullian E, Delemer B, et al. Molecular analysis of the cyclic AMP-dependent protein kinase A (PKA) regulatory subunit 1A (PRKAR1A) gene in patients with Carney complex and primary pigmented nodular adrenocortical disease (PPNAD) reveals novel mutations and clues for pathophysiology: augmented PKA signaling is associated with adrenal tumorigenesis in PPNAD. Am J Hum Genet 2002;71(6):1433–42.PubMed Groussin L, Kirschner LS, Vincent-Dejean C, Perlemoine K, Jullian E, Delemer B, et al. Molecular analysis of the cyclic AMP-dependent protein kinase A (PKA) regulatory subunit 1A (PRKAR1A) gene in patients with Carney complex and primary pigmented nodular adrenocortical disease (PPNAD) reveals novel mutations and clues for pathophysiology: augmented PKA signaling is associated with adrenal tumorigenesis in PPNAD. Am J Hum Genet 2002;71(6):1433–42.PubMed
60.
go back to reference Robinson-White AJ, Leitner WW, Aleem E, Kaldis P, Bossis I, Stratakis CA. PRKAR1A inactivation leads to increased proliferation and decreased apoptosis in human B lymphocytes. Cancer Res 2006;66(21):10603–12.PubMed Robinson-White AJ, Leitner WW, Aleem E, Kaldis P, Bossis I, Stratakis CA. PRKAR1A inactivation leads to increased proliferation and decreased apoptosis in human B lymphocytes. Cancer Res 2006;66(21):10603–12.PubMed
61.
go back to reference Robinson-White A, Meoli E, Stergiopoulos S, Horvath A, Boikos S, Bossis I, et al. PRKAR1A Mutations and protein kinase A interactions with other signaling pathways in the adrenal cortex. J Clin Endocrinol Metab 2006;91(6):2380–8.PubMed Robinson-White A, Meoli E, Stergiopoulos S, Horvath A, Boikos S, Bossis I, et al. PRKAR1A Mutations and protein kinase A interactions with other signaling pathways in the adrenal cortex. J Clin Endocrinol Metab 2006;91(6):2380–8.PubMed
62.
go back to reference Bossis I, Stratakis CA. Minireview: PRKAR1A: normal and abnormal functions. Endocrinology 2004;145(12):5452–8.PubMed Bossis I, Stratakis CA. Minireview: PRKAR1A: normal and abnormal functions. Endocrinology 2004;145(12):5452–8.PubMed
63.
go back to reference Greene E, Horvath A, Nesterova M, Giatzakis C, Bossis I, Stratakis C. In vitro functional studies of naturally occurring pathogenic PRKAR1A mutations that are not subject to nonsense mRNA decay. Hum Mutat 2008 (in press). Greene E, Horvath A, Nesterova M, Giatzakis C, Bossis I, Stratakis C. In vitro functional studies of naturally occurring pathogenic PRKAR1A mutations that are not subject to nonsense mRNA decay. Hum Mutat 2008 (in press).
64.
go back to reference Horvath A, Bossis I, Giatzakis C, Levine E, Weinberg F, Meoli E, et al. Large deletions of the PRKAR1A gene in Carney complex: phenotype correlations and implications for laboratory and diagnostic testing. Clin Cancer Res 2008 (in press). Horvath A, Bossis I, Giatzakis C, Levine E, Weinberg F, Meoli E, et al. Large deletions of the PRKAR1A gene in Carney complex: phenotype correlations and implications for laboratory and diagnostic testing. Clin Cancer Res 2008 (in press).
65.
go back to reference Amieux PS, Howe DG, Knickerbocker H, Lee DC, Su T, Laszlo GS, et al. Increased basal cAMP-dependent protein kinase activity inhibits the formation of mesoderm-derived structures in the developing mouse embryo. J Biol Chem 2002;277(30):27294–304.PubMed Amieux PS, Howe DG, Knickerbocker H, Lee DC, Su T, Laszlo GS, et al. Increased basal cAMP-dependent protein kinase activity inhibits the formation of mesoderm-derived structures in the developing mouse embryo. J Biol Chem 2002;277(30):27294–304.PubMed
66.
go back to reference Griffin KJ, Kirschner LS, Matyakhina L, Stergiopoulos SG, Robinson-White A, Lenherr SM, et al. A transgenic mouse bearing an antisense construct of regulatory subunit type 1A of protein kinase A develops endocrine and other tumours: comparison with Carney complex and other PRKAR1A induced lesions. J Med Genet 2004;41(12):923–31.PubMed Griffin KJ, Kirschner LS, Matyakhina L, Stergiopoulos SG, Robinson-White A, Lenherr SM, et al. A transgenic mouse bearing an antisense construct of regulatory subunit type 1A of protein kinase A develops endocrine and other tumours: comparison with Carney complex and other PRKAR1A induced lesions. J Med Genet 2004;41(12):923–31.PubMed
67.
go back to reference Kirschner LS, Kusewitt DF, Matyakhina L, Towns WH 2nd, Carney JA, et al. A mouse model for the Carney complex tumor syndrome develops neoplasia in cyclic AMP-responsive tissues. Cancer Res 2005;65(11):4506–14.PubMed Kirschner LS, Kusewitt DF, Matyakhina L, Towns WH 2nd, Carney JA, et al. A mouse model for the Carney complex tumor syndrome develops neoplasia in cyclic AMP-responsive tissues. Cancer Res 2005;65(11):4506–14.PubMed
68.
go back to reference Pecori Giraldi F, Mizobuchi M, Horowitz ZD, Downs TR, Aleppo G, Kier A, et al. Development of neuroepithelial tumors of the adrenal medulla in transgenic mice expressing a mouse hypothalamic growth hormone-releasing hormone promoter-simian virus-40 T-antigen fusion gene. Endocrinology 1994;134(3):1219–24.PubMed Pecori Giraldi F, Mizobuchi M, Horowitz ZD, Downs TR, Aleppo G, Kier A, et al. Development of neuroepithelial tumors of the adrenal medulla in transgenic mice expressing a mouse hypothalamic growth hormone-releasing hormone promoter-simian virus-40 T-antigen fusion gene. Endocrinology 1994;134(3):1219–24.PubMed
69.
go back to reference Kovacs K, Horvath E, Thorner MO, Rogol AD. Mammosomatotroph hyperplasia associated with acromegaly and hyperprolactinemia in a patient with the McCune–Albright syndrome. A histologic, immunocytologic and ultrastructural study of the surgically-removed adenohypophysis. Virchows Arch A Pathol Anat Histopathol 1984;403(1):77–86.PubMed Kovacs K, Horvath E, Thorner MO, Rogol AD. Mammosomatotroph hyperplasia associated with acromegaly and hyperprolactinemia in a patient with the McCune–Albright syndrome. A histologic, immunocytologic and ultrastructural study of the surgically-removed adenohypophysis. Virchows Arch A Pathol Anat Histopathol 1984;403(1):77–86.PubMed
70.
go back to reference Cuttler L, Jackson JA, Saeed uz-Zafar M, Levitsky LL, Mellinger RC, Frohman LA. Hypersecretion of growth hormone and prolactin in McCune–Albright syndrome. J Clin Endocrinol Metab 1989;68(6):1148–54.PubMedCrossRef Cuttler L, Jackson JA, Saeed uz-Zafar M, Levitsky LL, Mellinger RC, Frohman LA. Hypersecretion of growth hormone and prolactin in McCune–Albright syndrome. J Clin Endocrinol Metab 1989;68(6):1148–54.PubMedCrossRef
71.
go back to reference Pack SD, Kirschner LS, Pak E, Zhuang Z, Carney JA, Stratakis CA. Genetic and histologic studies of somatomammotropic pituitary tumors in patients with the “complex of spotty skin pigmentation, myxomas, endocrine overactivity and schwannomas” (Carney complex). J Clin Endocrinol Metab 2000;85(10):3860–5.PubMed Pack SD, Kirschner LS, Pak E, Zhuang Z, Carney JA, Stratakis CA. Genetic and histologic studies of somatomammotropic pituitary tumors in patients with the “complex of spotty skin pigmentation, myxomas, endocrine overactivity and schwannomas” (Carney complex). J Clin Endocrinol Metab 2000;85(10):3860–5.PubMed
72.
go back to reference Lee JS, FitzGibbon E, Butman JA, Dufresne CR, Kushner H, Wientroub S, et al. Normal vision despite narrowing of the optic canal in fibrous dysplasia. N Engl J Med 2002;347(21):1670–6.PubMed Lee JS, FitzGibbon E, Butman JA, Dufresne CR, Kushner H, Wientroub S, et al. Normal vision despite narrowing of the optic canal in fibrous dysplasia. N Engl J Med 2002;347(21):1670–6.PubMed
73.
go back to reference Kaushik S, Smoker WR, Frable WJ. Malignant transformation of fibrous dysplasia into chondroblastic osteosarcoma. Skeletal Radiol 2002;31(2):103–6.PubMed Kaushik S, Smoker WR, Frable WJ. Malignant transformation of fibrous dysplasia into chondroblastic osteosarcoma. Skeletal Radiol 2002;31(2):103–6.PubMed
74.
go back to reference Akintoye SO, Kelly MH, Brillante B, Cherman N, Turner S, Butman JA, et al. Pegvisomant for the treatment of gsp-mediated growth hormone excess in patients with McCune–Albright syndrome. J Clin Endocrinol Metab 2006;91(8):2960–6.PubMed Akintoye SO, Kelly MH, Brillante B, Cherman N, Turner S, Butman JA, et al. Pegvisomant for the treatment of gsp-mediated growth hormone excess in patients with McCune–Albright syndrome. J Clin Endocrinol Metab 2006;91(8):2960–6.PubMed
75.
go back to reference Galland F, Kamenicky P, Affres H, Reznik Y, Pontvert D, Le Bouc Y, et al. McCune–Albright syndrome and acromegaly: effects of hypothalamopituitary radiotherapy and/or pegvisomant in somatostatin analog-resistant patients. J Clin Endocrinol Metab 2006;91(12):4957–61.PubMed Galland F, Kamenicky P, Affres H, Reznik Y, Pontvert D, Le Bouc Y, et al. McCune–Albright syndrome and acromegaly: effects of hypothalamopituitary radiotherapy and/or pegvisomant in somatostatin analog-resistant patients. J Clin Endocrinol Metab 2006;91(12):4957–61.PubMed
76.
go back to reference Vallar L, Spada A, Giannattasio G. Altered Gs and adenylate cyclase activity in human GH-secreting pituitary adenomas. Nature 1987;330(6148):566–8.PubMed Vallar L, Spada A, Giannattasio G. Altered Gs and adenylate cyclase activity in human GH-secreting pituitary adenomas. Nature 1987;330(6148):566–8.PubMed
77.
go back to reference Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM. Activating mutations of the stimulatory G protein in the McCune–Albright syndrome. N Engl J Med 1991;325(24):1688–95.PubMedCrossRef Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM. Activating mutations of the stimulatory G protein in the McCune–Albright syndrome. N Engl J Med 1991;325(24):1688–95.PubMedCrossRef
78.
go back to reference Hayward BE, Barlier A, Korbonits M, Grossman AB, Jacquet P, Enjalbert A, et al. Imprinting of the G(s)alpha gene GNAS1 in the pathogenesis of acromegaly. J Clin Invest 2001;107(6):R31–6.PubMed Hayward BE, Barlier A, Korbonits M, Grossman AB, Jacquet P, Enjalbert A, et al. Imprinting of the G(s)alpha gene GNAS1 in the pathogenesis of acromegaly. J Clin Invest 2001;107(6):R31–6.PubMed
79.
go back to reference Mantovani G, Ballare E, Giammona E, Beck-Peccoz P, Spada A. The gsalpha gene: predominant maternal origin of transcription in human thyroid gland and gonads. J Clin Endocrinol Metab 2002;87(10):4736–40.PubMed Mantovani G, Ballare E, Giammona E, Beck-Peccoz P, Spada A. The gsalpha gene: predominant maternal origin of transcription in human thyroid gland and gonads. J Clin Endocrinol Metab 2002;87(10):4736–40.PubMed
80.
go back to reference Yamasaki H, Mizusawa N, Nagahiro S, Yamada S, Sano T, Itakura M, et al. GH-secreting pituitary adenomas infrequently contain inactivating mutations of PRKAR1A and LOH of 17q23–24. Clin Endocrinol (Oxf) 2003;58(4):464–70. Yamasaki H, Mizusawa N, Nagahiro S, Yamada S, Sano T, Itakura M, et al. GH-secreting pituitary adenomas infrequently contain inactivating mutations of PRKAR1A and LOH of 17q23–24. Clin Endocrinol (Oxf) 2003;58(4):464–70.
81.
go back to reference Sandrini F, Kirschner LS, Bei T, Farmakidis C, Yasufuku-Takano J, Takano K, et al. PRKAR1A, one of the Carney complex genes, and its locus (17q22–24) are rarely altered in pituitary tumours outside the Carney complex. J Med Genet 2002;39(12):e78.PubMed Sandrini F, Kirschner LS, Bei T, Farmakidis C, Yasufuku-Takano J, Takano K, et al. PRKAR1A, one of the Carney complex genes, and its locus (17q22–24) are rarely altered in pituitary tumours outside the Carney complex. J Med Genet 2002;39(12):e78.PubMed
82.
go back to reference Esapa CT, Harris PE. Mutation analysis of protein kinase A catalytic subunit in thyroid adenomas and pituitary tumours. Eur J Endocrinol 1999;141(4):409–12.PubMed Esapa CT, Harris PE. Mutation analysis of protein kinase A catalytic subunit in thyroid adenomas and pituitary tumours. Eur J Endocrinol 1999;141(4):409–12.PubMed
83.
go back to reference Riminucci M, Collins MT, Lala R, Corsi A, Matarazzo P, Gehron Robey P, et al. An R201H activating mutation of the GNAS1 (Gsalpha) gene in a corticotroph pituitary adenoma. Mol Pathol 2002;55(1):58–60.PubMed Riminucci M, Collins MT, Lala R, Corsi A, Matarazzo P, Gehron Robey P, et al. An R201H activating mutation of the GNAS1 (Gsalpha) gene in a corticotroph pituitary adenoma. Mol Pathol 2002;55(1):58–60.PubMed
84.
go back to reference Lyons J, Landis CA, Harsh G, Vallar L, Grunewald K, Feichtinger H, et al. Two G protein oncogenes in human endocrine tumors. Science 1990;249(4969):655–9.PubMed Lyons J, Landis CA, Harsh G, Vallar L, Grunewald K, Feichtinger H, et al. Two G protein oncogenes in human endocrine tumors. Science 1990;249(4969):655–9.PubMed
85.
go back to reference Williamson EA, Daniels M, Foster S, Kelly WF, Kendall-Taylor P, Harris PE. Gs alpha and Gi2 alpha mutations in clinically non-functioning pituitary tumours. Clin Endocrinol (Oxf) 1994;41(6):815–20. Williamson EA, Daniels M, Foster S, Kelly WF, Kendall-Taylor P, Harris PE. Gs alpha and Gi2 alpha mutations in clinically non-functioning pituitary tumours. Clin Endocrinol (Oxf) 1994;41(6):815–20.
86.
go back to reference Gicquel C, Dib A, Bertagna X, Amselem S, Le Bouc Y. Oncogenic mutations of alpha-Gi2 protein are not determinant for human adrenocortical tumourigenesis. Eur J Endocrinol 1995;133(2):166–72.PubMedCrossRef Gicquel C, Dib A, Bertagna X, Amselem S, Le Bouc Y. Oncogenic mutations of alpha-Gi2 protein are not determinant for human adrenocortical tumourigenesis. Eur J Endocrinol 1995;133(2):166–72.PubMedCrossRef
87.
go back to reference Petersenn S, Heyens M, Ludecke DK, Beil FU, Schulte HM. Absence of somatostatin receptor type 2 A mutations and gip oncogene in pituitary somatotroph adenomas. Clin Endocrinol (Oxf) 2000;52(1):35–42. Petersenn S, Heyens M, Ludecke DK, Beil FU, Schulte HM. Absence of somatostatin receptor type 2 A mutations and gip oncogene in pituitary somatotroph adenomas. Clin Endocrinol (Oxf) 2000;52(1):35–42.
88.
go back to reference Alvaro V, Levy L, Dubray C, Roche A, Peillon F, Querat B, et al. Invasive human pituitary tumors express a point-mutated alpha-protein kinase-C. J Clin Endocrinol Metab 1993;77(5):1125–9.PubMed Alvaro V, Levy L, Dubray C, Roche A, Peillon F, Querat B, et al. Invasive human pituitary tumors express a point-mutated alpha-protein kinase-C. J Clin Endocrinol Metab 1993;77(5):1125–9.PubMed
89.
go back to reference Schiemann U, Assert R, Moskopp D, Gellner R, Hengst K, Gullotta F, et al. Analysis of a protein kinase C-alpha mutation in human pituitary tumours. J Endocrinol 1997;153(1):131–7.PubMed Schiemann U, Assert R, Moskopp D, Gellner R, Hengst K, Gullotta F, et al. Analysis of a protein kinase C-alpha mutation in human pituitary tumours. J Endocrinol 1997;153(1):131–7.PubMed
90.
go back to reference Verloes A, Stevenaert A, Teh BT, Petrossians P, Beckers A. Familial acromegaly: case report and review of the literature. Pituitary 1999;1(3–4):273–7.PubMed Verloes A, Stevenaert A, Teh BT, Petrossians P, Beckers A. Familial acromegaly: case report and review of the literature. Pituitary 1999;1(3–4):273–7.PubMed
91.
go back to reference Beckers A, Daly AF. The clinical, pathological, and genetic features of familial isolated pituitary adenomas. Eur J Endocrinol 2007;157(4):371–82.PubMed Beckers A, Daly AF. The clinical, pathological, and genetic features of familial isolated pituitary adenomas. Eur J Endocrinol 2007;157(4):371–82.PubMed
92.
go back to reference Vierimaa O, Georgitsi M, Lehtonen R, Vahteristo P, Kokko A, Raitila A, et al. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science 2006;312(5777):1228–30.PubMed Vierimaa O, Georgitsi M, Lehtonen R, Vahteristo P, Kokko A, Raitila A, et al. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science 2006;312(5777):1228–30.PubMed
93.
go back to reference Daly AF, Vanbellinghen JF, Khoo SK, Jaffrain-Rea ML, Naves LA, Guitelman MA, et al. Aryl hydrocarbon receptor-interacting protein gene mutations in familial isolated pituitary adenomas: analysis in 73 families. J Clin Endocrinol Metab 2007;92(5):1891–6.PubMed Daly AF, Vanbellinghen JF, Khoo SK, Jaffrain-Rea ML, Naves LA, Guitelman MA, et al. Aryl hydrocarbon receptor-interacting protein gene mutations in familial isolated pituitary adenomas: analysis in 73 families. J Clin Endocrinol Metab 2007;92(5):1891–6.PubMed
94.
go back to reference Petrulis JR, Perdew GH. The role of chaperone proteins in the aryl hydrocarbon receptor core complex. Chem Biol Interact 2002;141(1–2):25–40.PubMed Petrulis JR, Perdew GH. The role of chaperone proteins in the aryl hydrocarbon receptor core complex. Chem Biol Interact 2002;141(1–2):25–40.PubMed
95.
go back to reference Meyer BK, Petrulis JR, Perdew GH. Aryl hydrocarbon (Ah) receptor levels are selectively modulated by hsp90-associated immunophilin homolog XAP2. Cell Stress Chaperones 2000;5(3):243–54.PubMed Meyer BK, Petrulis JR, Perdew GH. Aryl hydrocarbon (Ah) receptor levels are selectively modulated by hsp90-associated immunophilin homolog XAP2. Cell Stress Chaperones 2000;5(3):243–54.PubMed
96.
go back to reference Bell DR, Poland A. Binding of aryl hydrocarbon receptor (AhR) to AhR-interacting protein. The role of hsp90. J Biol Chem 2000;275(46):36407–14.PubMed Bell DR, Poland A. Binding of aryl hydrocarbon receptor (AhR) to AhR-interacting protein. The role of hsp90. J Biol Chem 2000;275(46):36407–14.PubMed
97.
go back to reference Meyer BK, Perdew GH. Characterization of the AhR-hsp90-XAP2 core complex and the role of the immunophilin-related protein XAP2 in AhR stabilization. Biochemistry 1999;38(28):8907–17.PubMed Meyer BK, Perdew GH. Characterization of the AhR-hsp90-XAP2 core complex and the role of the immunophilin-related protein XAP2 in AhR stabilization. Biochemistry 1999;38(28):8907–17.PubMed
98.
go back to reference Beckers A, Daly AF. The clinical, pathological, and genetic features of familial isolated pituitary adenomas. Eur J Endocrinol 2007;157(4):371–82.PubMed Beckers A, Daly AF. The clinical, pathological, and genetic features of familial isolated pituitary adenomas. Eur J Endocrinol 2007;157(4):371–82.PubMed
99.
go back to reference Khaliq S, Abid A, Hameed A, Anwar K, Mohyuddin A, Ismail M, et al. Gene symbol: AIPL1. Disease: LCA4. Hum Genet 2005;116(6):542.PubMed Khaliq S, Abid A, Hameed A, Anwar K, Mohyuddin A, Ismail M, et al. Gene symbol: AIPL1. Disease: LCA4. Hum Genet 2005;116(6):542.PubMed
100.
go back to reference Persani L, Borgato S, Lania A, Filopanti M, Mantovani G, Conti M, et al. Relevant cAMP-specific phosphodiesterase isoforms in human pituitary: effect of Gs(alpha) mutations. J Clin Endocrinol Metab 2001;86(8):3795–800.PubMed Persani L, Borgato S, Lania A, Filopanti M, Mantovani G, Conti M, et al. Relevant cAMP-specific phosphodiesterase isoforms in human pituitary: effect of Gs(alpha) mutations. J Clin Endocrinol Metab 2001;86(8):3795–800.PubMed
101.
go back to reference Gonsky R, Herman V, Melmed S, Fagin J. Transforming DNA sequences present in human prolactin-secreting pituitary tumors. Mol Endocrinol 1991;5(11):1687–95.PubMed Gonsky R, Herman V, Melmed S, Fagin J. Transforming DNA sequences present in human prolactin-secreting pituitary tumors. Mol Endocrinol 1991;5(11):1687–95.PubMed
102.
go back to reference Ezzat S, Zheng L, Asa SL. Pituitary tumor-derived fibroblast growth factor receptor 4 isoform disrupts neural cell-adhesion molecule/N-cadherin signaling to diminish cell adhesiveness: a mechanism underlying pituitary neoplasia. Mol Endocrinol 2004;18(10):2543–52.PubMed Ezzat S, Zheng L, Asa SL. Pituitary tumor-derived fibroblast growth factor receptor 4 isoform disrupts neural cell-adhesion molecule/N-cadherin signaling to diminish cell adhesiveness: a mechanism underlying pituitary neoplasia. Mol Endocrinol 2004;18(10):2543–52.PubMed
103.
go back to reference Ezzat S, Yu S, Asa SL. Ikaros isoforms in human pituitary tumors: distinct localization, histone acetylation, and activation of the 5′ fibroblast growth factor receptor-4 promoter. Am J Pathol 2003;163(3):1177–84.PubMed Ezzat S, Yu S, Asa SL. Ikaros isoforms in human pituitary tumors: distinct localization, histone acetylation, and activation of the 5′ fibroblast growth factor receptor-4 promoter. Am J Pathol 2003;163(3):1177–84.PubMed
104.
go back to reference Ezzat S, Zheng L, Zhu XF, Wu GE, Asa SL. Targeted expression of a human pituitary tumor-derived isoform of FGF receptor-4 recapitulates pituitary tumorigenesis. J Clin Invest 2002;109(1):69–78.PubMed Ezzat S, Zheng L, Zhu XF, Wu GE, Asa SL. Targeted expression of a human pituitary tumor-derived isoform of FGF receptor-4 recapitulates pituitary tumorigenesis. J Clin Invest 2002;109(1):69–78.PubMed
105.
go back to reference Yu R, Melmed S. Pituitary tumor transforming gene: an update. Front Horm Res 2004;32:175–85.PubMed Yu R, Melmed S. Pituitary tumor transforming gene: an update. Front Horm Res 2004;32:175–85.PubMed
106.
go back to reference Zou H, McGarry TJ, Bernal T, Kirschner MW. Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science 1999;285(5426):418–22.PubMed Zou H, McGarry TJ, Bernal T, Kirschner MW. Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science 1999;285(5426):418–22.PubMed
107.
go back to reference McCabe CJ, Boelaert K, Tannahill LA, Heaney AP, Stratford AL, Khaira JS, et al. Vascular endothelial growth factor, its receptor KDR/Flk-1, and pituitary tumor transforming gene in pituitary tumors. J Clin Endocrinol Metab 2002;87(9):4238–44.PubMed McCabe CJ, Boelaert K, Tannahill LA, Heaney AP, Stratford AL, Khaira JS, et al. Vascular endothelial growth factor, its receptor KDR/Flk-1, and pituitary tumor transforming gene in pituitary tumors. J Clin Endocrinol Metab 2002;87(9):4238–44.PubMed
108.
go back to reference Donangelo I, Marcos HP, Araujo PB, Marcondes J, Filho PN, Gadelha M, et al. Expression of retinoblastoma protein in human growth hormone-secreting pituitary adenomas. Endocr Pathol 2005;16(1):53–62.PubMed Donangelo I, Marcos HP, Araujo PB, Marcondes J, Filho PN, Gadelha M, et al. Expression of retinoblastoma protein in human growth hormone-secreting pituitary adenomas. Endocr Pathol 2005;16(1):53–62.PubMed
109.
go back to reference Honda S, Tanaka-Kosugi C, Yamada S, Sano T, Matsumoto T, Itakura M, et al. Human pituitary adenomas infrequently contain inactivation of retinoblastoma 1 gene and activation of cyclin dependent kinase 4 gene. Endocr J 2003;50(3):309–18.PubMed Honda S, Tanaka-Kosugi C, Yamada S, Sano T, Matsumoto T, Itakura M, et al. Human pituitary adenomas infrequently contain inactivation of retinoblastoma 1 gene and activation of cyclin dependent kinase 4 gene. Endocr J 2003;50(3):309–18.PubMed
110.
go back to reference Zhu J, Leon SP, Beggs AH, Busque L, Gilliland DG, Black PM. Human pituitary adenomas show no loss of heterozygosity at the retinoblastoma gene locus. J Clin Endocrinol Metab 1994;78(4):922–7.PubMed Zhu J, Leon SP, Beggs AH, Busque L, Gilliland DG, Black PM. Human pituitary adenomas show no loss of heterozygosity at the retinoblastoma gene locus. J Clin Endocrinol Metab 1994;78(4):922–7.PubMed
111.
go back to reference Loffler KA, Biondi CA, Gartside MG, Serewko-Auret MM, Duncan R, Tonks ID, et al. Lack of augmentation of tumor spectrum or severity in dual heterozygous Men1 and Rb1 knockout mice. Oncogene 2007;26(27):4009–17.PubMed Loffler KA, Biondi CA, Gartside MG, Serewko-Auret MM, Duncan R, Tonks ID, et al. Lack of augmentation of tumor spectrum or severity in dual heterozygous Men1 and Rb1 knockout mice. Oncogene 2007;26(27):4009–17.PubMed
112.
go back to reference Takahashi C, Contreras B, Iwanaga T, Takegami Y, Bakker A, Bronson RT, et al. Nras loss induces metastatic conversion of Rb1-deficient neuroendocrine thyroid tumor. Nat Genet 2006;38(1):118–23.PubMed Takahashi C, Contreras B, Iwanaga T, Takegami Y, Bakker A, Bronson RT, et al. Nras loss induces metastatic conversion of Rb1-deficient neuroendocrine thyroid tumor. Nat Genet 2006;38(1):118–23.PubMed
113.
go back to reference Zhang X, Sun H, Danila DC, Johnson SR, Zhou Y, Swearingen B, et al. Loss of expression of GADD45 gamma, a growth inhibitory gene, in human pituitary adenomas: implications for tumorigenesis. J Clin Endocrinol Metab 2002;87(3):1262–7.PubMed Zhang X, Sun H, Danila DC, Johnson SR, Zhou Y, Swearingen B, et al. Loss of expression of GADD45 gamma, a growth inhibitory gene, in human pituitary adenomas: implications for tumorigenesis. J Clin Endocrinol Metab 2002;87(3):1262–7.PubMed
114.
go back to reference Zhao J, Dahle D, Zhou Y, Zhang X, Klibanski A. Hypermethylation of the promoter region is associated with the loss of MEG3 gene expression in human pituitary tumors. J Clin Endocrinol Metab 2005;90(4):2179–86.PubMed Zhao J, Dahle D, Zhou Y, Zhang X, Klibanski A. Hypermethylation of the promoter region is associated with the loss of MEG3 gene expression in human pituitary tumors. J Clin Endocrinol Metab 2005;90(4):2179–86.PubMed
115.
go back to reference Pagotto U, Arzberger T, Theodoropoulou M, Grubler Y, Pantaloni C, Saeger W, et al. The expression of the antiproliferative gene ZAC is lost or highly reduced in nonfunctioning pituitary adenomas. Cancer Res 2000;60(24):6794–9.PubMed Pagotto U, Arzberger T, Theodoropoulou M, Grubler Y, Pantaloni C, Saeger W, et al. The expression of the antiproliferative gene ZAC is lost or highly reduced in nonfunctioning pituitary adenomas. Cancer Res 2000;60(24):6794–9.PubMed
Metadata
Title
Clinical and molecular genetics of acromegaly: MEN1, Carney complex, McCune–Albright syndrome, familial acromegaly and genetic defects in sporadic tumors
Authors
Anelia Horvath
Constantine A. Stratakis
Publication date
01-03-2008
Publisher
Springer US
Published in
Reviews in Endocrine and Metabolic Disorders / Issue 1/2008
Print ISSN: 1389-9155
Electronic ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-007-9066-9

Other articles of this Issue 1/2008

Reviews in Endocrine and Metabolic Disorders 1/2008 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine