Skip to main content
Top
Published in: Reviews in Endocrine and Metabolic Disorders 1-2/2006

01-06-2006

Diseases of Wnt signaling

Authors: Mark L. Johnson, Nalini Rajamannan

Published in: Reviews in Endocrine and Metabolic Disorders | Issue 1-2/2006

Login to get access

Abstract

The Wnt signaling pathways play fundamental roles in the differentiation, proliferation, death and function of many cells and as a result are involved in critical developmental, growth and homeostatic processes in animals. There are four currently known pathways of Wnt signaling; the so-called canonical or Wnt/β-catenin pathway, the Wnt/Ca+2 pathway involving Protein Kinase A, the planar cell polarity pathway and a pathway involving Protein Kinase C that functions in muscle myogenesis. The best studied of these is the Wnt/β-catenin pathway. The Wnts are an evolutionarily highly conserved family of genes/proteins. Control of the Wnt pathways is modulated by a number of the proteins that either interact with the Wnt ligands directly, or with the low density lipoprotein-receptor related proteins (LRP) 5 and 6 that along with one of several Frizzled proteins function as co-receptors for the Wnt ligands. Aberrant regulation resulting as a consequence of mutations in any of several components of the Wnt pathway and/or protein modulators of the pathway have been shown to cause a wide spectrum of diseases. This review will briefly touch on various diseases of Wnt signaling including cancer, aortic valve calcification and several bone related phenotypes. Our emerging understanding of Wnt signaling offers great hope that new molecular based screening tests and pharmaceutical agents that selectively target this pathway will be developed to diagnose and treat these diseases in the future.
Literature
1.
go back to reference Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 1982;31:99–109PubMedCrossRef Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 1982;31:99–109PubMedCrossRef
2.
go back to reference Rijsewijk F, Schuermann M, Wagenaar E, Parren P, Weigel D, Nusse R. The Drosophila homology of the mouse mammary oncogen int-1 is identical to the segment polarity gene wingless. Cell 1987;50:649–57PubMedCrossRef Rijsewijk F, Schuermann M, Wagenaar E, Parren P, Weigel D, Nusse R. The Drosophila homology of the mouse mammary oncogen int-1 is identical to the segment polarity gene wingless. Cell 1987;50:649–57PubMedCrossRef
3.
go back to reference Cabrera CV, Alonso MC, Johnston P, Phillips RG, Lawrence PA. Phenocopies induced with antisense RNA identify the wingless gene. Cell 1987;50:659–63PubMedCrossRef Cabrera CV, Alonso MC, Johnston P, Phillips RG, Lawrence PA. Phenocopies induced with antisense RNA identify the wingless gene. Cell 1987;50:659–63PubMedCrossRef
4.
go back to reference Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004;20:781–810PubMedCrossRef Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004;20:781–810PubMedCrossRef
5.
go back to reference Mlodzik M. Planar cell polarization: do the same mechanisms regulate drosophila tissue polarity and vertebrate gastrulation? Trends Genet 2002;18:564–71PubMedCrossRef Mlodzik M. Planar cell polarization: do the same mechanisms regulate drosophila tissue polarity and vertebrate gastrulation? Trends Genet 2002;18:564–71PubMedCrossRef
6.
go back to reference Kuhl M, Sheldahl LC, Park M, Miller JR, Moon RT. The Wnt/Ca+2 pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 2000;16:279–83PubMedCrossRef Kuhl M, Sheldahl LC, Park M, Miller JR, Moon RT. The Wnt/Ca+2 pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 2000;16:279–83PubMedCrossRef
7.
go back to reference Chen AE, Ginty DB, Fan C-M. Protein kinase a signalling via CREB controls myogenesis induced by Wnt proteins. Nature 2005;433:317–22PubMedCrossRef Chen AE, Ginty DB, Fan C-M. Protein kinase a signalling via CREB controls myogenesis induced by Wnt proteins. Nature 2005;433:317–22PubMedCrossRef
8.
go back to reference Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Cell Dev Biol 1998;14:59–88CrossRef Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Cell Dev Biol 1998;14:59–88CrossRef
9.
go back to reference Willert K, Nusse R. β-catenin: a key mediator of Wnt signaling. Development 1998;8:95–102 Willert K, Nusse R. β-catenin: a key mediator of Wnt signaling. Development 1998;8:95–102
11.
go back to reference Prunier C, Hocevar BA, Howe PH. Wnt signaling: physiology and pathology. Growth Factors 2004;22:141–50PubMedCrossRef Prunier C, Hocevar BA, Howe PH. Wnt signaling: physiology and pathology. Growth Factors 2004;22:141–50PubMedCrossRef
12.
go back to reference Johnson ML, Harnish K, Nusse R, Van Hul W. LRP5 and Wnt signaling: a union made for bone. J Bone Miner Res 2004; 19:1749–57PubMedCrossRef Johnson ML, Harnish K, Nusse R, Van Hul W. LRP5 and Wnt signaling: a union made for bone. J Bone Miner Res 2004; 19:1749–57PubMedCrossRef
13.
go back to reference Capelluto DGS, Kutateladze TG, Habas R, Finklestein CV, He X, Overduin M. The DIX domain targets dishevelled to actin stress fibres and vesicular membranes. Nature 2002;419:726–9PubMedCrossRef Capelluto DGS, Kutateladze TG, Habas R, Finklestein CV, He X, Overduin M. The DIX domain targets dishevelled to actin stress fibres and vesicular membranes. Nature 2002;419:726–9PubMedCrossRef
14.
go back to reference Sheldahl LC, Park M, Malbon CC, Moon RT. Protein kinase C is differentially stimulated by Wnt and frizzled homologs in a G-protein-dependent manner. Curr Biol 1999;9:695–8PubMedCrossRef Sheldahl LC, Park M, Malbon CC, Moon RT. Protein kinase C is differentially stimulated by Wnt and frizzled homologs in a G-protein-dependent manner. Curr Biol 1999;9:695–8PubMedCrossRef
15.
go back to reference Kuhl M, Shedahl LC, Malbon CC, Moon RT. Ca+2/calmodulin-dependent protein kinase II is stimulated by Wnt and frizzled homologs and promotes ventral cell fates in xenopus. J Biol Chem 2000;275:12701–11PubMedCrossRef Kuhl M, Shedahl LC, Malbon CC, Moon RT. Ca+2/calmodulin-dependent protein kinase II is stimulated by Wnt and frizzled homologs and promotes ventral cell fates in xenopus. J Biol Chem 2000;275:12701–11PubMedCrossRef
16.
go back to reference Wang H-Y, Malbon GC. Wnt signaling, Ca+2, and cyclic GMP: visualizing frizzled functions. Science 2003;300:1529–30PubMedCrossRef Wang H-Y, Malbon GC. Wnt signaling, Ca+2, and cyclic GMP: visualizing frizzled functions. Science 2003;300:1529–30PubMedCrossRef
17.
go back to reference Shedahl LC, Slusarski DC, Pandur P, Miller JR, Kuhl M, Moon RT. Dishevelled activates Ca+2 flux, PKC, and CamKII in vertebrate embryos. J Cell Biol 2006;161:769–77CrossRef Shedahl LC, Slusarski DC, Pandur P, Miller JR, Kuhl M, Moon RT. Dishevelled activates Ca+2 flux, PKC, and CamKII in vertebrate embryos. J Cell Biol 2006;161:769–77CrossRef
19.
21.
go back to reference Kikuchi A. Tumor formation by genetic mutations in the components of the Wnt signaling pathway. Cancer Sci 2003;94:225–9PubMedCrossRef Kikuchi A. Tumor formation by genetic mutations in the components of the Wnt signaling pathway. Cancer Sci 2003;94:225–9PubMedCrossRef
23.
go back to reference Katoh M. Wnt/PCP signaling pathway and human cancer. Oncol Rep 2005;14:1583–8PubMed Katoh M. Wnt/PCP signaling pathway and human cancer. Oncol Rep 2005;14:1583–8PubMed
24.
go back to reference Kinzler KW, Nilbert MC, Su L-K, Vogelstein B, Bryan TM, Levy DB, et al. Identification of FAP locus genes from chromosome 5q21. Science 1991;253:661–5PubMedCrossRef Kinzler KW, Nilbert MC, Su L-K, Vogelstein B, Bryan TM, Levy DB, et al. Identification of FAP locus genes from chromosome 5q21. Science 1991;253:661–5PubMedCrossRef
25.
go back to reference Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H, Horii A, et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 1991;253:665–9PubMedCrossRef Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H, Horii A, et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 1991;253:665–9PubMedCrossRef
26.
go back to reference Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H, et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 1991;66:589–600PubMedCrossRef Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H, et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 1991;66:589–600PubMedCrossRef
27.
go back to reference Laurent-Puig P, Beroud C, Soussi T. APC gene: database of germline and somatic mutations in human tumors and cell lines. Nucleic Acids Res 1998;26:269–70PubMedCrossRef Laurent-Puig P, Beroud C, Soussi T. APC gene: database of germline and somatic mutations in human tumors and cell lines. Nucleic Acids Res 1998;26:269–70PubMedCrossRef
28.
go back to reference Miyoshi Y, Nagase H, Ando H, Ichii S, Nakatsura S, Aoki T, et al. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol Genet 1992;1:223–9 Miyoshi Y, Nagase H, Ando H, Ichii S, Nakatsura S, Aoki T, et al. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol Genet 1992;1:223–9
29.
go back to reference Groves C, Lamlum H, Crabtree M, Williamson J, Taylor C, Bass S, et al. Mutation cluster region, association between germline and somatic mutations and genotype–phenotype correlation in upper gastrointestinal familial adenomatous polyposis. Am J Pathology 2002;160:2055–3172PubMed Groves C, Lamlum H, Crabtree M, Williamson J, Taylor C, Bass S, et al. Mutation cluster region, association between germline and somatic mutations and genotype–phenotype correlation in upper gastrointestinal familial adenomatous polyposis. Am J Pathology 2002;160:2055–3172PubMed
30.
go back to reference Miyoshi Y, Iwao K, Nawa G, Yoshikawa H, Ochi T, Nakamura Y. Frequent mutations in the beta-catenin gene in desmoid tumors from patients without familial adenomatous polyposis. Oncol Res 1998;10:591–4PubMed Miyoshi Y, Iwao K, Nawa G, Yoshikawa H, Ochi T, Nakamura Y. Frequent mutations in the beta-catenin gene in desmoid tumors from patients without familial adenomatous polyposis. Oncol Res 1998;10:591–4PubMed
31.
go back to reference Zeng L, Fagotto F, Zhang T, Hsu W, Vasicek TJ, Perry WL, et al. The mouse fused locus encodes axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 1997;90:181–92PubMedCrossRef Zeng L, Fagotto F, Zhang T, Hsu W, Vasicek TJ, Perry WL, et al. The mouse fused locus encodes axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 1997;90:181–92PubMedCrossRef
32.
go back to reference Mai M, Qian C, Yokomizo A, Smith DI, Liu W. Cloning of the human homolog of conductin (AXIN2), a gene mapping to chromosome 17q23–q24. Genomics 1999;55:341–4PubMedCrossRef Mai M, Qian C, Yokomizo A, Smith DI, Liu W. Cloning of the human homolog of conductin (AXIN2), a gene mapping to chromosome 17q23–q24. Genomics 1999;55:341–4PubMedCrossRef
33.
go back to reference Satoh S, Daigo Y, Furukawa Y, Kato T, Miwa N, Nishiwaki T, et al. Axin1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of Axin1. Nat Genet 2000;24:245–50PubMedCrossRef Satoh S, Daigo Y, Furukawa Y, Kato T, Miwa N, Nishiwaki T, et al. Axin1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of Axin1. Nat Genet 2000;24:245–50PubMedCrossRef
34.
go back to reference Salahshor S, Woodgett JR. The links between Axin and carcinogenesis. J Clin Pathol 2005;58:225–36PubMedCrossRef Salahshor S, Woodgett JR. The links between Axin and carcinogenesis. J Clin Pathol 2005;58:225–36PubMedCrossRef
35.
go back to reference Liu W, Dong X, Mai M, Seelan RS, Taniguchi K, Krishnadath KK, et al. Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta-catenin/TCF signaling. Nat Genet 2000;26:146–7PubMedCrossRef Liu W, Dong X, Mai M, Seelan RS, Taniguchi K, Krishnadath KK, et al. Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta-catenin/TCF signaling. Nat Genet 2000;26:146–7PubMedCrossRef
36.
go back to reference Chesire DB, Isaacs WB. Beta-Catenin signaling in prostate cancer: an early perspective. Endocr-Relat Cancer 2003;10:537–60PubMedCrossRef Chesire DB, Isaacs WB. Beta-Catenin signaling in prostate cancer: an early perspective. Endocr-Relat Cancer 2003;10:537–60PubMedCrossRef
37.
go back to reference Brown AMC. Wnt signaling in breast cancer: have we come full circle? Breast Cancer Res 2001;3:351–5PubMedCrossRef Brown AMC. Wnt signaling in breast cancer: have we come full circle? Breast Cancer Res 2001;3:351–5PubMedCrossRef
38.
go back to reference Janssens N, Janicot M, Perera T. The Wnt-dependent signaling pathways as targets in oncology drug discovery. Investigational new drugs published online: 28 January 2006 Janssens N, Janicot M, Perera T. The Wnt-dependent signaling pathways as targets in oncology drug discovery. Investigational new drugs published online: 28 January 2006
39.
go back to reference Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. New Engl J Med 2003;349:2483–94PubMedCrossRef Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. New Engl J Med 2003;349:2483–94PubMedCrossRef
40.
go back to reference Glass DA, Patel MS, Karsenty G. A new insight into the formation of osteolytic lesions in multiple myeloma. New Engl J Med 2003;349:2479–80PubMedCrossRef Glass DA, Patel MS, Karsenty G. A new insight into the formation of osteolytic lesions in multiple myeloma. New Engl J Med 2003;349:2479–80PubMedCrossRef
41.
go back to reference Lammi L, Arte S, Somer M, Jarvinen H, Lahermo P, Thesleff I, et al. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet 2004;74: 1043–50PubMedCrossRef Lammi L, Arte S, Somer M, Jarvinen H, Lahermo P, Thesleff I, et al. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet 2004;74: 1043–50PubMedCrossRef
42.
go back to reference De Ferrari GV, Inestrosa NC. Wnt signaling function in Alzheimer’s disease. Brain Res Rev 2000;33:1–12PubMedCrossRef De Ferrari GV, Inestrosa NC. Wnt signaling function in Alzheimer’s disease. Brain Res Rev 2000;33:1–12PubMedCrossRef
43.
44.
go back to reference Huristone AFL, Haramis A-PG, Wiehholds E, Begthel H, Korving J, van Eeden F, et al. The Wnt/β-catenin pathway regulates cardiac valve formation. Nature 2003;425:633–7CrossRef Huristone AFL, Haramis A-PG, Wiehholds E, Begthel H, Korving J, van Eeden F, et al. The Wnt/β-catenin pathway regulates cardiac valve formation. Nature 2003;425:633–7CrossRef
45.
go back to reference Rajamannan NM, Subramaniam M, Caira F, Stock SR, Spelsberg TC. Atorvastatin inhibits hypercholesterolemia-induced calcification in the aortic valves via the Lrp5 receptor pathway. Circulation 2005;112 Suppl 9:I229–34PubMed Rajamannan NM, Subramaniam M, Caira F, Stock SR, Spelsberg TC. Atorvastatin inhibits hypercholesterolemia-induced calcification in the aortic valves via the Lrp5 receptor pathway. Circulation 2005;112 Suppl 9:I229–34PubMed
46.
go back to reference Shin V, Zebboudj AF, Bostrom K. Endothelial cells modulate osteogenesis in calcifying vascular cells. J Vasc Res 2004;41: 193–201PubMedCrossRef Shin V, Zebboudj AF, Bostrom K. Endothelial cells modulate osteogenesis in calcifying vascular cells. J Vasc Res 2004;41: 193–201PubMedCrossRef
47.
go back to reference Abedin M, Tintut Y, Demer L. Vascular calcification; mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol 2004;24:1161–70PubMedCrossRef Abedin M, Tintut Y, Demer L. Vascular calcification; mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol 2004;24:1161–70PubMedCrossRef
48.
go back to reference Rajamannan NM, Subramaniam M, Rickard D, Stock SR, Donovan BS, Springett M, et al. Human aortic valve calcification is associated with an osteoblast phenotype. Circulation 2003;107:2181–4PubMedCrossRef Rajamannan NM, Subramaniam M, Rickard D, Stock SR, Donovan BS, Springett M, et al. Human aortic valve calcification is associated with an osteoblast phenotype. Circulation 2003;107:2181–4PubMedCrossRef
50.
go back to reference Stewart BF, Siscovick D, Lind BK, Gardin JM, Gottdiener JS, Smith VE, et al. Clinical factors associated with calcific aortic valve disease. Cardiovascular health study. J Am Coll Cardiol 1997;29:630–4PubMedCrossRef Stewart BF, Siscovick D, Lind BK, Gardin JM, Gottdiener JS, Smith VE, et al. Clinical factors associated with calcific aortic valve disease. Cardiovascular health study. J Am Coll Cardiol 1997;29:630–4PubMedCrossRef
51.
go back to reference Wilson PW. Assessing coronary heart disease risk with traditional and novel risk factors. Clin Cardiol 2004;27 6 Suppl 3:III7–11PubMed Wilson PW. Assessing coronary heart disease risk with traditional and novel risk factors. Clin Cardiol 2004;27 6 Suppl 3:III7–11PubMed
52.
go back to reference Kannel WB, D’Agostino RB, Sullivan L, Wilson PW. Concept and usefulness of cardiovascular risk profiles. Am Heart J 2004;148:16–26PubMedCrossRef Kannel WB, D’Agostino RB, Sullivan L, Wilson PW. Concept and usefulness of cardiovascular risk profiles. Am Heart J 2004;148:16–26PubMedCrossRef
53.
go back to reference O’Brien KD, Reichenbach DD, Marcovina SM, Kuusisto J, Alpers CE, Otto CM. Apolipoproteins B, (a) and E accumulate in the morphologically early lesion of ‘degenerative’ valvular aortic stenosis. Arterioscler Thromb Vasc Biol 1996;16:523–32PubMed O’Brien KD, Reichenbach DD, Marcovina SM, Kuusisto J, Alpers CE, Otto CM. Apolipoproteins B, (a) and E accumulate in the morphologically early lesion of ‘degenerative’ valvular aortic stenosis. Arterioscler Thromb Vasc Biol 1996;16:523–32PubMed
54.
go back to reference Sprecher DL, Schaefer EJ, Kent KM, Gregg RF, Zech LA, Hoeg JM, et al. Cardiovascular features of homozygous familial hypercholesterolemia: analysis of 16 patients. Am J Cardiol 1984;54:20–30PubMedCrossRef Sprecher DL, Schaefer EJ, Kent KM, Gregg RF, Zech LA, Hoeg JM, et al. Cardiovascular features of homozygous familial hypercholesterolemia: analysis of 16 patients. Am J Cardiol 1984;54:20–30PubMedCrossRef
55.
go back to reference Rajamannan NM, Edwards WD, Spelsberg TC. Hypercholesterolemic aortic-valve disease. N Engl J Med 2003;349:717–8PubMedCrossRef Rajamannan NM, Edwards WD, Spelsberg TC. Hypercholesterolemic aortic-valve disease. N Engl J Med 2003;349:717–8PubMedCrossRef
56.
go back to reference Rajamannan NM, Subramaniam M, Springett M, Sebo TC, Niekrasz M, McConnell JP, et al. Atorvastatin inhibits hypercholesterolemia-induced cellular proliferation and bone matrix production in the rabbit aortic valve. Circulation 2002;105:2660–5PubMedCrossRef Rajamannan NM, Subramaniam M, Springett M, Sebo TC, Niekrasz M, McConnell JP, et al. Atorvastatin inhibits hypercholesterolemia-induced cellular proliferation and bone matrix production in the rabbit aortic valve. Circulation 2002;105:2660–5PubMedCrossRef
57.
go back to reference Little RD, Carulli JP, Del Mastro RG, Dupuis J, Osborne M, Folz C, et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 2002;70:11–9PubMedCrossRef Little RD, Carulli JP, Del Mastro RG, Dupuis J, Osborne M, Folz C, et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 2002;70:11–9PubMedCrossRef
58.
go back to reference Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001;107:513–23PubMedCrossRef Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001;107:513–23PubMedCrossRef
59.
go back to reference Hill TP, Spater D, Taketo MM, Birchmeier W, Hartmann C. Canonical Wnt/b-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Develop Cell 2005;8:727–38CrossRef Hill TP, Spater D, Taketo MM, Birchmeier W, Hartmann C. Canonical Wnt/b-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Develop Cell 2005;8:727–38CrossRef
60.
go back to reference Day TF, Guo X, Garrett-Beal L, Yang Y. Wnt/b-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Develop Cell 2005;8:739–50CrossRef Day TF, Guo X, Garrett-Beal L, Yang Y. Wnt/b-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Develop Cell 2005;8:739–50CrossRef
61.
go back to reference Glass DA, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Develop Cell 2005;8:751–64CrossRef Glass DA, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Develop Cell 2005;8:751–64CrossRef
62.
go back to reference Shao J-S, Cheng S-L, Pingsterhaus JM, Charlton-Kachigian N, Loewy AP, Towler DA. Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals. J Clin Invest 2005;115:1210–20PubMedCrossRef Shao J-S, Cheng S-L, Pingsterhaus JM, Charlton-Kachigian N, Loewy AP, Towler DA. Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals. J Clin Invest 2005;115:1210–20PubMedCrossRef
63.
go back to reference Johnson ML, Summerfield DT. Parameters of LRP5 from a structural and molecular perspective. Crit Rev Eukaryot Gene Expr 2005;15:229–42PubMed Johnson ML, Summerfield DT. Parameters of LRP5 from a structural and molecular perspective. Crit Rev Eukaryot Gene Expr 2005;15:229–42PubMed
64.
go back to reference Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y, et al. LDL-receptor-related proteins in Wnt signal transduction. Nature 2000;407:530–5PubMedCrossRef Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y, et al. LDL-receptor-related proteins in Wnt signal transduction. Nature 2000;407:530–5PubMedCrossRef
65.
go back to reference Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC. An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 2000;407:535–8PubMedCrossRef Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC. An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 2000;407:535–8PubMedCrossRef
66.
go back to reference Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 2002;346:1513–21PubMedCrossRef Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 2002;346:1513–21PubMedCrossRef
67.
go back to reference Van Wesenbeeck E, Cleiren E, Gram J, Beals R, Benichou O, Scopelliti D, et al. Six novel missense mutations in the LDL receptor-related protein5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet 2003;72:763–71PubMedCrossRef Van Wesenbeeck E, Cleiren E, Gram J, Beals R, Benichou O, Scopelliti D, et al. Six novel missense mutations in the LDL receptor-related protein5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet 2003;72:763–71PubMedCrossRef
68.
go back to reference Streeten EA, Morton H, McBride DJ. Osteoporosis pseudoglioma syndrome: 3 siblings with a novel LRP5 mutation. J Bone Miner Res 2003;18 Suppl 2:S35 Streeten EA, Morton H, McBride DJ. Osteoporosis pseudoglioma syndrome: 3 siblings with a novel LRP5 mutation. J Bone Miner Res 2003;18 Suppl 2:S35
69.
go back to reference Rickels MR, Zhang X, Mumm S, Whyte MP. Skeletal disease accompanying high bone mass and novel LRP5 mutaiton. ASBMR meeting on advances in skeletal anabolic ageants for the treatment of osteoporosis. Abstract T6, 2004 Rickels MR, Zhang X, Mumm S, Whyte MP. Skeletal disease accompanying high bone mass and novel LRP5 mutaiton. ASBMR meeting on advances in skeletal anabolic ageants for the treatment of osteoporosis. Abstract T6, 2004
70.
71.
go back to reference Rickels MR, Zhang X, Mumm S, Whyte M. Oropharyngeal skeletal disease accompanying high bone mass and novel LRP5 mutation. J Bone Miner Res 2005;20:878–85PubMedCrossRef Rickels MR, Zhang X, Mumm S, Whyte M. Oropharyngeal skeletal disease accompanying high bone mass and novel LRP5 mutation. J Bone Miner Res 2005;20:878–85PubMedCrossRef
72.
go back to reference Streeten EA, Puffenberger E, Morton H, McBride D. Osteoporosis pseudoglioma syndrome: 4 siblings with a compound heterozygote LRP5 mutation. J Bone Miner Res 2004;19 Suppl 1:S182 Streeten EA, Puffenberger E, Morton H, McBride D. Osteoporosis pseudoglioma syndrome: 4 siblings with a compound heterozygote LRP5 mutation. J Bone Miner Res 2004;19 Suppl 1:S182
73.
go back to reference Jin LY, Lau HHL, Smith DK, Lau KS, Cheung PT, Kwan EYW, et al. A family with osteoporosis-pseudoglioma syndrome (OPG) due to compound heterozygous mutation of the LRP5 gene. J Bone Miner Res 2004;19 Suppl 1:S129 Jin LY, Lau HHL, Smith DK, Lau KS, Cheung PT, Kwan EYW, et al. A family with osteoporosis-pseudoglioma syndrome (OPG) due to compound heterozygous mutation of the LRP5 gene. J Bone Miner Res 2004;19 Suppl 1:S129
74.
go back to reference Tomes C, Bottomley H, Jackson R, Towns K, Scott S, Mackey D, et al. Mutations in LRP5 or FZD4 underlie the common familial exudative vitreoretinopathy locus on chromosome 11q. Am J Hum Genet 2004;74:721–30CrossRef Tomes C, Bottomley H, Jackson R, Towns K, Scott S, Mackey D, et al. Mutations in LRP5 or FZD4 underlie the common familial exudative vitreoretinopathy locus on chromosome 11q. Am J Hum Genet 2004;74:721–30CrossRef
75.
go back to reference Jiao X, Ventruto V, Trese MT, Shastry BS, Hejtmancik JF. Autosomal recessive familial exudative vitreoretinopathy is associated with mutations in LRP5. Am J Hum Genet 2004;75:878–84PubMedCrossRef Jiao X, Ventruto V, Trese MT, Shastry BS, Hejtmancik JF. Autosomal recessive familial exudative vitreoretinopathy is associated with mutations in LRP5. Am J Hum Genet 2004;75:878–84PubMedCrossRef
76.
go back to reference Choudhury U, Vernejoul MC, Deutsch S, Chevalley T, Bonjour JP, Antonarakis BE, et al. Genetic variation in LDL receptor related protein 5 (LRP5) is a major risk factor for male osteoporosis: results from a cross-sectional, longitudinal and case control study. J Bone Miner Res 2003 Choudhury U, Vernejoul MC, Deutsch S, Chevalley T, Bonjour JP, Antonarakis BE, et al. Genetic variation in LDL receptor related protein 5 (LRP5) is a major risk factor for male osteoporosis: results from a cross-sectional, longitudinal and case control study. J Bone Miner Res 2003
77.
go back to reference Ferrari S, Deutsch S, Choudhury U, Chevalley T, Bonjour J, Dermitzakis E, et al. Polymorphisms in the low-density lipoprotein receptor-related protein 5(LRP5) gene are associated with variation in vertebral bone mass vertebral bone size, and stature in whites. Am J Hum Genet 2004;74:866–75PubMedCrossRef Ferrari S, Deutsch S, Choudhury U, Chevalley T, Bonjour J, Dermitzakis E, et al. Polymorphisms in the low-density lipoprotein receptor-related protein 5(LRP5) gene are associated with variation in vertebral bone mass vertebral bone size, and stature in whites. Am J Hum Genet 2004;74:866–75PubMedCrossRef
78.
go back to reference Koh JM, Jung MH, Hong JS, Park HJ, Chang JS, Shin HD, et al. Association between bone mineral density and LDL receptor-related protein 5 gene polymorphisms in young Korean men. J Korean Med Sci 2004;19:407–12PubMedCrossRef Koh JM, Jung MH, Hong JS, Park HJ, Chang JS, Shin HD, et al. Association between bone mineral density and LDL receptor-related protein 5 gene polymorphisms in young Korean men. J Korean Med Sci 2004;19:407–12PubMedCrossRef
79.
go back to reference Mizuguchi T, Furuta I, Watanbe Y, Tsukamoto K, Tomita H, Tsujihata M, et al. LRP5, low-density-lipoprotein-receptor-related protein 5, is a determinant for bone mineral density. J Hum Genet 2004;49:80–6PubMedCrossRef Mizuguchi T, Furuta I, Watanbe Y, Tsukamoto K, Tomita H, Tsujihata M, et al. LRP5, low-density-lipoprotein-receptor-related protein 5, is a determinant for bone mineral density. J Hum Genet 2004;49:80–6PubMedCrossRef
80.
go back to reference Okubo M, Horinishi A, Kim DH, Yamamoto TT, Murase T. Seven novel sequence variants in the human low density lipoprotein receptor related protein 5 (LRP5) gene. Hum Mutat 2002;19:186–8PubMedCrossRef Okubo M, Horinishi A, Kim DH, Yamamoto TT, Murase T. Seven novel sequence variants in the human low density lipoprotein receptor related protein 5 (LRP5) gene. Hum Mutat 2002;19:186–8PubMedCrossRef
81.
go back to reference Koay MA, Woon PY, Zhang Y, Miles LJ, Duncan EL, Ralston SH, et al. Influence of LRP5 polymorphisms on normal variation in BMD. JBMR 2004;19:1619–27CrossRef Koay MA, Woon PY, Zhang Y, Miles LJ, Duncan EL, Ralston SH, et al. Influence of LRP5 polymorphisms on normal variation in BMD. JBMR 2004;19:1619–27CrossRef
82.
go back to reference Hartikka H, Makitie O, Mannikko M, Doria AS, Daneman A, Cole WG, et al. Heterozygous mutations in the LDL receptor-related protein 5 (LRP5) gene are associated with primary osteoporosis in children. J Bone Miner Res 2005;20:783–9PubMedCrossRef Hartikka H, Makitie O, Mannikko M, Doria AS, Daneman A, Cole WG, et al. Heterozygous mutations in the LDL receptor-related protein 5 (LRP5) gene are associated with primary osteoporosis in children. J Bone Miner Res 2005;20:783–9PubMedCrossRef
83.
go back to reference Bollerslev J, Wilson SG, Dick IM, Islam FM, Ueland T, Palmer L, et al. LRP5 gene polymorphisms predict bone mass and incident fractures in elderly Australian women. Bone 2005;36:599–606PubMedCrossRef Bollerslev J, Wilson SG, Dick IM, Islam FM, Ueland T, Palmer L, et al. LRP5 gene polymorphisms predict bone mass and incident fractures in elderly Australian women. Bone 2005;36:599–606PubMedCrossRef
84.
go back to reference Koller DL, Ichikawa S, Johnson ML, Lai D, Xuei X, Edenberg HJ, et al. Contribution of the LRP5 gene to normal variation in peak bone BMD in women. J Bone Miner Res 2005;20:75–80PubMedCrossRef Koller DL, Ichikawa S, Johnson ML, Lai D, Xuei X, Edenberg HJ, et al. Contribution of the LRP5 gene to normal variation in peak bone BMD in women. J Bone Miner Res 2005;20:75–80PubMedCrossRef
85.
go back to reference Ai M, Heeger S, Bartels CF, Schelling DK, Group atO-PC. Clinical and molecular findings in osteoporosis-pseudoglioma syndrome. Am J Hum Genet 2005;77:741–53PubMedCrossRef Ai M, Heeger S, Bartels CF, Schelling DK, Group atO-PC. Clinical and molecular findings in osteoporosis-pseudoglioma syndrome. Am J Hum Genet 2005;77:741–53PubMedCrossRef
86.
go back to reference Kato M, Patel MS, Levasseur R, Lobov I, Chang BH-J, Glass DA, et al. Cbfa 1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 2002;157:303–14PubMedCrossRef Kato M, Patel MS, Levasseur R, Lobov I, Chang BH-J, Glass DA, et al. Cbfa 1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 2002;157:303–14PubMedCrossRef
87.
go back to reference Hoang BH, Kubo T, Healey JH, Sowers R, Mazza BA, Yang R, et al. Expression of LDL receptor-related protein 5 (LRP5) as a novel marker for disease progression in high-grade osteosarcoma. Int J Cancer 2004;109:106–11PubMedCrossRef Hoang BH, Kubo T, Healey JH, Sowers R, Mazza BA, Yang R, et al. Expression of LDL receptor-related protein 5 (LRP5) as a novel marker for disease progression in high-grade osteosarcoma. Int J Cancer 2004;109:106–11PubMedCrossRef
88.
go back to reference Holmen SL, Giambernardi TA, Zylstra CR, Buckner-Berghuis BD, Resau JH, Hess JF, et al. Decreased BMD and limb deformities in mice carrying mutations in both Lrp5 and Lrp6. J Bone Miner Res 2004;19:2033–40PubMedCrossRef Holmen SL, Giambernardi TA, Zylstra CR, Buckner-Berghuis BD, Resau JH, Hess JF, et al. Decreased BMD and limb deformities in mice carrying mutations in both Lrp5 and Lrp6. J Bone Miner Res 2004;19:2033–40PubMedCrossRef
89.
go back to reference Johnson ML, Picconi JL, Recker RR. The gene for high bone mass. Endocrinologist 2002;12:445–53 Johnson ML, Picconi JL, Recker RR. The gene for high bone mass. Endocrinologist 2002;12:445–53
90.
go back to reference Sawakami K, Robling AG, Pitner ND, Warden SJ, Li J, Warman ML, et al. Site-specific osteopenia and decreased mechanoreactivity in Lrp5-mutant mice. J Bone Miner Res 2004;19 Suppl 1:S38 (Abstract 1149) Sawakami K, Robling AG, Pitner ND, Warden SJ, Li J, Warman ML, et al. Site-specific osteopenia and decreased mechanoreactivity in Lrp5-mutant mice. J Bone Miner Res 2004;19 Suppl 1:S38 (Abstract 1149)
91.
go back to reference Cullen DM, Akhter MP, Mace D, Johnson ML, Babij P, Recker RR. Bone sensitivity to mechanical loads with the Lrp5 HBM mutation. J Bone Miner Res 2002;17 Suppl 1:S332 Cullen DM, Akhter MP, Mace D, Johnson ML, Babij P, Recker RR. Bone sensitivity to mechanical loads with the Lrp5 HBM mutation. J Bone Miner Res 2002;17 Suppl 1:S332
92.
go back to reference Akhter MP, Wells DJ, Short SJ, Cullen DM, Johnson ML, Haynatzki G, et al. Bone biomechanical properties in Lrp5 mutant mice. Bone 2004;35:162–9PubMedCrossRef Akhter MP, Wells DJ, Short SJ, Cullen DM, Johnson ML, Haynatzki G, et al. Bone biomechanical properties in Lrp5 mutant mice. Bone 2004;35:162–9PubMedCrossRef
93.
go back to reference Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD, et al. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci USA 2005;102:3324–9PubMedCrossRef Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD, et al. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci USA 2005;102:3324–9PubMedCrossRef
94.
go back to reference Mao B, Wu W, Li Y, Hoppe D, Stannek P, Glinka A, et al. LDL-receptor-related protein 6 is a receptor for dickkopf proteins. Nature 2001;411:321–5PubMedCrossRef Mao B, Wu W, Li Y, Hoppe D, Stannek P, Glinka A, et al. LDL-receptor-related protein 6 is a receptor for dickkopf proteins. Nature 2001;411:321–5PubMedCrossRef
95.
go back to reference Mao B, Wu W, Davidson G, Marhold J, Li M, Mechler BM, et al. Kremen proteins are Dickkopf receptors that regulate Wnt/B-catenin signalling. Nature 2002;417:664–7PubMedCrossRef Mao B, Wu W, Davidson G, Marhold J, Li M, Mechler BM, et al. Kremen proteins are Dickkopf receptors that regulate Wnt/B-catenin signalling. Nature 2002;417:664–7PubMedCrossRef
96.
go back to reference van Bezooijen RL, ten Dijke P, Papapoulos SE, Lowik CW. SOST/sclerostin, an osteocyte-derived negative modulator of bone formation. Cytokine Growth Factor Res 2005;16:319–27PubMedCrossRef van Bezooijen RL, ten Dijke P, Papapoulos SE, Lowik CW. SOST/sclerostin, an osteocyte-derived negative modulator of bone formation. Cytokine Growth Factor Res 2005;16:319–27PubMedCrossRef
97.
go back to reference Itasaki N, Jones CM, Mercurio S, Rowe A, Domingos PM, Smith JC, et al. Wise, a context-dependent activator and inhibitor of Wnt signaling. Development 2003;130:4295–305PubMedCrossRef Itasaki N, Jones CM, Mercurio S, Rowe A, Domingos PM, Smith JC, et al. Wise, a context-dependent activator and inhibitor of Wnt signaling. Development 2003;130:4295–305PubMedCrossRef
98.
go back to reference Brunkow ME, Gardner JC, Van-Ness J, Paeper BW, Kovacevich BR, Proll S, et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet 2001;68:577–89PubMedCrossRef Brunkow ME, Gardner JC, Van-Ness J, Paeper BW, Kovacevich BR, Proll S, et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet 2001;68:577–89PubMedCrossRef
99.
go back to reference Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, et al. Increased bone density in sclerosteosis is due to the defiiency of a novel secreted protein. Hum Mol Genet 2001; 10:537–43PubMedCrossRef Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, et al. Increased bone density in sclerosteosis is due to the defiiency of a novel secreted protein. Hum Mol Genet 2001; 10:537–43PubMedCrossRef
100.
go back to reference Clement-Lacroix P, Ai M, Morvan F, Roman-Roman S, Vayssiere B, Belleville C, et al. Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci USA 2005;102:17406–11PubMedCrossRef Clement-Lacroix P, Ai M, Morvan F, Roman-Roman S, Vayssiere B, Belleville C, et al. Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci USA 2005;102:17406–11PubMedCrossRef
Metadata
Title
Diseases of Wnt signaling
Authors
Mark L. Johnson
Nalini Rajamannan
Publication date
01-06-2006
Published in
Reviews in Endocrine and Metabolic Disorders / Issue 1-2/2006
Print ISSN: 1389-9155
Electronic ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-006-9003-3

Other articles of this Issue 1-2/2006

Reviews in Endocrine and Metabolic Disorders 1-2/2006 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine