Skip to main content
Top
Published in: Neuropsychology Review 4/2015

01-12-2015 | Review

High Frequency Deep Brain Stimulation and Neural Rhythms in Parkinson’s Disease

Authors: Zack Blumenfeld, Helen Brontë-Stewart

Published in: Neuropsychology Review | Issue 4/2015

Login to get access

Abstract

High frequency (HF) deep brain stimulation (DBS) is an established therapy for the treatment of Parkinson’s disease (PD). It effectively treats the cardinal motor signs of PD, including tremor, bradykinesia, and rigidity. The most common neural target is the subthalamic nucleus, located within the basal ganglia, the region most acutely affected by PD pathology. Using chronically-implanted DBS electrodes, researchers have been able to record underlying neural rhythms from several nodes in the PD network as well as perturb it using DBS to measure the ensuing neural and behavioral effects, both acutely and over time. In this review, we provide an overview of the PD neural network, focusing on the pathophysiological signals that have been recorded from PD patients as well as the mechanisms underlying the therapeutic benefits of HF DBS. We then discuss evidence for the relationship between specific neural oscillations and symptoms of PD, including the aberrant relationships potentially underlying functional connectivity in PD as well as the use of different frequencies of stimulation to more specifically target certain symptoms. Finally, we briefly describe several current areas of investigation and how the ability to record neural data in ecologically-valid settings may allow researchers to explore the relationship between brain and behavior in an unprecedented manner, culminating in the future automation of neurostimulation therapy for the treatment of a variety of neuropsychiatric diseases.
Literature
go back to reference Afshar, P., Khambhati, A., Stanslaski, S., Carlson, D., Jensen, R., Linde, D., et al. (2012). A translational platform for prototyping closed-loop neuromodulation systems. Frontiers in Neural Circuits, 6(117), 1–15. Afshar, P., Khambhati, A., Stanslaski, S., Carlson, D., Jensen, R., Linde, D., et al. (2012). A translational platform for prototyping closed-loop neuromodulation systems. Frontiers in Neural Circuits, 6(117), 1–15.
go back to reference Alexander, G. E., & Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends in Neurosciences, 13(7), 266–271.PubMedCrossRef Alexander, G. E., & Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends in Neurosciences, 13(7), 266–271.PubMedCrossRef
go back to reference Anderson, M. E., Postupna, N., & Ruffo, M. (2003). Effects of high-frequency stimulation in the internal globus pallidus on the activity of thalamic neurons in the awake monkey. Journal of Neurophysiology, 89(2), 1150–1160.PubMedCrossRef Anderson, M. E., Postupna, N., & Ruffo, M. (2003). Effects of high-frequency stimulation in the internal globus pallidus on the activity of thalamic neurons in the awake monkey. Journal of Neurophysiology, 89(2), 1150–1160.PubMedCrossRef
go back to reference Andrew, J. (1984). Surgical treatment of tremor. In L. J. Findley & R. Capildeo (Eds.), Movement disorders: Tremor (pp. 339–351). London: Macmillan.CrossRef Andrew, J. (1984). Surgical treatment of tremor. In L. J. Findley & R. Capildeo (Eds.), Movement disorders: Tremor (pp. 339–351). London: Macmillan.CrossRef
go back to reference Androulidakis, A. G., Kühn, A. A., Chen, C. C., Blomstedt, P., Kempf, F., Kupsch, A., et al. (2007). Dopaminergic therapy promotes lateralized motor activity in the subthalamic area in Parkinson’s disease. Brain, 130(2), 457–468.PubMedCrossRef Androulidakis, A. G., Kühn, A. A., Chen, C. C., Blomstedt, P., Kempf, F., Kupsch, A., et al. (2007). Dopaminergic therapy promotes lateralized motor activity in the subthalamic area in Parkinson’s disease. Brain, 130(2), 457–468.PubMedCrossRef
go back to reference Benabid, A. L., Pollak, P., Gervason, C., Hoffmann, D., Gao, D. M., Hommel, M., et al. (1991). Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet, 337(8738), 403–406.PubMedCrossRef Benabid, A. L., Pollak, P., Gervason, C., Hoffmann, D., Gao, D. M., Hommel, M., et al. (1991). Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet, 337(8738), 403–406.PubMedCrossRef
go back to reference Benabid, A. L., Pollak, P., Gross, C., Hoffmann, D., Benazzouz, A., Gao, D. M., et al. (1994). Acute and long-term effects of subthalamic nucleus stimulation in Parkinson’s disease. Stereotactic and Functional Neurosurgery, 62(1–4), 76–84.PubMedCrossRef Benabid, A. L., Pollak, P., Gross, C., Hoffmann, D., Benazzouz, A., Gao, D. M., et al. (1994). Acute and long-term effects of subthalamic nucleus stimulation in Parkinson’s disease. Stereotactic and Functional Neurosurgery, 62(1–4), 76–84.PubMedCrossRef
go back to reference Benabid, A. L., Pollak, P., Gao, D., Hoffmann, D., Limousin, P., Gay, E., et al. (1996). Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. Journal of Neurosurgery, 84(2), 203–214.PubMedCrossRef Benabid, A. L., Pollak, P., Gao, D., Hoffmann, D., Limousin, P., Gay, E., et al. (1996). Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. Journal of Neurosurgery, 84(2), 203–214.PubMedCrossRef
go back to reference Bergman, H., Wichmann, T., & DeLong, M. R. (1990). Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science, 249(4975), 1436–1438.PubMedCrossRef Bergman, H., Wichmann, T., & DeLong, M. R. (1990). Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science, 249(4975), 1436–1438.PubMedCrossRef
go back to reference Bergman, H., Wichmann, T., Karmon, B., & DeLong, M. (1994). The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. Journal of Neurophysiology, 72, 507–520.PubMed Bergman, H., Wichmann, T., Karmon, B., & DeLong, M. (1994). The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. Journal of Neurophysiology, 72, 507–520.PubMed
go back to reference Bergman, H., Feingold, A., Nini, A., Raz, A., Slovin, H., Abeles, M., et al. (1998). Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends in Neurosciences, 21(1), 32–38.PubMedCrossRef Bergman, H., Feingold, A., Nini, A., Raz, A., Slovin, H., Abeles, M., et al. (1998). Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends in Neurosciences, 21(1), 32–38.PubMedCrossRef
go back to reference Beurrier, C., Bioulac, B., Audin, J., & Hammond, C. (2001). High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. Journal of Neurophysiology, 85(4), 1351–1356.PubMed Beurrier, C., Bioulac, B., Audin, J., & Hammond, C. (2001). High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. Journal of Neurophysiology, 85(4), 1351–1356.PubMed
go back to reference Bezard, E., Boraud, T., Bioulac, B., & Gross, C. E. (1997). Presymptomatic revelation of experimental parkinsonism. NeuroReport, 8(2), 435–438.PubMedCrossRef Bezard, E., Boraud, T., Bioulac, B., & Gross, C. E. (1997). Presymptomatic revelation of experimental parkinsonism. NeuroReport, 8(2), 435–438.PubMedCrossRef
go back to reference Birdno, M. J., & Grill, W. M. (2008). Mechanisms of deep brain stimulation in movement disorders as revealed by changes in stimulus frequency. Neurotherapeutics, 5(1), 14–25.PubMedCentralPubMedCrossRef Birdno, M. J., & Grill, W. M. (2008). Mechanisms of deep brain stimulation in movement disorders as revealed by changes in stimulus frequency. Neurotherapeutics, 5(1), 14–25.PubMedCentralPubMedCrossRef
go back to reference Blumenfeld, Z., Velisar, A., Miller Koop, M., Hill, B. C., Shreve, L. A., Quinn, E. J., et al. (2015). Sixty hertz neurostimulation amplifies subthalamic neural synchrony in Parkinson’s disease. PLoS ONE. doi:10.1371/journal.pone.0121067. Blumenfeld, Z., Velisar, A., Miller Koop, M., Hill, B. C., Shreve, L. A., Quinn, E. J., et al. (2015). Sixty hertz neurostimulation amplifies subthalamic neural synchrony in Parkinson’s disease. PLoS ONE. doi:10.​1371/​journal.​pone.​0121067.
go back to reference Bouyer, J., Joh, T., & Pickel, V. (1984). Ultrastructural localization of tyrosine hydroxylase in rat nucleus accumbens. Journal of Comparative Neurology, 227, 92–103.PubMedCrossRef Bouyer, J., Joh, T., & Pickel, V. (1984). Ultrastructural localization of tyrosine hydroxylase in rat nucleus accumbens. Journal of Comparative Neurology, 227, 92–103.PubMedCrossRef
go back to reference Bronte-Stewart, H., Barberini, C., Koop, M. M., Hill, B. C., Henderson, J. M., & Wingeier, B. (2009). The STN beta-band profile in Parkinson’s disease is stationary and shows prolonged attenuation after deep brain stimulation. Experimental Neurology, 215, 20–28.PubMedCrossRef Bronte-Stewart, H., Barberini, C., Koop, M. M., Hill, B. C., Henderson, J. M., & Wingeier, B. (2009). The STN beta-band profile in Parkinson’s disease is stationary and shows prolonged attenuation after deep brain stimulation. Experimental Neurology, 215, 20–28.PubMedCrossRef
go back to reference Brown, P. (2007). Abnormal oscillatory synchronisation in the motor system leads to impaired movement. Current Opinion in Neurobiology, 17(6), 656–664.PubMedCrossRef Brown, P. (2007). Abnormal oscillatory synchronisation in the motor system leads to impaired movement. Current Opinion in Neurobiology, 17(6), 656–664.PubMedCrossRef
go back to reference Brown, P., & Williams, D. (2005). Basal ganglia local field potential activity: character and functional significance in the human. Clinical Neurophysiology, 116(11), 2510–2519.PubMedCrossRef Brown, P., & Williams, D. (2005). Basal ganglia local field potential activity: character and functional significance in the human. Clinical Neurophysiology, 116(11), 2510–2519.PubMedCrossRef
go back to reference Brown, P., Oliviero, A., Mazzone, P., Insola, A., Tonali, P., & Di Lazzaro, V. (2001). Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. Journal of Neuroscience, 21(3), 1033–1038.PubMed Brown, P., Oliviero, A., Mazzone, P., Insola, A., Tonali, P., & Di Lazzaro, V. (2001). Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. Journal of Neuroscience, 21(3), 1033–1038.PubMed
go back to reference Brown, P., Mazzone, P., Oliviero, A., Altibrandi, M. G., Pilato, F., Tonali, P. A., et al. (2004). Effects of stimulation of the subthalamic area on oscillatory pallidal activity in Parkinson’s disease. Experimental Neurology, 188, 480–490.PubMedCrossRef Brown, P., Mazzone, P., Oliviero, A., Altibrandi, M. G., Pilato, F., Tonali, P. A., et al. (2004). Effects of stimulation of the subthalamic area on oscillatory pallidal activity in Parkinson’s disease. Experimental Neurology, 188, 480–490.PubMedCrossRef
go back to reference Brozova, H., Barnaure, I., Alterman, R. L., & Tagliati, M. (2009). STN-DBS frequency effects on freezing of gait in advanced Parkinson disease. Neurology, 72(8), 770–771.PubMedCrossRef Brozova, H., Barnaure, I., Alterman, R. L., & Tagliati, M. (2009). STN-DBS frequency effects on freezing of gait in advanced Parkinson disease. Neurology, 72(8), 770–771.PubMedCrossRef
go back to reference Carlson, D., Linde, D., Isaacson, B., Afshar, P., Bourget, D., Stanslaski, S., et al. (2013). A flexible algorithm framework for closed-loop neuromodulation research systems. IEEE Engineering in Medicine and Biology Society, 6146–6150. Carlson, D., Linde, D., Isaacson, B., Afshar, P., Bourget, D., Stanslaski, S., et al. (2013). A flexible algorithm framework for closed-loop neuromodulation research systems. IEEE Engineering in Medicine and Biology Society, 6146–6150.
go back to reference Carron, R., Chaillet, A., Filipchuk, A., Pasillas-Lépine, W., & Hammond, C. (2013). Closing the loop of deep brain stimulation. Frontiers in Systems Neuroscience, 7(112), 1–18. Carron, R., Chaillet, A., Filipchuk, A., Pasillas-Lépine, W., & Hammond, C. (2013). Closing the loop of deep brain stimulation. Frontiers in Systems Neuroscience, 7(112), 1–18.
go back to reference Cassidy, M., Mazzone, P., Oliviero, A., Insola, A., Tonali, P., et al. (2002). Movement-related changes in synchronization in the human basal ganglia. Brain, 125, 1235–1246.PubMedCrossRef Cassidy, M., Mazzone, P., Oliviero, A., Insola, A., Tonali, P., et al. (2002). Movement-related changes in synchronization in the human basal ganglia. Brain, 125, 1235–1246.PubMedCrossRef
go back to reference Castrioto, A., Lozano, A. M., Poon, Y. Y., Lang, A. E., Fallis, M., & Moro, E. (2011). Ten-year outcome of subthalamic stimulation in Parkinson disease: a blinded evaluation. Archives of Neurology, 68(12), 1550–1556.PubMedCrossRef Castrioto, A., Lozano, A. M., Poon, Y. Y., Lang, A. E., Fallis, M., & Moro, E. (2011). Ten-year outcome of subthalamic stimulation in Parkinson disease: a blinded evaluation. Archives of Neurology, 68(12), 1550–1556.PubMedCrossRef
go back to reference Chen, C. C., Litvak, V., Gilbertson, T., Kühn, A., Lu, C. S., Lee, S. T., et al. (2007). Excessive synchronization of basal ganglia neurons at 20 Hz slows movement in Parkinson’s disease. Experimental Neurology, 205(1), 214–221.PubMedCrossRef Chen, C. C., Litvak, V., Gilbertson, T., Kühn, A., Lu, C. S., Lee, S. T., et al. (2007). Excessive synchronization of basal ganglia neurons at 20 Hz slows movement in Parkinson’s disease. Experimental Neurology, 205(1), 214–221.PubMedCrossRef
go back to reference Chen, C. C., Lin, W. Y., Chan, H. L., Hsu, Y. T., Tu, P. H., Lee, S. T., et al. (2011). Stimulation of the subthalamic region at 20 Hz slows the development of grip force in Parkinson’s disease. Experimental Neurology, 231(1), 91–96.PubMedCrossRef Chen, C. C., Lin, W. Y., Chan, H. L., Hsu, Y. T., Tu, P. H., Lee, S. T., et al. (2011). Stimulation of the subthalamic region at 20 Hz slows the development of grip force in Parkinson’s disease. Experimental Neurology, 231(1), 91–96.PubMedCrossRef
go back to reference Costa, R. M., Lin, S. C., Sotnikova, T. D., Cyr, M., Gainetdinov, R. R., Caron, M. G., et al. (2006). Rapid alterations in corticostriatal ensemble coordination during acute dopamine-dependent motor dysfunction. Neuron, 52, 359–369.PubMedCrossRef Costa, R. M., Lin, S. C., Sotnikova, T. D., Cyr, M., Gainetdinov, R. R., Caron, M. G., et al. (2006). Rapid alterations in corticostriatal ensemble coordination during acute dopamine-dependent motor dysfunction. Neuron, 52, 359–369.PubMedCrossRef
go back to reference Courtemanche, R., Fujii, N., & Graybiel, A. M. (2003). Synchronous, focally modulated beta-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys. Journal of Neuroscience, 23(37), 11741–11752.PubMed Courtemanche, R., Fujii, N., & Graybiel, A. M. (2003). Synchronous, focally modulated beta-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys. Journal of Neuroscience, 23(37), 11741–11752.PubMed
go back to reference Crossman, A. R., Mitchell, I. J., & Sambrook, M. A. (1985). Regional brain uptake of 2-deoxyglucose in N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the macaque monkey. Neuropharmacology, 24(6), 587–591.PubMedCrossRef Crossman, A. R., Mitchell, I. J., & Sambrook, M. A. (1985). Regional brain uptake of 2-deoxyglucose in N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the macaque monkey. Neuropharmacology, 24(6), 587–591.PubMedCrossRef
go back to reference de Hemptinne, C., Ryapolova-Webb, E. S., Air, E. L., Garcia, P. A., Miller, K. J., Ojemann, J. G., et al. (2013). Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. Proceedings of the National Academy of Sciences, 110(12), 4780–4785.CrossRef de Hemptinne, C., Ryapolova-Webb, E. S., Air, E. L., Garcia, P. A., Miller, K. J., Ojemann, J. G., et al. (2013). Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. Proceedings of the National Academy of Sciences, 110(12), 4780–4785.CrossRef
go back to reference de Hemptinne, C., Swann, N. C., Ostrem, J. L., Ryapolova-Webb, E. S., San Luciano, M., Galifianakis, N. B., et al. (2015). Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease. Nature Neuroscience, 18(5), 779–786.PubMedCentralPubMedCrossRef de Hemptinne, C., Swann, N. C., Ostrem, J. L., Ryapolova-Webb, E. S., San Luciano, M., Galifianakis, N. B., et al. (2015). Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease. Nature Neuroscience, 18(5), 779–786.PubMedCentralPubMedCrossRef
go back to reference de Solages, C., Hill, B. C., Koop, M. M., Henderson, J. M., & Brontë-Stewart, H. (2010). Bilateral symmetry and coherence of subthalamic nuclei beta band activity in Parkinson’s disease. Experimental Neurology, 221, 260–266.PubMedCrossRef de Solages, C., Hill, B. C., Koop, M. M., Henderson, J. M., & Brontë-Stewart, H. (2010). Bilateral symmetry and coherence of subthalamic nuclei beta band activity in Parkinson’s disease. Experimental Neurology, 221, 260–266.PubMedCrossRef
go back to reference Deiber, M. P., Pollak, P., Passingham, R., Landais, P., Gervason, C., Cinotti, L., et al. (1993). Thalamic stimulation and suppression of parkinsonian tremor. Evidence of a cerebellar deactivation using positron emission tomography. Brain, 116(1), 267–279.PubMedCrossRef Deiber, M. P., Pollak, P., Passingham, R., Landais, P., Gervason, C., Cinotti, L., et al. (1993). Thalamic stimulation and suppression of parkinsonian tremor. Evidence of a cerebellar deactivation using positron emission tomography. Brain, 116(1), 267–279.PubMedCrossRef
go back to reference DeLong, M. (1990). Primate models of movement disorders of basal ganglia origin. Trends in Neurosciences, 13(7), 281–285.PubMedCrossRef DeLong, M. (1990). Primate models of movement disorders of basal ganglia origin. Trends in Neurosciences, 13(7), 281–285.PubMedCrossRef
go back to reference Deuschl, G., Schade-Brittinger, C., Krack, P., Volkmann, J., Schäfer, H., Bötzel, K., et al. (2006). A randomized trial of deep-brain stimulation for Parkinson’s disease. New England Journal of Medicine, 355(9), 896–908.PubMedCrossRef Deuschl, G., Schade-Brittinger, C., Krack, P., Volkmann, J., Schäfer, H., Bötzel, K., et al. (2006). A randomized trial of deep-brain stimulation for Parkinson’s disease. New England Journal of Medicine, 355(9), 896–908.PubMedCrossRef
go back to reference Dostrovsky, J. O., Levy, R., Wu, J. P., Hutchison, W. D., Tasker, R. R., & Lozano, A. M. (2000). Microstimulation-induced inhibition of neuronal firing in human globus pallidus. Journal of Neurophysiology, 84(1), 570–574.PubMed Dostrovsky, J. O., Levy, R., Wu, J. P., Hutchison, W. D., Tasker, R. R., & Lozano, A. M. (2000). Microstimulation-induced inhibition of neuronal firing in human globus pallidus. Journal of Neurophysiology, 84(1), 570–574.PubMed
go back to reference Doyle, L. M., Kühn, A. A., Hariz, M., Kupsch, A., Schneider, G. H., & Brown, P. (2005). Levodopa-induced modulation of subthalamic beta oscillations during self-paced movements in patients with Parkinson’s disease. European Journal of Neuroscience, 21(5), 1403–1412.PubMedCrossRef Doyle, L. M., Kühn, A. A., Hariz, M., Kupsch, A., Schneider, G. H., & Brown, P. (2005). Levodopa-induced modulation of subthalamic beta oscillations during self-paced movements in patients with Parkinson’s disease. European Journal of Neuroscience, 21(5), 1403–1412.PubMedCrossRef
go back to reference Eusebio, A., Chen, C. C., Lu, C. S., Lee, S. T., Tsai, C. H., Limousin, P., et al. (2008). Effects of low-frequency stimulation of the subthalamic nucleus on movement in Parkinson’s disease. Experimental Neurology, 209(1), 125–130.PubMedCentralPubMedCrossRef Eusebio, A., Chen, C. C., Lu, C. S., Lee, S. T., Tsai, C. H., Limousin, P., et al. (2008). Effects of low-frequency stimulation of the subthalamic nucleus on movement in Parkinson’s disease. Experimental Neurology, 209(1), 125–130.PubMedCentralPubMedCrossRef
go back to reference Eusebio, A., Thevathasan, W., Doyle Gaynor, L., Pogosyan, A., Bye, E., Foltynie, T., et al. (2011). Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients. Journal of Neurology, Neurosurgery & Psychiatry, 82(5), 569–573.CrossRef Eusebio, A., Thevathasan, W., Doyle Gaynor, L., Pogosyan, A., Bye, E., Foltynie, T., et al. (2011). Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients. Journal of Neurology, Neurosurgery & Psychiatry, 82(5), 569–573.CrossRef
go back to reference Fasano, A., Romito, L. M., Daniele, A., Piano, C., Zinno, M., Bentivoglio, A. R., et al. (2010). Motor and cognitive outcome in patients with Parkinson’s disease 8 years after subthalamic implants. Brain, 133(9), 2664–2676.PubMedCrossRef Fasano, A., Romito, L. M., Daniele, A., Piano, C., Zinno, M., Bentivoglio, A. R., et al. (2010). Motor and cognitive outcome in patients with Parkinson’s disease 8 years after subthalamic implants. Brain, 133(9), 2664–2676.PubMedCrossRef
go back to reference Féger, J., Hassani, O. K., & Mouroux, M. (1997). The subthalamic nucleus and its connections. New electrophysiological and pharmacological data. Advances in Neurology, 74, 31–43.PubMed Féger, J., Hassani, O. K., & Mouroux, M. (1997). The subthalamic nucleus and its connections. New electrophysiological and pharmacological data. Advances in Neurology, 74, 31–43.PubMed
go back to reference Feingold, J., Gibson, D. J., DePasquale, B., & Graybiel, A. M. (2015). Bursts of beta oscillation differentiate postperformance activity in the striatum and motor cortex of monkeys performing movement tasks. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1517629112. Feingold, J., Gibson, D. J., DePasquale, B., & Graybiel, A. M. (2015). Bursts of beta oscillation differentiate postperformance activity in the striatum and motor cortex of monkeys performing movement tasks. Proceedings of the National Academy of Sciences. doi:10.​1073/​pnas.​1517629112.
go back to reference Filion, M., Tremblay, L., & Bédard, P. J. (1988). Abnormal influences of passive limb movement on the activity of globus pallidus neurons in parkinsonian monkeys. Brain Research, 444(1), 165–176.PubMedCrossRef Filion, M., Tremblay, L., & Bédard, P. J. (1988). Abnormal influences of passive limb movement on the activity of globus pallidus neurons in parkinsonian monkeys. Brain Research, 444(1), 165–176.PubMedCrossRef
go back to reference Foffani, G., Priori, A., Egidi, M., Rampini, P., Tamma, F., Caputo, E., et al. (2003). 300-Hz subthalamic oscillations in Parkinson’s disease. Brain, 126(10), 2153–2163.PubMedCrossRef Foffani, G., Priori, A., Egidi, M., Rampini, P., Tamma, F., Caputo, E., et al. (2003). 300-Hz subthalamic oscillations in Parkinson’s disease. Brain, 126(10), 2153–2163.PubMedCrossRef
go back to reference Foffani, G., Ardolino, G., Meda, B., Egidi, M., Rampini, P., Caputo, E., et al. (2005). Altered subthalamo-pallidal synchronisation in parkinsonian dyskinesias. Journal of Neurology, Neurosurgery & Psychiatry, 76(3), 426–428.CrossRef Foffani, G., Ardolino, G., Meda, B., Egidi, M., Rampini, P., Caputo, E., et al. (2005). Altered subthalamo-pallidal synchronisation in parkinsonian dyskinesias. Journal of Neurology, Neurosurgery & Psychiatry, 76(3), 426–428.CrossRef
go back to reference Foffani, G., Ardolino, G., Egidi, M., Caputo, E., Bossi, B., & Priori, A. (2006). Subthalamic oscillatory activities at beta or higher frequency do not change after high-frequency DBS in Parkinson’s disease. Brain Research Bulletin, 69(2), 123–130.PubMedCrossRef Foffani, G., Ardolino, G., Egidi, M., Caputo, E., Bossi, B., & Priori, A. (2006). Subthalamic oscillatory activities at beta or higher frequency do not change after high-frequency DBS in Parkinson’s disease. Brain Research Bulletin, 69(2), 123–130.PubMedCrossRef
go back to reference Fogelson, N., Kühn, A. A., Silberstein, P., Limousin, P. D., Hariz, M., Trottenberg, T., et al. (2005a). Frequency dependent effects of subthalamic nucleus stimulation in Parkinson’s disease. Neuroscience Letters, 382(1–2), 5–9.PubMedCrossRef Fogelson, N., Kühn, A. A., Silberstein, P., Limousin, P. D., Hariz, M., Trottenberg, T., et al. (2005a). Frequency dependent effects of subthalamic nucleus stimulation in Parkinson’s disease. Neuroscience Letters, 382(1–2), 5–9.PubMedCrossRef
go back to reference Fogelson, N., Pogosyan, A., Kühn, A. A., Kupsch, A., van Bruggen, G., Speelman, H., et al. (2005b). Reciprocal interactions between oscillatory activities of different frequencies in the subthalamic region of patients with Parkinson’s disease. European Journal of Neuroscience, 22(1), 257–266.PubMedCrossRef Fogelson, N., Pogosyan, A., Kühn, A. A., Kupsch, A., van Bruggen, G., Speelman, H., et al. (2005b). Reciprocal interactions between oscillatory activities of different frequencies in the subthalamic region of patients with Parkinson’s disease. European Journal of Neuroscience, 22(1), 257–266.PubMedCrossRef
go back to reference Galati, S., Mazzone, P., Fedele, E., Pisani, A., Peppe, A., Pierantozzi, M., et al. (2006). Biochemical and electrophysiological changes of substantia nigra pars reticulata driven by subthalamic stimulation in patients with Parkinson’s disease. European Journal of Neuroscience, 23(11), 2923–2928.PubMedCrossRef Galati, S., Mazzone, P., Fedele, E., Pisani, A., Peppe, A., Pierantozzi, M., et al. (2006). Biochemical and electrophysiological changes of substantia nigra pars reticulata driven by subthalamic stimulation in patients with Parkinson’s disease. European Journal of Neuroscience, 23(11), 2923–2928.PubMedCrossRef
go back to reference Gatev, P., & Wichmann, T. (2009). Interactions between cortical rhythms and spiking activity of single basal ganglia neurons in the normal and parkinsonian state. Cerebral Cortex, 19(6), 1330–1344.PubMedCentralPubMedCrossRef Gatev, P., & Wichmann, T. (2009). Interactions between cortical rhythms and spiking activity of single basal ganglia neurons in the normal and parkinsonian state. Cerebral Cortex, 19(6), 1330–1344.PubMedCentralPubMedCrossRef
go back to reference Gervais-Bernard, H., Xie-Brustolin, J., Mertens, P., Polo, G., Klinger, H., Adamec, D., et al. (2009). Bilateral subthalamic nucleus stimulation in advanced Parkinson’s disease: five year follow-up. Neurology, 256(2), 225–233.CrossRef Gervais-Bernard, H., Xie-Brustolin, J., Mertens, P., Polo, G., Klinger, H., Adamec, D., et al. (2009). Bilateral subthalamic nucleus stimulation in advanced Parkinson’s disease: five year follow-up. Neurology, 256(2), 225–233.CrossRef
go back to reference Ghika, J., Villemure, J. G., Fankhauser, H., Favre, J., Assal, G., & Ghika-Schmid, F. (1998). Efficiency and safety of bilateral contemporaneous pallidal stimulation (deep brain stimulation) in levodopa-responsive patients with Parkinson’s disease with severe motor fluctuations: a 2-year follow-up review. Journal of Neurosurgery, 89(5), 713–718.PubMedCrossRef Ghika, J., Villemure, J. G., Fankhauser, H., Favre, J., Assal, G., & Ghika-Schmid, F. (1998). Efficiency and safety of bilateral contemporaneous pallidal stimulation (deep brain stimulation) in levodopa-responsive patients with Parkinson’s disease with severe motor fluctuations: a 2-year follow-up review. Journal of Neurosurgery, 89(5), 713–718.PubMedCrossRef
go back to reference Giannicola, G., Marceglia, S., Rossi, L., Mrakic-Sposta, S., Rampini, P., Tamma, F., et al. (2010). The effects of levodopa and ongoing deep brain stimulation on subthalamic beta oscillations in Parkinson’s disease. Experimental Neurology, 226(1), 120–127.PubMedCrossRef Giannicola, G., Marceglia, S., Rossi, L., Mrakic-Sposta, S., Rampini, P., Tamma, F., et al. (2010). The effects of levodopa and ongoing deep brain stimulation on subthalamic beta oscillations in Parkinson’s disease. Experimental Neurology, 226(1), 120–127.PubMedCrossRef
go back to reference Giannicola, G., Rosa, M., Servello, D., Menghetti, C., Carrabba, G., Pacchetti, C., et al. (2012). Subthalamic local field potentials after seven-year deep brain stimulation in Parkinson’s disease. Experimental Neurology, 237(2), 312–317.PubMedCrossRef Giannicola, G., Rosa, M., Servello, D., Menghetti, C., Carrabba, G., Pacchetti, C., et al. (2012). Subthalamic local field potentials after seven-year deep brain stimulation in Parkinson’s disease. Experimental Neurology, 237(2), 312–317.PubMedCrossRef
go back to reference Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M., & Deisseroth, K. (2009). Optical deconstruction of parkinsonian neural circuitry. Science, 324(5925), 354–359.PubMedCrossRef Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M., & Deisseroth, K. (2009). Optical deconstruction of parkinsonian neural circuitry. Science, 324(5925), 354–359.PubMedCrossRef
go back to reference Grill, W. M., & Mclntyre, C. C. (2001). Extracellular excitation of central neurons: implications for the mechanisms of deep brain stimulation. Thalamus & Related Systems, 1(3), 269–277. Grill, W. M., & Mclntyre, C. C. (2001). Extracellular excitation of central neurons: implications for the mechanisms of deep brain stimulation. Thalamus & Related Systems, 1(3), 269–277.
go back to reference Grill, W. M., Snyder, A. N., & Miocinovic, S. (2004). Deep brain stimulation creates an informational lesion of the stimulated nucleus. NeuroReport, 15(7), 1137–1140.PubMedCrossRef Grill, W. M., Snyder, A. N., & Miocinovic, S. (2004). Deep brain stimulation creates an informational lesion of the stimulated nucleus. NeuroReport, 15(7), 1137–1140.PubMedCrossRef
go back to reference Gross, C., Rougier, A., Guehl, D., Boraud, T., Julien, J., & Bioulac, B. (1997). High-frequency stimulation of the globus pallidus internalis in Parkinson’s disease: a study of seven cases. Journal of Neurosurgery, 87(4), 491–498.PubMedCrossRef Gross, C., Rougier, A., Guehl, D., Boraud, T., Julien, J., & Bioulac, B. (1997). High-frequency stimulation of the globus pallidus internalis in Parkinson’s disease: a study of seven cases. Journal of Neurosurgery, 87(4), 491–498.PubMedCrossRef
go back to reference Hammond, C., Deniau, J., Rizk, A., & Féger, J. (1978). Electrophysiological demonstration of an excitatory subthalamonigral pathway in the rat. Brain Research, 151, 235–244.PubMedCrossRef Hammond, C., Deniau, J., Rizk, A., & Féger, J. (1978). Electrophysiological demonstration of an excitatory subthalamonigral pathway in the rat. Brain Research, 151, 235–244.PubMedCrossRef
go back to reference Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends in Neurosciences, 30(7), 357–364.PubMedCrossRef Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends in Neurosciences, 30(7), 357–364.PubMedCrossRef
go back to reference Hashimoto, T., Elder, C. M., Okun, M. S., Patrick, S. K., & Vitek, J. L. (2003). Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. Journal of Neuroscience, 23(5), 1916–1923.PubMed Hashimoto, T., Elder, C. M., Okun, M. S., Patrick, S. K., & Vitek, J. L. (2003). Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. Journal of Neuroscience, 23(5), 1916–1923.PubMed
go back to reference Haynes, W. I. A., & Haber, S. N. (2013). The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for basal ganglia models and deep brain stimulation. The Journal of Neuroscience, 33(11), 4804–4814.PubMedCentralPubMedCrossRef Haynes, W. I. A., & Haber, S. N. (2013). The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for basal ganglia models and deep brain stimulation. The Journal of Neuroscience, 33(11), 4804–4814.PubMedCentralPubMedCrossRef
go back to reference He, B. J., Zempel, J. M., Snyder, A. Z., & Raichle, M. E. (2010). The temporal structures and functional significance of scale-free brain activity. Neuron, 66, 353–369.PubMedCentralPubMedCrossRef He, B. J., Zempel, J. M., Snyder, A. Z., & Raichle, M. E. (2010). The temporal structures and functional significance of scale-free brain activity. Neuron, 66, 353–369.PubMedCentralPubMedCrossRef
go back to reference Hebb, A. O., Zhang, J. J., Mahoor, M. H., Tsiokos, C., Matlack, C., Chizeck, H. J., et al. (2014). Creating the feedback loop: closed-loop neurostimulation. Neurosurgery Clinics of North America, 25(1), 187–204.PubMedCentralPubMedCrossRef Hebb, A. O., Zhang, J. J., Mahoor, M. H., Tsiokos, C., Matlack, C., Chizeck, H. J., et al. (2014). Creating the feedback loop: closed-loop neurostimulation. Neurosurgery Clinics of North America, 25(1), 187–204.PubMedCentralPubMedCrossRef
go back to reference Hellwig, B., Häussler, S., Lauk, M., Guschlbauer, B., Köster, B., Kristeva-Feige, R., et al. (2000). Tremor-correlated cortical activity detected by electroencephalography. Clinical Neurophysiology, 111(5), 806–809.PubMedCrossRef Hellwig, B., Häussler, S., Lauk, M., Guschlbauer, B., Köster, B., Kristeva-Feige, R., et al. (2000). Tremor-correlated cortical activity detected by electroencephalography. Clinical Neurophysiology, 111(5), 806–809.PubMedCrossRef
go back to reference Huang, H., Watts, R. L., & Montgomery, E. B. (2014). Effects of deep brain stimulation frequency on bradykinesia of Parkinson’s disease. Movement Disorders, 29(2), 203–206.PubMedCrossRef Huang, H., Watts, R. L., & Montgomery, E. B. (2014). Effects of deep brain stimulation frequency on bradykinesia of Parkinson’s disease. Movement Disorders, 29(2), 203–206.PubMedCrossRef
go back to reference Hutchison, W. D., Dostrovsky, J. O., Walters, J. R., Courtemanche, R., Boraud, T., Goldberg, J., et al. (2004). Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings. Journal of Neuroscience, 24(42), 9240–9243.PubMedCrossRef Hutchison, W. D., Dostrovsky, J. O., Walters, J. R., Courtemanche, R., Boraud, T., Goldberg, J., et al. (2004). Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings. Journal of Neuroscience, 24(42), 9240–9243.PubMedCrossRef
go back to reference Iacono, R. P., Lonser, R. R., Mandybur, G., & Yamada, S. (1995). Stimulation of the globus pallidus in Parkinson’s disease. British Journal of Neurosurgery, 9(4), 505–510.PubMedCrossRef Iacono, R. P., Lonser, R. R., Mandybur, G., & Yamada, S. (1995). Stimulation of the globus pallidus in Parkinson’s disease. British Journal of Neurosurgery, 9(4), 505–510.PubMedCrossRef
go back to reference Ingham, C. A., Hood, S. H., Taggart, P., & Arbuthnott, G. W. (1998). Plasticity of synapses in the rat neostriatum after unilateral lesion of the nigrostriatal dopaminergic pathway. Journal of Neuroscience, 18(12), 4732–4743.PubMed Ingham, C. A., Hood, S. H., Taggart, P., & Arbuthnott, G. W. (1998). Plasticity of synapses in the rat neostriatum after unilateral lesion of the nigrostriatal dopaminergic pathway. Journal of Neuroscience, 18(12), 4732–4743.PubMed
go back to reference Joundi, R. A., Brittain, J. S., Green, A. L., Aziz, T. Z., Brown, P., & Jenkinson, N. (2012). Oscillatory activity in the subthalamic nucleus during arm reaching in Parkinson’s disease. Experimental Neurology, 236(2), 319–326.PubMedCrossRef Joundi, R. A., Brittain, J. S., Green, A. L., Aziz, T. Z., Brown, P., & Jenkinson, N. (2012). Oscillatory activity in the subthalamic nucleus during arm reaching in Parkinson’s disease. Experimental Neurology, 236(2), 319–326.PubMedCrossRef
go back to reference Kang, G., & Lowery, M. M. (2014). Effects of antidromic and orthodromic activation of STN afferent axons during DBS in Parkinson’s disease: a simulation study. Frontiers in Computational Neuroscience, 8(32), 1–12. Kang, G., & Lowery, M. M. (2014). Effects of antidromic and orthodromic activation of STN afferent axons during DBS in Parkinson’s disease: a simulation study. Frontiers in Computational Neuroscience, 8(32), 1–12.
go back to reference Khoo, H. M., Kishima, H., Hosomi, K., Maruo, T., Tani, N., Oshino, S., et al. (2014). Low-frequency subthalamic nucleus stimulation in Parkinson’s disease: a randomized clinical trial. Movement Disorders, 29(2), 270–274.PubMedCrossRef Khoo, H. M., Kishima, H., Hosomi, K., Maruo, T., Tani, N., Oshino, S., et al. (2014). Low-frequency subthalamic nucleus stimulation in Parkinson’s disease: a randomized clinical trial. Movement Disorders, 29(2), 270–274.PubMedCrossRef
go back to reference Kita, H., & Kitai, S. T. (1991). Intracellular study of rat globus pallidus neurons: membrane properties and responses to neostriatal, subthalamic and nigral stimulation. Brain Research, 564(2), 296–305.PubMedCrossRef Kita, H., & Kitai, S. T. (1991). Intracellular study of rat globus pallidus neurons: membrane properties and responses to neostriatal, subthalamic and nigral stimulation. Brain Research, 564(2), 296–305.PubMedCrossRef
go back to reference Kleiner-Fisman, G., Herzog, J., Fisman, D. N., Tamma, F., Lyons, K. E., Pahwa, R., et al. (2006). Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Movement Disorders, 21(Suppl 14), S290–S304.PubMedCrossRef Kleiner-Fisman, G., Herzog, J., Fisman, D. N., Tamma, F., Lyons, K. E., Pahwa, R., et al. (2006). Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Movement Disorders, 21(Suppl 14), S290–S304.PubMedCrossRef
go back to reference Krack, P., Batir, A., Van Blercom, N., Chabardes, S., Fraix, V., Ardouin, C., et al. (2003). Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. New England Journal of Medicine, 349(20), 1925–1934.PubMedCrossRef Krack, P., Batir, A., Van Blercom, N., Chabardes, S., Fraix, V., Ardouin, C., et al. (2003). Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. New England Journal of Medicine, 349(20), 1925–1934.PubMedCrossRef
go back to reference Kühn, A. A., Williams, D., Kupsch, A., Limousin, P., Hariz, M., Schneider, G. H., et al. (2004). Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance. Brain, 127(4), 735–746.PubMedCrossRef Kühn, A. A., Williams, D., Kupsch, A., Limousin, P., Hariz, M., Schneider, G. H., et al. (2004). Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance. Brain, 127(4), 735–746.PubMedCrossRef
go back to reference Kühn, A. A., Kupsch, A., Schneider, G. H., & Brown, P. (2006). Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. European Journal of Neuroscience, 23(7), 1956–1960.PubMedCrossRef Kühn, A. A., Kupsch, A., Schneider, G. H., & Brown, P. (2006). Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. European Journal of Neuroscience, 23(7), 1956–1960.PubMedCrossRef
go back to reference Kühn, A. A., Kempf, F., Brücke, C., Gaynor Doyle, L., Martinez-Torres, I., Pogosyan, A., et al. (2008). High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson’s disease in parallel with improvement in motor performance. Journal of Neuroscience, 28(24), 6165–6173.PubMedCrossRef Kühn, A. A., Kempf, F., Brücke, C., Gaynor Doyle, L., Martinez-Torres, I., Pogosyan, A., et al. (2008). High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson’s disease in parallel with improvement in motor performance. Journal of Neuroscience, 28(24), 6165–6173.PubMedCrossRef
go back to reference Kühn, A. A., Tsui, A., Aziz, T., Ray, N., Brücke, C., Kupsch, A., et al. (2009). Pathological synchronisation in the subthalamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity. Experimental Neurology, 215(2), 380–387.PubMedCrossRef Kühn, A. A., Tsui, A., Aziz, T., Ray, N., Brücke, C., Kupsch, A., et al. (2009). Pathological synchronisation in the subthalamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity. Experimental Neurology, 215(2), 380–387.PubMedCrossRef
go back to reference Kumar, R., Lozano, A. M., Kim, Y. J., Hutchison, W. D., Sime, E., Halket, E., et al. (1998). Double-blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson’s disease. Neurology, 51(3), 850–855.PubMedCrossRef Kumar, R., Lozano, A. M., Kim, Y. J., Hutchison, W. D., Sime, E., Halket, E., et al. (1998). Double-blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson’s disease. Neurology, 51(3), 850–855.PubMedCrossRef
go back to reference Lalo, E., Thobois, S., Sharott, A., Polo, G., Mertens, P., Pogosyan, A., et al. (2008). Patterns of bidirectional communication between cortex and basal ganglia during movement in patients with Parkinson disease. Journal of Neuroscience, 28(12), 3008–3016.PubMedCrossRef Lalo, E., Thobois, S., Sharott, A., Polo, G., Mertens, P., Pogosyan, A., et al. (2008). Patterns of bidirectional communication between cortex and basal ganglia during movement in patients with Parkinson disease. Journal of Neuroscience, 28(12), 3008–3016.PubMedCrossRef
go back to reference Langston, J. W., Ballard, P., Tetrud, J. W., & Irwin, I. (1983). Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 219(4587), 979–980.PubMedCrossRef Langston, J. W., Ballard, P., Tetrud, J. W., & Irwin, I. (1983). Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 219(4587), 979–980.PubMedCrossRef
go back to reference Levy, R., Ashby, P., Hutchison, W. D., Lang, A. E., Lozano, A. M., & Dostrovsky, J. O. (2002). Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain, 125(6), 1196–1209.PubMedCrossRef Levy, R., Ashby, P., Hutchison, W. D., Lang, A. E., Lozano, A. M., & Dostrovsky, J. O. (2002). Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain, 125(6), 1196–1209.PubMedCrossRef
go back to reference Limousin, P., Pollak, P., Benazzouz, A., Hoffmann, D., Le Bas, J. F., Broussolle, E., et al. (1995). Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet, 345, 91–95.PubMedCrossRef Limousin, P., Pollak, P., Benazzouz, A., Hoffmann, D., Le Bas, J. F., Broussolle, E., et al. (1995). Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet, 345, 91–95.PubMedCrossRef
go back to reference Limousin, P., Krack, P., Pollak, P., Benazzouz, A., Ardouin, C., Hoffmann, D., et al. (1998). Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. New England Journal of Medicine, 339(16), 1105–1111.PubMedCrossRef Limousin, P., Krack, P., Pollak, P., Benazzouz, A., Ardouin, C., Hoffmann, D., et al. (1998). Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. New England Journal of Medicine, 339(16), 1105–1111.PubMedCrossRef
go back to reference Little, S., & Brown, P. (2012). What brain signals are suitable for feedback control of deep brain stimulation in Parkinson’s disease? Annals of the New York Academy of Sciences, 1265, 9–24.PubMedCentralPubMedCrossRef Little, S., & Brown, P. (2012). What brain signals are suitable for feedback control of deep brain stimulation in Parkinson’s disease? Annals of the New York Academy of Sciences, 1265, 9–24.PubMedCentralPubMedCrossRef
go back to reference Little, S., Pogosyan, A., Neal, S., Zavala, B., Zrinzo, L., Hariz, M., et al. (2013). Adaptive deep brain stimulation in advanced Parkinson disease. Annals of Neurology, 74(3), 449–457.PubMedCentralPubMedCrossRef Little, S., Pogosyan, A., Neal, S., Zavala, B., Zrinzo, L., Hariz, M., et al. (2013). Adaptive deep brain stimulation in advanced Parkinson disease. Annals of Neurology, 74(3), 449–457.PubMedCentralPubMedCrossRef
go back to reference Little, S., Beudel, M., Zrinzo, L., Foltynie, T., Limousin, P., Hariz, M., et al. (2015). Bilateral adaptive deep brain stimulation is effective in Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry. doi:10.1136/jnnp-2015-310972. Little, S., Beudel, M., Zrinzo, L., Foltynie, T., Limousin, P., Hariz, M., et al. (2015). Bilateral adaptive deep brain stimulation is effective in Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry. doi:10.​1136/​jnnp-2015-310972.
go back to reference Litvak, V., Jha, A., Eusebio, A., Oostenveld, R., Foltynie, T., Limousin, P., et al. (2011). Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson’s disease. Brain, 134(2), 359–374.PubMedCrossRef Litvak, V., Jha, A., Eusebio, A., Oostenveld, R., Foltynie, T., Limousin, P., et al. (2011). Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson’s disease. Brain, 134(2), 359–374.PubMedCrossRef
go back to reference Loher, T. J., Burgunder, J. M., Pohle, T., Weber, S., Sommerhalder, R., & Krauss, J. K. (2002). Long-term pallidal deep brain stimulation in patients with advanced Parkinson disease: 1-year follow-up study. Journal of Neurosurgery, 96(5), 844–853.PubMedCrossRef Loher, T. J., Burgunder, J. M., Pohle, T., Weber, S., Sommerhalder, R., & Krauss, J. K. (2002). Long-term pallidal deep brain stimulation in patients with advanced Parkinson disease: 1-year follow-up study. Journal of Neurosurgery, 96(5), 844–853.PubMedCrossRef
go back to reference López-Azcárate, J., Tainta, M., Rodríguez-Oroz, M. C., Valencia, M., González, R., Guridi, J., et al. (2010). Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson’s disease. Journal of Neuroscience, 30(19), 6667–6677.PubMedCrossRef López-Azcárate, J., Tainta, M., Rodríguez-Oroz, M. C., Valencia, M., González, R., Guridi, J., et al. (2010). Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson’s disease. Journal of Neuroscience, 30(19), 6667–6677.PubMedCrossRef
go back to reference Lozano, A., Hutchison, W., Kiss, Z., Tasker, R., Davis, K., & Dostrovsky, J. (1996). Methods for microelectrode-guided posteroventral pallidotomy. Journal of Neurosurgery, 84(2), 194–202.PubMedCrossRef Lozano, A., Hutchison, W., Kiss, Z., Tasker, R., Davis, K., & Dostrovsky, J. (1996). Methods for microelectrode-guided posteroventral pallidotomy. Journal of Neurosurgery, 84(2), 194–202.PubMedCrossRef
go back to reference Magill, P. J., Bolam, J. P., & Bevan, M. D. (2001). Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network. Journal of Neuroscience, 106(2), 313–330.CrossRef Magill, P. J., Bolam, J. P., & Bevan, M. D. (2001). Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network. Journal of Neuroscience, 106(2), 313–330.CrossRef
go back to reference Malekmohammadi, M., Herron, J., Velisar, A., Blumenfeld, Z., Trager, M.H., Chizeck, H.J., et al. (2015). Kinematic adaptive deep brain stimulation for resting tremor in Parkinson’s disease. Movement Disorders, in press. Malekmohammadi, M., Herron, J., Velisar, A., Blumenfeld, Z., Trager, M.H., Chizeck, H.J., et al. (2015). Kinematic adaptive deep brain stimulation for resting tremor in Parkinson’s disease. Movement Disorders, in press.
go back to reference Mazzone, P., Lozano, A., Stanzione, P., Galati, S., Scarnati, E., Peppe, A., et al. (2005). Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson’s disease. NeuroReport, 16(17), 1877–1881.PubMedCrossRef Mazzone, P., Lozano, A., Stanzione, P., Galati, S., Scarnati, E., Peppe, A., et al. (2005). Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson’s disease. NeuroReport, 16(17), 1877–1881.PubMedCrossRef
go back to reference McIntyre, C. C., & Grill, W. M. (1999). Excitation of central nervous system neurons by nonuniform electric fields. Biophysics Journal, 76(2), 878–888.CrossRef McIntyre, C. C., & Grill, W. M. (1999). Excitation of central nervous system neurons by nonuniform electric fields. Biophysics Journal, 76(2), 878–888.CrossRef
go back to reference McIntyre, C. C., & Grill, W. M. (2002). Extracellular stimulation of central neurons: influence of stimulus waveform and frequency on neuronal output. Journal of Neurophysiology, 88(4), 1592–1604.PubMed McIntyre, C. C., & Grill, W. M. (2002). Extracellular stimulation of central neurons: influence of stimulus waveform and frequency on neuronal output. Journal of Neurophysiology, 88(4), 1592–1604.PubMed
go back to reference McIntyre, C. C., Grill, W. M., Sherman, D. L., & Thakor, N. V. (2004). Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. Journal of Neurophysiology, 91(4), 1457–1469.PubMedCrossRef McIntyre, C. C., Grill, W. M., Sherman, D. L., & Thakor, N. V. (2004). Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. Journal of Neurophysiology, 91(4), 1457–1469.PubMedCrossRef
go back to reference Meissner, W., Leblois, A., Hansel, D., Bioulac, B., Gross, C. E., Benazzouz, A., et al. (2005). Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations. Brain, 128(10), 2372–2382.PubMedCrossRef Meissner, W., Leblois, A., Hansel, D., Bioulac, B., Gross, C. E., Benazzouz, A., et al. (2005). Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations. Brain, 128(10), 2372–2382.PubMedCrossRef
go back to reference Merola, A., Zibetti, M., Angrisano, S., Rizzi, L., Ricchi, V., Artusi, C. A., et al. (2011). Parkinson’s disease progression at 30 years: a study of subthalamic deep brain-stimulated patients. Brain, 134(7), 2074–2084.PubMedCrossRef Merola, A., Zibetti, M., Angrisano, S., Rizzi, L., Ricchi, V., Artusi, C. A., et al. (2011). Parkinson’s disease progression at 30 years: a study of subthalamic deep brain-stimulated patients. Brain, 134(7), 2074–2084.PubMedCrossRef
go back to reference Mitchell, I. J., Cross, A. J., Sambrook, M. A., & Crossman, A. R. (1986). N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in the monkey: neurochemical pathology and regional brain metabolism. Journal of Neural Transmission. Supplementum, 20, 41–46.PubMed Mitchell, I. J., Cross, A. J., Sambrook, M. A., & Crossman, A. R. (1986). N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in the monkey: neurochemical pathology and regional brain metabolism. Journal of Neural Transmission. Supplementum, 20, 41–46.PubMed
go back to reference Montgomery, E. B. (2007). Basal ganglia physiology and pathophysiology: a reappraisal. Parkinsonism & Related Disorders, 13, 455–465.CrossRef Montgomery, E. B. (2007). Basal ganglia physiology and pathophysiology: a reappraisal. Parkinsonism & Related Disorders, 13, 455–465.CrossRef
go back to reference Moreau, C., Defebvre, L., Destée, A., Bleuse, S., Clement, F., Blatt, J. L., et al. (2008). STN-DBS frequency effects on freezing of gait in advanced Parkinson disease. Neurology, 71(2), 80–84.PubMedCrossRef Moreau, C., Defebvre, L., Destée, A., Bleuse, S., Clement, F., Blatt, J. L., et al. (2008). STN-DBS frequency effects on freezing of gait in advanced Parkinson disease. Neurology, 71(2), 80–84.PubMedCrossRef
go back to reference Moro, E., Scerrati, M., Romito, L. M., Roselli, R., Tonali, P., & Albanese, A. (1999). Chronic subthalamic nucleus stimulation reduces medication requirements in Parkinson’s disease. Neurology, 53(1), 85–90.PubMedCrossRef Moro, E., Scerrati, M., Romito, L. M., Roselli, R., Tonali, P., & Albanese, A. (1999). Chronic subthalamic nucleus stimulation reduces medication requirements in Parkinson’s disease. Neurology, 53(1), 85–90.PubMedCrossRef
go back to reference Moro, E., Lozano, A. M., Pollak, P., Agid, Y., Rehncrona, S., Volkmann, J., et al. (2010). Long-term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson’s disease. Movement Disorders, 25(5), 578–586.PubMedCrossRef Moro, E., Lozano, A. M., Pollak, P., Agid, Y., Rehncrona, S., Volkmann, J., et al. (2010). Long-term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson’s disease. Movement Disorders, 25(5), 578–586.PubMedCrossRef
go back to reference Morrell, M. J. (2011). Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology, 77(13), 1295–1304.PubMedCrossRef Morrell, M. J. (2011). Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology, 77(13), 1295–1304.PubMedCrossRef
go back to reference Nambu, A., Tokuno, H., Hamada, I., Kita, H., Imanishi, M., Akazawa, T., et al. (2000). Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. Journal of Neurophysiology, 84(1), 289–300.PubMed Nambu, A., Tokuno, H., Hamada, I., Kita, H., Imanishi, M., Akazawa, T., et al. (2000). Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. Journal of Neurophysiology, 84(1), 289–300.PubMed
go back to reference Narabayashi, H. (1989). Stereotaxic Vim thalamotomy for treatment of tremor. European Neurology, 29(Suppl 1), 29–32.PubMedCrossRef Narabayashi, H. (1989). Stereotaxic Vim thalamotomy for treatment of tremor. European Neurology, 29(Suppl 1), 29–32.PubMedCrossRef
go back to reference Neumann, W.-J., Staub, F., Horn, A., Schanda, J., Mueller, J., Schneider, G.-H., et al. (2015). Deep brain recordings using an implanted pulse generator in Parkinson’s disease. Neuromodulation. doi:10.1111/ner.12348.PubMed Neumann, W.-J., Staub, F., Horn, A., Schanda, J., Mueller, J., Schneider, G.-H., et al. (2015). Deep brain recordings using an implanted pulse generator in Parkinson’s disease. Neuromodulation. doi:10.​1111/​ner.​12348.PubMed
go back to reference Nieuwboer, A., & Giladi, N. (2013). Characterizing freezing of gait in Parkinson’s disease: models of an episodic phenomenon. Movement Disorders, 28(11), 1509–1519.PubMedCrossRef Nieuwboer, A., & Giladi, N. (2013). Characterizing freezing of gait in Parkinson’s disease: models of an episodic phenomenon. Movement Disorders, 28(11), 1509–1519.PubMedCrossRef
go back to reference Nini, A., Feingold, A., Slovin, H., & Bergman, H. (1995). Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. Journal of Neurophysiology, 74(4), 1800–1805.PubMed Nini, A., Feingold, A., Slovin, H., & Bergman, H. (1995). Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. Journal of Neurophysiology, 74(4), 1800–1805.PubMed
go back to reference Nowak, L. G., & Bullier, J. (1998). Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. I. Evidence from chronaxie measurements. Experimental Brain Research, 118, 477–488.PubMedCrossRef Nowak, L. G., & Bullier, J. (1998). Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. I. Evidence from chronaxie measurements. Experimental Brain Research, 118, 477–488.PubMedCrossRef
go back to reference Ohye, C., & Narabayashi, H. (1979). Physiological study of presumed ventralis intermedius neurons in the human thalamus. Journal of Neurosurgery, 50(3), 290–297.PubMedCrossRef Ohye, C., & Narabayashi, H. (1979). Physiological study of presumed ventralis intermedius neurons in the human thalamus. Journal of Neurosurgery, 50(3), 290–297.PubMedCrossRef
go back to reference Ohye, C., Hirai, T., Miyazaki, M., Shibazaki, T., & Nakajima, H. (1982). Vim thalamotomy for the treatment of various kinds of tremor. Appled Neurophysiology, 45(3), 275–280. Ohye, C., Hirai, T., Miyazaki, M., Shibazaki, T., & Nakajima, H. (1982). Vim thalamotomy for the treatment of various kinds of tremor. Appled Neurophysiology, 45(3), 275–280.
go back to reference Oswal, A., Brown, P., & Litvak, V. (2013). Synchronized neural oscillations and the pathophysiology of Parkinson’s disease. Current Opinions in Neurology, 26(6), 662–670.CrossRef Oswal, A., Brown, P., & Litvak, V. (2013). Synchronized neural oscillations and the pathophysiology of Parkinson’s disease. Current Opinions in Neurology, 26(6), 662–670.CrossRef
go back to reference Özkurt, T. E., Butz, M., Homburger, M., Elben, S., Vesper, J., Wojtecki, L., et al. (2011). High frequency oscillations in the subthalamic nucleus: a neurophysiological marker of the motor state in Parkinson’s disease. Experimental Neurology, 229(2), 324–331.PubMedCrossRef Özkurt, T. E., Butz, M., Homburger, M., Elben, S., Vesper, J., Wojtecki, L., et al. (2011). High frequency oscillations in the subthalamic nucleus: a neurophysiological marker of the motor state in Parkinson’s disease. Experimental Neurology, 229(2), 324–331.PubMedCrossRef
go back to reference Pahwa, R., Wilkinson, S., Smith, D., Lyons, K., Miyawaki, E., & Koller, W. C. (1997). High-frequency stimulation of the globus pallidus for the treatment of Parkinson’s disease. Neurology, 49(1), 249–253.PubMedCrossRef Pahwa, R., Wilkinson, S., Smith, D., Lyons, K., Miyawaki, E., & Koller, W. C. (1997). High-frequency stimulation of the globus pallidus for the treatment of Parkinson’s disease. Neurology, 49(1), 249–253.PubMedCrossRef
go back to reference Pan, H. S., Frey, K. A., Young, A. B., & Penney, J. B. (1983). Changes in [3H] muscimol binding in substantia nigra, entopeduncular nucleus, globus pallidus, and thalamus after striatal lesions as demonstrated by quantitative receptor autoradiography. Journal of Neuroscience, 3(6), 1189–1198.PubMed Pan, H. S., Frey, K. A., Young, A. B., & Penney, J. B. (1983). Changes in [3H] muscimol binding in substantia nigra, entopeduncular nucleus, globus pallidus, and thalamus after striatal lesions as demonstrated by quantitative receptor autoradiography. Journal of Neuroscience, 3(6), 1189–1198.PubMed
go back to reference Pan, H. S., Penney, J. B., & Young, A. B. (1985). Gamma-aminobutyric acid and benzodiazepine receptor changes induced by unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. Journal of Neurochemistry, 45(5), 1396–1404.PubMedCrossRef Pan, H. S., Penney, J. B., & Young, A. B. (1985). Gamma-aminobutyric acid and benzodiazepine receptor changes induced by unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. Journal of Neurochemistry, 45(5), 1396–1404.PubMedCrossRef
go back to reference Parent, A., & Hazrati, L. N. (1995). Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Research Reviews, 20, 91–127.PubMedCrossRef Parent, A., & Hazrati, L. N. (1995). Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Research Reviews, 20, 91–127.PubMedCrossRef
go back to reference Piboolnurak, P., Lang, A. E., Lozano, A. M., Miyasaki, J. M., Saint-Cyr, J. A., Poon, Y. Y., et al. (2007). Levodopa response in long-term bilateral subthalamic stimulation for Parkinson’s disease. Movement Disorders, 22(7), 990–997.PubMedCrossRef Piboolnurak, P., Lang, A. E., Lozano, A. M., Miyasaki, J. M., Saint-Cyr, J. A., Poon, Y. Y., et al. (2007). Levodopa response in long-term bilateral subthalamic stimulation for Parkinson’s disease. Movement Disorders, 22(7), 990–997.PubMedCrossRef
go back to reference Plaha, P., & Gill, S. S. (2005). Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. NeuroReport, 16(17), 1883–1887.PubMedCrossRef Plaha, P., & Gill, S. S. (2005). Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. NeuroReport, 16(17), 1883–1887.PubMedCrossRef
go back to reference Priori, A., Foffani, G., Pesenti, A., Bianchi, A., Chiesa, V., Baselli, G., et al. (2002). Movement-related modulation of neural activity in human basal ganglia and its L-DOPA dependency: recordings from deep brain stimulation electrodes in patients with Parkinson’s disease. Neurological Sciences, 23(2), S101–S102.PubMedCrossRef Priori, A., Foffani, G., Pesenti, A., Bianchi, A., Chiesa, V., Baselli, G., et al. (2002). Movement-related modulation of neural activity in human basal ganglia and its L-DOPA dependency: recordings from deep brain stimulation electrodes in patients with Parkinson’s disease. Neurological Sciences, 23(2), S101–S102.PubMedCrossRef
go back to reference Priori, A., Foffani, G., Pesenti, A., Tamma, F., Bianchi, A. M., Pellegrini, M., et al. (2004). Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson’s disease. Experimental Neurology, 189, 369–379.PubMedCrossRef Priori, A., Foffani, G., Pesenti, A., Tamma, F., Bianchi, A. M., Pellegrini, M., et al. (2004). Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson’s disease. Experimental Neurology, 189, 369–379.PubMedCrossRef
go back to reference Priori, A., Foffani, G., Rossi, L., & Marceglia, S. (2012). Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations. Experimental Neurology, 245, 77–86.PubMedCrossRef Priori, A., Foffani, G., Rossi, L., & Marceglia, S. (2012). Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations. Experimental Neurology, 245, 77–86.PubMedCrossRef
go back to reference Quinn, E. J., Blumenfeld, Z., Velisar, A., Koop, M. M., Shreve, L. A., Trager, M. H., et al. (2015). Beta oscillations in freely moving Parkinson’s subjects are attenuated during deep brain stimulation. Movement Disorders. doi:10.1002/mds.26376. Quinn, E. J., Blumenfeld, Z., Velisar, A., Koop, M. M., Shreve, L. A., Trager, M. H., et al. (2015). Beta oscillations in freely moving Parkinson’s subjects are attenuated during deep brain stimulation. Movement Disorders. doi:10.​1002/​mds.​26376.
go back to reference Ramdhani, R. A., Patel, A., Swope, D., & Kopell, B. H. (2015). Early use of 60 Hz frequency subthalamic stimulation in Parkinson’s disease: a case series and review. Neuromodulation. doi:10.1111/ner.12288.PubMed Ramdhani, R. A., Patel, A., Swope, D., & Kopell, B. H. (2015). Early use of 60 Hz frequency subthalamic stimulation in Parkinson’s disease: a case series and review. Neuromodulation. doi:10.​1111/​ner.​12288.PubMed
go back to reference Ray, N. J., Jenkinson, N., Wang, S., Holland, P., Brittain, J. S., Joint, C., et al. (2008). Local field potential beta activity in the subthalamic nucleus of patients with Parkinson’s disease is associated with improvements in bradykinesia after dopamine and deep brain stimulation. Experimental Neurology, 213, 108–113.PubMedCrossRef Ray, N. J., Jenkinson, N., Wang, S., Holland, P., Brittain, J. S., Joint, C., et al. (2008). Local field potential beta activity in the subthalamic nucleus of patients with Parkinson’s disease is associated with improvements in bradykinesia after dopamine and deep brain stimulation. Experimental Neurology, 213, 108–113.PubMedCrossRef
go back to reference Raz, A., Frechter-Mazar, V., Feingold, A., Abeles, M., Vaadia, E., & Bergman, H. (2001). Activity of pallidal and striatal tonically active neurons is correlated in MPTP-treated monkeys but not in normal monkeys. Journal of Neuroscience, 21(3), 1–5. Raz, A., Frechter-Mazar, V., Feingold, A., Abeles, M., Vaadia, E., & Bergman, H. (2001). Activity of pallidal and striatal tonically active neurons is correlated in MPTP-treated monkeys but not in normal monkeys. Journal of Neuroscience, 21(3), 1–5.
go back to reference Ricchi, V., Zibetti, M., Angrisano, S., Merola, A., Arduino, N., Artusi, C. A., et al. (2012). Transient effects of 80 Hz stimulation on gait in STN DBS treated PD patients: a 15 months follow-up study. Brain Stimulation, 5(3), 388–392.PubMedCrossRef Ricchi, V., Zibetti, M., Angrisano, S., Merola, A., Arduino, N., Artusi, C. A., et al. (2012). Transient effects of 80 Hz stimulation on gait in STN DBS treated PD patients: a 15 months follow-up study. Brain Stimulation, 5(3), 388–392.PubMedCrossRef
go back to reference Robledo, P., & Féger, J. (1990). Excitatory influence of rat subthalamic nucleus to substantia nigra pars reticulata and the pallidal complex: electrophysiological data. Brain Research, 518, 47–54.PubMedCrossRef Robledo, P., & Féger, J. (1990). Excitatory influence of rat subthalamic nucleus to substantia nigra pars reticulata and the pallidal complex: electrophysiological data. Brain Research, 518, 47–54.PubMedCrossRef
go back to reference Rodriguez-Oroz, M. C., Obeso, J. A., Lang, A. E., Houeto, J. L., Pollak, P., Rehncrona, S., et al. (2005). Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain, 128(10), 2240–2249.PubMedCrossRef Rodriguez-Oroz, M. C., Obeso, J. A., Lang, A. E., Houeto, J. L., Pollak, P., Rehncrona, S., et al. (2005). Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain, 128(10), 2240–2249.PubMedCrossRef
go back to reference Rodriguez-Oroz, M. C., Moro, E., & Krack, P. (2012). Long-term outcomes of surgical therapies for Parkinson’s disease. Movement Disorders, 27(14), 1718–1728.PubMedCrossRef Rodriguez-Oroz, M. C., Moro, E., & Krack, P. (2012). Long-term outcomes of surgical therapies for Parkinson’s disease. Movement Disorders, 27(14), 1718–1728.PubMedCrossRef
go back to reference Romito, L. M., Contarino, M. F., Vanacore, N., Bentivoglio, A. R., Scerrati, M., & Albanese, A. (2009). Replacement of dopaminergic medication with subthalamic nucleus stimulation in Parkinson’s disease: long-term observation. Movement Disorders, 24(4), 557–563.PubMedCrossRef Romito, L. M., Contarino, M. F., Vanacore, N., Bentivoglio, A. R., Scerrati, M., & Albanese, A. (2009). Replacement of dopaminergic medication with subthalamic nucleus stimulation in Parkinson’s disease: long-term observation. Movement Disorders, 24(4), 557–563.PubMedCrossRef
go back to reference Rosa, M., Giannicola, G., Servello, D., Marceglia, S., Pacchetti, C., Porta, M., et al. (2011). Subthalamic local field beta oscillations during ongoing deep brain stimulation in Parkinson’s disease in hyperacute and chronic phases. Neurosignals, 19(3), 151–162.PubMedCrossRef Rosa, M., Giannicola, G., Servello, D., Marceglia, S., Pacchetti, C., Porta, M., et al. (2011). Subthalamic local field beta oscillations during ongoing deep brain stimulation in Parkinson’s disease in hyperacute and chronic phases. Neurosignals, 19(3), 151–162.PubMedCrossRef
go back to reference Rosa, M., Arlotti, M., Ardolino, G., Cogiamanian, F., Marceglia, S., Di Fonzo, A., et al. (2015). Adaptive deep brain stimulation in a freely moving Parkinsonian patient. Movement Disorders, 30(7), 1003–1005.PubMedCrossRef Rosa, M., Arlotti, M., Ardolino, G., Cogiamanian, F., Marceglia, S., Di Fonzo, A., et al. (2015). Adaptive deep brain stimulation in a freely moving Parkinsonian patient. Movement Disorders, 30(7), 1003–1005.PubMedCrossRef
go back to reference Rosin, B., Slovik, M., Mitelman, R., Rivlin-Etzion, M., Haber, S. N., Israel, Z., et al. (2011). Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron, 72(2), 370–384.PubMedCrossRef Rosin, B., Slovik, M., Mitelman, R., Rivlin-Etzion, M., Haber, S. N., Israel, Z., et al. (2011). Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron, 72(2), 370–384.PubMedCrossRef
go back to reference Schüpbach, W. M., Chastan, N., Welter, M. L., Houeto, J. L., Mesnage, V., Bonnet, A. M., et al. (2005). Stimulation of the subthalamic nucleus in Parkinson’s disease: a 5 year follow up. Journal of Neurology, Neurosurgery & Psychiatry, 76(12), 1640–1644.CrossRef Schüpbach, W. M., Chastan, N., Welter, M. L., Houeto, J. L., Mesnage, V., Bonnet, A. M., et al. (2005). Stimulation of the subthalamic nucleus in Parkinson’s disease: a 5 year follow up. Journal of Neurology, Neurosurgery & Psychiatry, 76(12), 1640–1644.CrossRef
go back to reference Sharott, A., Magill, P. J., Harnack, D., Kupsch, A., Meissner, W., & Brown, P. (2005). Dopamine depletion increases the power and coherence of beta-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat. European Journal of Neuroscience, 21(5), 1413–1422.PubMedCrossRef Sharott, A., Magill, P. J., Harnack, D., Kupsch, A., Meissner, W., & Brown, P. (2005). Dopamine depletion increases the power and coherence of beta-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat. European Journal of Neuroscience, 21(5), 1413–1422.PubMedCrossRef
go back to reference Sidiropoulos, C., Walsh, R., Meaney, C., Poon, Y. Y., Fallis, M., & Moro, E. (2013). Low-frequency subthalamic nucleus deep brain stimulation for axial symptoms in advanced Parkinson’s disease. Neurology, 260(9), 2306–2311.CrossRef Sidiropoulos, C., Walsh, R., Meaney, C., Poon, Y. Y., Fallis, M., & Moro, E. (2013). Low-frequency subthalamic nucleus deep brain stimulation for axial symptoms in advanced Parkinson’s disease. Neurology, 260(9), 2306–2311.CrossRef
go back to reference Siegfried, J., & Lippitz, B. (1994). Chronic electrical stimulation of the VL-VPL complex and of the pallidum in the treatment of movement disorders: personal experience since 1982. Stereotactic and Functional Neurosurgery, 62, 71–75.PubMedCrossRef Siegfried, J., & Lippitz, B. (1994). Chronic electrical stimulation of the VL-VPL complex and of the pallidum in the treatment of movement disorders: personal experience since 1982. Stereotactic and Functional Neurosurgery, 62, 71–75.PubMedCrossRef
go back to reference Silberstein, P., Oliviero, A., Di Lazzaro, V., Insola, A., Mazzone, P., & Brown, P. (2005). Oscillatory pallidal local field potential activity inversely correlates with limb dyskinesias in Parkinson’s disease. Experimental Neurology, 194(2), 523–529.PubMedCrossRef Silberstein, P., Oliviero, A., Di Lazzaro, V., Insola, A., Mazzone, P., & Brown, P. (2005). Oscillatory pallidal local field potential activity inversely correlates with limb dyskinesias in Parkinson’s disease. Experimental Neurology, 194(2), 523–529.PubMedCrossRef
go back to reference Singh, A., Plate, A., Kammermeier, S., Mehrkens, J. H., Ilmberger, J., & Bötzel, K. (2013). Freezing of gait-related oscillatory activity in the human subthalamic nucleus. Basal Ganglia, 3, 25–32.CrossRef Singh, A., Plate, A., Kammermeier, S., Mehrkens, J. H., Ilmberger, J., & Bötzel, K. (2013). Freezing of gait-related oscillatory activity in the human subthalamic nucleus. Basal Ganglia, 3, 25–32.CrossRef
go back to reference Stanslaski, S., Afshar, P., Cong, P., Giftakis, J., Stypulkowski, P., Carlson, D., et al. (2012). Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(4), 410–421.PubMedCrossRef Stanslaski, S., Afshar, P., Cong, P., Giftakis, J., Stypulkowski, P., Carlson, D., et al. (2012). Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(4), 410–421.PubMedCrossRef
go back to reference Stefani, A., Lozano, A. M., Peppe, A., Stanzione, P., Galati, S., Tropepi, D., et al. (2007). Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain, 130(6), 1596–1607.PubMedCrossRef Stefani, A., Lozano, A. M., Peppe, A., Stanzione, P., Galati, S., Tropepi, D., et al. (2007). Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain, 130(6), 1596–1607.PubMedCrossRef
go back to reference Stegemöller, E. L., Vallabhajosula, S., Haq, I., Hwynn, N., Hass, C. J., & Okun, M. S. (2013). Selective use of low frequency stimulation in Parkinson’s disease based on absence of tremor. NeuroRehabilitation, 33(2), 305–312.PubMed Stegemöller, E. L., Vallabhajosula, S., Haq, I., Hwynn, N., Hass, C. J., & Okun, M. S. (2013). Selective use of low frequency stimulation in Parkinson’s disease based on absence of tremor. NeuroRehabilitation, 33(2), 305–312.PubMed
go back to reference Stypulkowski, P. H., Stanslaski, S. R., Denison, T. J., & Giftakis, J. E. (2013). Chronic evaluation of a clinical system for deep brain stimulation and recording of neural network activity. Stereotactic and Functional Neurosurgery, 91(4), 220–232.PubMedCrossRef Stypulkowski, P. H., Stanslaski, S. R., Denison, T. J., & Giftakis, J. E. (2013). Chronic evaluation of a clinical system for deep brain stimulation and recording of neural network activity. Stereotactic and Functional Neurosurgery, 91(4), 220–232.PubMedCrossRef
go back to reference Stypulkowski, P. H., Stanslaski, S. R., Jensen, R. M., Denison, T. J., & Giftakis, J. E. (2014). Brain stimulation for epilepsy--local and remote modulation of network excitability. Brain Stimulation, 7(3), 350–358.PubMedCrossRef Stypulkowski, P. H., Stanslaski, S. R., Jensen, R. M., Denison, T. J., & Giftakis, J. E. (2014). Brain stimulation for epilepsy--local and remote modulation of network excitability. Brain Stimulation, 7(3), 350–358.PubMedCrossRef
go back to reference The Deep Brain Stimulation for Parkinson’s Disease Study Group. (2001). Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. New England Journal of Medicine, 345(13), 956–963.CrossRef The Deep Brain Stimulation for Parkinson’s Disease Study Group. (2001). Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. New England Journal of Medicine, 345(13), 956–963.CrossRef
go back to reference Timmermann, L., Gross, J., Dirks, M., Volkmann, J., Freund, H. J., & Schnitzler, A. (2003). The cerebral oscillatory network of parkinsonian resting tremor. Brain, 126(1), 199–212.PubMedCrossRef Timmermann, L., Gross, J., Dirks, M., Volkmann, J., Freund, H. J., & Schnitzler, A. (2003). The cerebral oscillatory network of parkinsonian resting tremor. Brain, 126(1), 199–212.PubMedCrossRef
go back to reference Timmermann, L., Wojtecki, L., Gross, J., Lehrke, R., Voges, J., Maarouf, M., et al. (2004). Ten-Hertz stimulation of subthalamic nucleus deteriorates motor symptoms in Parkinson’s disease. Movement Disorders, 19(11), 1328–1333.PubMedCrossRef Timmermann, L., Wojtecki, L., Gross, J., Lehrke, R., Voges, J., Maarouf, M., et al. (2004). Ten-Hertz stimulation of subthalamic nucleus deteriorates motor symptoms in Parkinson’s disease. Movement Disorders, 19(11), 1328–1333.PubMedCrossRef
go back to reference Toledo, J. B., López-Azcárate, J., Garcia-Garcia, D., Guridi, J., Valencia, M., Artieda, J., et al. (2014). High beta activity in the subthalamic nucleus and freezing of gait in Parkinson’s disease. Neurobiology of Disease, 64, 60–65.PubMedCrossRef Toledo, J. B., López-Azcárate, J., Garcia-Garcia, D., Guridi, J., Valencia, M., Artieda, J., et al. (2014). High beta activity in the subthalamic nucleus and freezing of gait in Parkinson’s disease. Neurobiology of Disease, 64, 60–65.PubMedCrossRef
go back to reference Tort, A. B., Komorowski, R., Eichenbaum, H., & Kopell, N. (2010). Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. Journal of Neurophysiology, 104(2), 1195–1210.PubMedCentralPubMedCrossRef Tort, A. B., Komorowski, R., Eichenbaum, H., & Kopell, N. (2010). Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. Journal of Neurophysiology, 104(2), 1195–1210.PubMedCentralPubMedCrossRef
go back to reference van Wijk, B. C., Jha, A., Penny, W., & Litvak, V. (2015). Parametric estimation of cross-frequency coupling. Journal of Neuroscience Methods, 243, 94–102.PubMedCentralPubMedCrossRef van Wijk, B. C., Jha, A., Penny, W., & Litvak, V. (2015). Parametric estimation of cross-frequency coupling. Journal of Neuroscience Methods, 243, 94–102.PubMedCentralPubMedCrossRef
go back to reference Vitek, J., Bakay, R., Hashimoto, T., Kaneoke, Y., Mewes, K., Zhang, J. Y., et al. (1998). Microelectrode guided pallidotomy: technical approach and its application in medically intractable Parkinson’s disease. Journal of Neurosurgery, 88, 1027–1043.PubMedCrossRef Vitek, J., Bakay, R., Hashimoto, T., Kaneoke, Y., Mewes, K., Zhang, J. Y., et al. (1998). Microelectrode guided pallidotomy: technical approach and its application in medically intractable Parkinson’s disease. Journal of Neurosurgery, 88, 1027–1043.PubMedCrossRef
go back to reference Volkmann, J., Joliot, M., Mogilner, A., Ioannides, A. A., Lado, F., Fazzini, E., et al. (1996). Central motor loop oscillations in parkinsonian resting tremor revealed by magnetoencephalography. Neurology, 46(5), 1359–1370.PubMedCrossRef Volkmann, J., Joliot, M., Mogilner, A., Ioannides, A. A., Lado, F., Fazzini, E., et al. (1996). Central motor loop oscillations in parkinsonian resting tremor revealed by magnetoencephalography. Neurology, 46(5), 1359–1370.PubMedCrossRef
go back to reference Volkmann, J., Sturm, V., Weiss, P., Kappler, J., Voges, J., Koulousakis, A., et al. (1998). Bilateral high-frequency stimulation of the internal globus pallidus in advanced Parkinson’s disease. Annals of Neurology, 44(6), 953–961.PubMedCrossRef Volkmann, J., Sturm, V., Weiss, P., Kappler, J., Voges, J., Koulousakis, A., et al. (1998). Bilateral high-frequency stimulation of the internal globus pallidus in advanced Parkinson’s disease. Annals of Neurology, 44(6), 953–961.PubMedCrossRef
go back to reference Volkmann, J., Allert, N., Voges, J., Weiss, P. H., Freund, H. J., & Sturm, V. (2001). Safety and efficacy of pallidal or subthalamic nucleus stimulation in advanced PD. Neurology, 56(4), 548–551.PubMedCrossRef Volkmann, J., Allert, N., Voges, J., Weiss, P. H., Freund, H. J., & Sturm, V. (2001). Safety and efficacy of pallidal or subthalamic nucleus stimulation in advanced PD. Neurology, 56(4), 548–551.PubMedCrossRef
go back to reference Volkmann, J., Allert, N., Voges, J., Sturm, V., Schnitzler, A., & Freund, H. J. (2004). Long-term results of bilateral pallidal stimulation in Parkinson’s disease. Annals of Neurology, 55(6), 871–875.PubMedCrossRef Volkmann, J., Allert, N., Voges, J., Sturm, V., Schnitzler, A., & Freund, H. J. (2004). Long-term results of bilateral pallidal stimulation in Parkinson’s disease. Annals of Neurology, 55(6), 871–875.PubMedCrossRef
go back to reference Vyas, S., Huang, H., Gale, J., Sarma, S., & Montgomery, E. (2015). Neuronal complexity in subthalamic nucleus is reduced in Parkinson’s disease. IEEE Transactions on Neural Systems and Rehabilitation Engineering. doi:10.1109/TNSRE.2015.2453254.PubMed Vyas, S., Huang, H., Gale, J., Sarma, S., & Montgomery, E. (2015). Neuronal complexity in subthalamic nucleus is reduced in Parkinson’s disease. IEEE Transactions on Neural Systems and Rehabilitation Engineering. doi:10.​1109/​TNSRE.​2015.​2453254.PubMed
go back to reference Weaver, F. M., Follett, K. A., Stern, M., Luo, P., Harris, C. L., Hur, K., et al. (2012). Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes. Neurology, 79(1), 55–65.PubMedCentralPubMedCrossRef Weaver, F. M., Follett, K. A., Stern, M., Luo, P., Harris, C. L., Hur, K., et al. (2012). Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes. Neurology, 79(1), 55–65.PubMedCentralPubMedCrossRef
go back to reference Weinberger, M., Mahant, N., Hutchison, W. D., Lozano, A. M., Moro, E., Hodaie, M., et al. (2006). Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson’s disease. Journal of Neurophysiology, 96, 3248–3256.PubMedCrossRef Weinberger, M., Mahant, N., Hutchison, W. D., Lozano, A. M., Moro, E., Hodaie, M., et al. (2006). Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson’s disease. Journal of Neurophysiology, 96, 3248–3256.PubMedCrossRef
go back to reference Whitmer, D., de Solages, C., Hill, B., Yu, H., Henderson, J. M., & Bronte-Stewart, H. (2012). High frequency deep brain stimulation attenuates subthalamic and cortical rhythms in Parkinson’s disease. Frontiers in Human Neuroscience, 6(155), 1–18. Whitmer, D., de Solages, C., Hill, B., Yu, H., Henderson, J. M., & Bronte-Stewart, H. (2012). High frequency deep brain stimulation attenuates subthalamic and cortical rhythms in Parkinson’s disease. Frontiers in Human Neuroscience, 6(155), 1–18.
go back to reference Wichmann, T., Bergman, H., & DeLong, M. (1994). The primate subthalamic nucleus. I. Functional properties in intact animals. Journal of Neurophysiology, 72(2), 494–506.PubMed Wichmann, T., Bergman, H., & DeLong, M. (1994). The primate subthalamic nucleus. I. Functional properties in intact animals. Journal of Neurophysiology, 72(2), 494–506.PubMed
go back to reference Wider, C., Pollo, C., Bloch, J., Burkhard, P. R., & Vingerhoets, F. J. (2008). Long-term outcome of 50 consecutive Parkinson’s disease patients treated with subthalamic deep brain stimulation. Parkinsonism & Related Disorders, 14(2), 114–119.CrossRef Wider, C., Pollo, C., Bloch, J., Burkhard, P. R., & Vingerhoets, F. J. (2008). Long-term outcome of 50 consecutive Parkinson’s disease patients treated with subthalamic deep brain stimulation. Parkinsonism & Related Disorders, 14(2), 114–119.CrossRef
go back to reference Williams, D., Tijssen, M., van Bruggen, G., Bosch, A., Insola, A., Di Lazzaro, V., et al. (2002). Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. Brain, 125, 1558–1569.PubMedCrossRef Williams, D., Tijssen, M., van Bruggen, G., Bosch, A., Insola, A., Di Lazzaro, V., et al. (2002). Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. Brain, 125, 1558–1569.PubMedCrossRef
go back to reference Wingeier, B., Tcheng, T., Koop, M. M., Hill, B. C., Heit, G., & Bronte-Stewart, H. (2006). Intra-operative STN DBS attenuates the prominent beta rhythm in the STN in Parkinson’s disease. Experimental Neurology, 197, 244–251.PubMedCrossRef Wingeier, B., Tcheng, T., Koop, M. M., Hill, B. C., Heit, G., & Bronte-Stewart, H. (2006). Intra-operative STN DBS attenuates the prominent beta rhythm in the STN in Parkinson’s disease. Experimental Neurology, 197, 244–251.PubMedCrossRef
go back to reference Xu, W., Russo, G. S., Hashimoto, T., Zhang, J., & Vitek, J. L. (2008). Subthalamic nucleus stimulation modulates thalamic neuronal activity. Journal of Neuroscience, 28(46), 11916–11924.PubMedCentralPubMedCrossRef Xu, W., Russo, G. S., Hashimoto, T., Zhang, J., & Vitek, J. L. (2008). Subthalamic nucleus stimulation modulates thalamic neuronal activity. Journal of Neuroscience, 28(46), 11916–11924.PubMedCentralPubMedCrossRef
go back to reference Yang, A. I., Vanegas, N., Lungu, C., & Zaghloul, K. A. (2014). Beta-coupled high-frequency activity and beta-locked neuronal spiking in the subthalamic nucleus of Parkinson’s disease. Journal of Neuroscience, 34(38), 12816–12827.PubMedCentralPubMedCrossRef Yang, A. I., Vanegas, N., Lungu, C., & Zaghloul, K. A. (2014). Beta-coupled high-frequency activity and beta-locked neuronal spiking in the subthalamic nucleus of Parkinson’s disease. Journal of Neuroscience, 34(38), 12816–12827.PubMedCentralPubMedCrossRef
go back to reference Zibetti, M., Merola, A., Rizzi, L., Ricchi, V., Angrisano, S., Azzaro, C., et al. (2011). Beyond nine years of continuous subthalamic nucleus deep brain stimulation in Parkinson’s disease. Movement Disorders, 26(13), 2327–2334.PubMedCrossRef Zibetti, M., Merola, A., Rizzi, L., Ricchi, V., Angrisano, S., Azzaro, C., et al. (2011). Beyond nine years of continuous subthalamic nucleus deep brain stimulation in Parkinson’s disease. Movement Disorders, 26(13), 2327–2334.PubMedCrossRef
Metadata
Title
High Frequency Deep Brain Stimulation and Neural Rhythms in Parkinson’s Disease
Authors
Zack Blumenfeld
Helen Brontë-Stewart
Publication date
01-12-2015
Publisher
Springer US
Published in
Neuropsychology Review / Issue 4/2015
Print ISSN: 1040-7308
Electronic ISSN: 1573-6660
DOI
https://doi.org/10.1007/s11065-015-9308-7

Other articles of this Issue 4/2015

Neuropsychology Review 4/2015 Go to the issue