Skip to main content
Top
Published in: Neuropsychology Review 2/2014

Open Access 01-06-2014 | Review

Neuropsychology of Environmental Navigation in Humans: Review and Meta-Analysis of fMRI Studies in Healthy Participants

Authors: Maddalena Boccia, Federico Nemmi, Cecilia Guariglia

Published in: Neuropsychology Review | Issue 2/2014

Login to get access

Abstract

In the past 20 years, many studies in the cognitive neurosciences have analyzed human ability to navigate in recently learned and familiar environments by investigating the cognitive processes involved in successful navigation. In this study, we reviewed the main experimental paradigms and made a cognitive-oriented meta-analysis of fMRI studies of human navigation to underline the importance of the experimental designs and cognitive tasks used to assess navigational skills. We performed a general activation likelihood estimation (ALE) meta-analysis of 66 fMRI experiments to identify the neural substrates underpinning general aspects of human navigation. Four individual ALE analyses were performed to identify the neural substrates of different experimental paradigms (i.e., familiar vs. recently learned environments) and different navigational strategies (allocentric vs. egocentric). Results of the general ALE analysis highlighted a wide network of areas with clusters in the occipital, parietal, frontal and temporal lobes, especially in the parahippocampal cortex. Familiar environments seem to be processed by an extended temporal-frontal network, whereas recently learned environments require activation in the parahippocampal cortex and the parietal and occipital lobes. Allocentric strategy is subtended by the same areas as egocentric strategy, but the latter elicits greater activation in the right precuneus, middle occipital lobe and angular gyrus. Our results suggest that different neural correlates are involved in recalling a well-learned or recently acquired environment and that different networks of areas subtend egocentric and allocentric strategies.
Appendix
Available only for authorised users
Literature
go back to reference Aguirre, G. K., & D’Esposito, M. (1999). Topographical disorientation: a synthesis and taxonomy. Brain, 122, 1613–1628.PubMedCrossRef Aguirre, G. K., & D’Esposito, M. (1999). Topographical disorientation: a synthesis and taxonomy. Brain, 122, 1613–1628.PubMedCrossRef
go back to reference Baumann, O., Chan, E., & Mattingleyet, J. B. (2010). Dissociable neural circuits for encoding and retrieval of object locations during active navigation in humans. NeuroImage, 49, 2816–2825.PubMedCrossRef Baumann, O., Chan, E., & Mattingleyet, J. B. (2010). Dissociable neural circuits for encoding and retrieval of object locations during active navigation in humans. NeuroImage, 49, 2816–2825.PubMedCrossRef
go back to reference Berthoz, A. (1997). Parietal and hippocampal contribution to topokinetic and topographic memory. Philosophical Transactions of the Royal Society B, 352, 1437–1448.CrossRef Berthoz, A. (1997). Parietal and hippocampal contribution to topokinetic and topographic memory. Philosophical Transactions of the Royal Society B, 352, 1437–1448.CrossRef
go back to reference Bohbot, V. D., & Corkin, S. (2007). Posterior parahippocampal place learning in H.M. Hippocampus, 17, 863–872.PubMedCrossRef Bohbot, V. D., & Corkin, S. (2007). Posterior parahippocampal place learning in H.M. Hippocampus, 17, 863–872.PubMedCrossRef
go back to reference Brown, T. I., Ross, R. S., Keller, J. B., Hasselmo, M. E., & Sternet, C. E. (2010). Which way was I going? Contextual retrieval supports the disambiguation of well learned overlapping navigational routes. The Journal of Neuroscience, 30(21), 7414–7422.PubMedCentralPubMedCrossRef Brown, T. I., Ross, R. S., Keller, J. B., Hasselmo, M. E., & Sternet, C. E. (2010). Which way was I going? Contextual retrieval supports the disambiguation of well learned overlapping navigational routes. The Journal of Neuroscience, 30(21), 7414–7422.PubMedCentralPubMedCrossRef
go back to reference Brunsdon, R., Nickels, L., & Coltheart, M. (2007). Topographical disorientation: towards an integrated framework for assessment. Neuropsychological Rehabilitation, 17(1), 34–52.PubMedCrossRef Brunsdon, R., Nickels, L., & Coltheart, M. (2007). Topographical disorientation: towards an integrated framework for assessment. Neuropsychological Rehabilitation, 17(1), 34–52.PubMedCrossRef
go back to reference Burgess, N., Maguire, E. A., Spiers, H. J., & O’Keefe, J. (2001). A temporoparietal and prefrontal network for retrieving the spatial context of lifelike events. NeuroImage, 14, 439–453.PubMedCrossRef Burgess, N., Maguire, E. A., Spiers, H. J., & O’Keefe, J. (2001). A temporoparietal and prefrontal network for retrieving the spatial context of lifelike events. NeuroImage, 14, 439–453.PubMedCrossRef
go back to reference Byrne, P., & Becker, S. (2007). Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychological Review, 114(2), 340–375.PubMedCentralPubMedCrossRef Byrne, P., & Becker, S. (2007). Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychological Review, 114(2), 340–375.PubMedCentralPubMedCrossRef
go back to reference Chrastil, E. R. (2013). Neural evidence supports a novel framework for spatial navigation. Psychonomic Bulletin & Review, 20(2), 208–227.CrossRef Chrastil, E. R. (2013). Neural evidence supports a novel framework for spatial navigation. Psychonomic Bulletin & Review, 20(2), 208–227.CrossRef
go back to reference Committeri, G., Galati, G., Paradis, A., Pizzamiglio, L., Berthoz, A., & LeBihan, D. (2004). Reference frames for spatial cognition: different brain areas are involved in viewer-, object-, and landmark-centered judgments about object location. Journal of Cognitive Neuroscience, 16(9), 1517–1535.PubMedCrossRef Committeri, G., Galati, G., Paradis, A., Pizzamiglio, L., Berthoz, A., & LeBihan, D. (2004). Reference frames for spatial cognition: different brain areas are involved in viewer-, object-, and landmark-centered judgments about object location. Journal of Cognitive Neuroscience, 16(9), 1517–1535.PubMedCrossRef
go back to reference Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30, 2907–2926.PubMedCentralPubMedCrossRef Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30, 2907–2926.PubMedCentralPubMedCrossRef
go back to reference Ekstrom, A. D., & Bookheimer, S. Y. (2008). Spatial and temporal episodic memory retrieval recruit dissociable functional networks in the human brain. Learning & Memory, 14, 645–654.CrossRef Ekstrom, A. D., & Bookheimer, S. Y. (2008). Spatial and temporal episodic memory retrieval recruit dissociable functional networks in the human brain. Learning & Memory, 14, 645–654.CrossRef
go back to reference Epstein, R. A., Parker, W. E., & Feiler, A. M. (2007). Where am I now? Distinct roles for parahippocampal and retrosplenial cortices in place recognition. The Journal of Neuroscience, 27(23), 6141–6149.PubMedCrossRef Epstein, R. A., Parker, W. E., & Feiler, A. M. (2007). Where am I now? Distinct roles for parahippocampal and retrosplenial cortices in place recognition. The Journal of Neuroscience, 27(23), 6141–6149.PubMedCrossRef
go back to reference Foti, F., Mandolesi, L., Cutuli, D., Laricchiuta, D., Bartolo, P., Gelfo, F., et al. (2009). Cerebellar damage loosens the strategic use of the spatial structure of the search space. The Cerebellum, 9(1), 29–41. doi:10.1007/s12311-009-0134-4.CrossRef Foti, F., Mandolesi, L., Cutuli, D., Laricchiuta, D., Bartolo, P., Gelfo, F., et al. (2009). Cerebellar damage loosens the strategic use of the spatial structure of the search space. The Cerebellum, 9(1), 29–41. doi:10.​1007/​s12311-009-0134-4.CrossRef
go back to reference Galati, G., Lobel, E., Vallar, G., Berthoz, A., Pizzamiglio, L., & Le Bihan, D. (2000). The neural basis of egocentric and allocentric coding of space in humans: a functional magnetic resonance study. Experimental Brain Research, 133(2), 156–164. doi:10.1007/s002210000375.PubMedCrossRef Galati, G., Lobel, E., Vallar, G., Berthoz, A., Pizzamiglio, L., & Le Bihan, D. (2000). The neural basis of egocentric and allocentric coding of space in humans: a functional magnetic resonance study. Experimental Brain Research, 133(2), 156–164. doi:10.​1007/​s002210000375.PubMedCrossRef
go back to reference Grön, G., Wunderlich, A. P., Spitzer, M., Tomczak, R., & Riepe, M. W. (2000). Brain activation during human navigation: gender-different neural networks as substrate of performance. Nature Neuroscience, 3(4), 404–408. doi:10.1038/73980.PubMed Grön, G., Wunderlich, A. P., Spitzer, M., Tomczak, R., & Riepe, M. W. (2000). Brain activation during human navigation: gender-different neural networks as substrate of performance. Nature Neuroscience, 3(4), 404–408. doi:10.​1038/​73980.PubMed
go back to reference Habib, M., & Sirigu, A. (1987). Pure topographical disorientation: a definition and anatomical basis. Cortex, 23, 73–85.PubMedCrossRef Habib, M., & Sirigu, A. (1987). Pure topographical disorientation: a definition and anatomical basis. Cortex, 23, 73–85.PubMedCrossRef
go back to reference Hartley, T., Maguire, E. A., Spiers, H. J., & Burgess, N. (2003). The well-worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. Neuron, 37(5), 877–888.PubMedCrossRef Hartley, T., Maguire, E. A., Spiers, H. J., & Burgess, N. (2003). The well-worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. Neuron, 37(5), 877–888.PubMedCrossRef
go back to reference Hirshhorn, M., Grady, C., Rosenbaum, R. S., Winocur, G., & Moscovitch, M. (2011). The hippocampus is involved in mental navigation for a recently learned, but not a highly familiar environment: a longitudinal fMRI study. Hippocampus, 22(4), 842–852. doi:10.1002/hipo.20944.PubMedCrossRef Hirshhorn, M., Grady, C., Rosenbaum, R. S., Winocur, G., & Moscovitch, M. (2011). The hippocampus is involved in mental navigation for a recently learned, but not a highly familiar environment: a longitudinal fMRI study. Hippocampus, 22(4), 842–852. doi:10.​1002/​hipo.​20944.PubMedCrossRef
go back to reference Iaria, G., Chen, J., Guariglia, C., Ptito, A., & Petrides, M. (2007). Retrosplenial and hippocampal brain regions in human navigation: complementary functional contributions to the formation and use of cognitive maps. The European Journal of Neuroscience, 25(3), 890–899. doi:10.1111/j.1460-9568.2007.05371.x.PubMedCrossRef Iaria, G., Chen, J., Guariglia, C., Ptito, A., & Petrides, M. (2007). Retrosplenial and hippocampal brain regions in human navigation: complementary functional contributions to the formation and use of cognitive maps. The European Journal of Neuroscience, 25(3), 890–899. doi:10.​1111/​j.​1460-9568.​2007.​05371.​x.PubMedCrossRef
go back to reference Ino, T., Inoue, Y., Kage, M., Hirose, S., Kimura, T., & Fukuyama, H. (2002). Mental navigation in humans is processed in the anterior bank of the parieto-occipital sulcus. Neuroscience Letters, 322(3), 182–186.PubMedCrossRef Ino, T., Inoue, Y., Kage, M., Hirose, S., Kimura, T., & Fukuyama, H. (2002). Mental navigation in humans is processed in the anterior bank of the parieto-occipital sulcus. Neuroscience Letters, 322(3), 182–186.PubMedCrossRef
go back to reference Jordan, K., Schadow, J., Wuestenberg, T., Heinze, H., & Lutz JIncke, C. (2003). Different cortical activations for participants using allocentric or egocentric strategies in a virtual navigation task. Brain Imaging, 1–6. doi:10.1097/01.wnr.0000097043.56589.b6. Jordan, K., Schadow, J., Wuestenberg, T., Heinze, H., & Lutz JIncke, C. (2003). Different cortical activations for participants using allocentric or egocentric strategies in a virtual navigation task. Brain Imaging, 1–6. doi:10.​1097/​01.​wnr.​0000097043.​56589.​b6.
go back to reference Kumaran, D., & Maguire, E. A. (2005). The human hippocampus: cognitive maps or relational memory? Journal of Neuroscience, 25(31), 7254–7259.PubMedCrossRef Kumaran, D., & Maguire, E. A. (2005). The human hippocampus: cognitive maps or relational memory? Journal of Neuroscience, 25(31), 7254–7259.PubMedCrossRef
go back to reference Kumaran, D., & Maguire, E. A. (2007). Match-mismatch processes underlie Hippocampal responses to novelty. Journal of Neuroscience, 27(32), 8517–8524.PubMedCentralPubMedCrossRef Kumaran, D., & Maguire, E. A. (2007). Match-mismatch processes underlie Hippocampal responses to novelty. Journal of Neuroscience, 27(32), 8517–8524.PubMedCentralPubMedCrossRef
go back to reference Latini-Corazzini, L., Nesa, M. P., Ceccaldi, M., Guedj, E., Thinus-Blanc, C., Cauda, F., et al. (2010). Route and survey processing of topographical memory during navigation. Psychological Research, 74(6), 545–559. doi:10.1007/s00426-010-0276-5.PubMedCrossRef Latini-Corazzini, L., Nesa, M. P., Ceccaldi, M., Guedj, E., Thinus-Blanc, C., Cauda, F., et al. (2010). Route and survey processing of topographical memory during navigation. Psychological Research, 74(6), 545–559. doi:10.​1007/​s00426-010-0276-5.PubMedCrossRef
go back to reference Maguire, E. A., Burgess, N., Donnett, J. G., Frackowiak, R. S., Frith, C. D., & O’Keefe, J. (1998). Knowing where and getting there: a human navigation network. Science (New York, N.Y.), 280(5365), 921–924.CrossRef Maguire, E. A., Burgess, N., Donnett, J. G., Frackowiak, R. S., Frith, C. D., & O’Keefe, J. (1998). Knowing where and getting there: a human navigation network. Science (New York, N.Y.), 280(5365), 921–924.CrossRef
go back to reference Maguire, E. A., Frith, C. D., & Cipolotti, L. (2001). Distinct neural systems for the encoding and recognition of topography and faces. NeuroImage, 13(4), 743–750.PubMedCrossRef Maguire, E. A., Frith, C. D., & Cipolotti, L. (2001). Distinct neural systems for the encoding and recognition of topography and faces. NeuroImage, 13(4), 743–750.PubMedCrossRef
go back to reference Maguire, E. A., Nannery, R., & Spiers, H. J. (2006). Navigation around London by a taxi driver with bilateral Hippocampal lesions. Brain, 129, 2894–2907.PubMedCrossRef Maguire, E. A., Nannery, R., & Spiers, H. J. (2006). Navigation around London by a taxi driver with bilateral Hippocampal lesions. Brain, 129, 2894–2907.PubMedCrossRef
go back to reference Molinari, M., Petrosini, L., Misciagna, S., & Leggio, M. G. (2004). Visuospatial abilities in cerebellar disorders. Journal of Neurology, Neurosurgery, and Psychiatry, 75(2), 235–240.PubMedCentralPubMed Molinari, M., Petrosini, L., Misciagna, S., & Leggio, M. G. (2004). Visuospatial abilities in cerebellar disorders. Journal of Neurology, Neurosurgery, and Psychiatry, 75(2), 235–240.PubMedCentralPubMed
go back to reference Montello, D. R. (1998). A new framework for understanding the acquisition of spatial knowledge in large-scale environments (pp. 143–154). NewYork: Oxford University Press, Ed. Montello, D. R. (1998). A new framework for understanding the acquisition of spatial knowledge in large-scale environments (pp. 143–154). NewYork: Oxford University Press, Ed.
go back to reference Nadel, L., & Moscovitch, M. (1997). Memory consolidation, retrograde amnesia and the hippocampal complex. Current Opinion in Neurobiology, 7(2), 217–227.PubMedCrossRef Nadel, L., & Moscovitch, M. (1997). Memory consolidation, retrograde amnesia and the hippocampal complex. Current Opinion in Neurobiology, 7(2), 217–227.PubMedCrossRef
go back to reference Ohnishi, T., Matsuda, H., Hirakata, M., & Ugawa, Y. (2006). Navigation ability dependent neural activation in the human brain: an fMRI study. Neuroscience Research, 55(4), 361–369. Ohnishi, T., Matsuda, H., Hirakata, M., & Ugawa, Y. (2006). Navigation ability dependent neural activation in the human brain: an fMRI study. Neuroscience Research, 55(4), 361–369.
go back to reference O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map (p. 570). USA: Oxford University Press. O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map (p. 570). USA: Oxford University Press.
go back to reference Petrosini, L., Leggio, M. G., & Molinari, M. (1998). The cerebellum in the spatial problem solving: a co-star or a guest star. Progress in Neurobiology, 56(2), 191–210.PubMedCrossRef Petrosini, L., Leggio, M. G., & Molinari, M. (1998). The cerebellum in the spatial problem solving: a co-star or a guest star. Progress in Neurobiology, 56(2), 191–210.PubMedCrossRef
go back to reference Rauchs, G., Orban, P., Balteau, E., Schmidt, C., Degueldre, C., Luxen, A., et al. (2008). Partially segregated neural networks for spatial and contextual memory in virtual navigation. Hippocampus, 18(5), 503–518. doi:10.1002/hipo.20411.PubMedCrossRef Rauchs, G., Orban, P., Balteau, E., Schmidt, C., Degueldre, C., Luxen, A., et al. (2008). Partially segregated neural networks for spatial and contextual memory in virtual navigation. Hippocampus, 18(5), 503–518. doi:10.​1002/​hipo.​20411.PubMedCrossRef
go back to reference Rosenbaum, R. S., Ziegler, M., Winocur, G., Grady, C. L., & Moscovitch, M. (2004). ?I have often walked down this street before?: fMRI Studies on the hippocampus and other structures during mental navigation of an old environment. Hippocampus, 14(7), 826–835. doi:10.1002/hipo.10218.PubMedCrossRef Rosenbaum, R. S., Ziegler, M., Winocur, G., Grady, C. L., & Moscovitch, M. (2004). ?I have often walked down this street before?: fMRI Studies on the hippocampus and other structures during mental navigation of an old environment. Hippocampus, 14(7), 826–835. doi:10.​1002/​hipo.​10218.PubMedCrossRef
go back to reference Rosenbaum, R. S., Winocur, G., Grady, C. L., Ziegler, M., & Moscovitch, M. (2007). Memory for familiar environments learned in the remote past: fMRI studies of healthy people and an amnesic person with extensive bilateral hippocampal lesions. Hippocampus, 17(12), 1241–1251. doi:10.1002/hipo.20354.PubMedCrossRef Rosenbaum, R. S., Winocur, G., Grady, C. L., Ziegler, M., & Moscovitch, M. (2007). Memory for familiar environments learned in the remote past: fMRI studies of healthy people and an amnesic person with extensive bilateral hippocampal lesions. Hippocampus, 17(12), 1241–1251. doi:10.​1002/​hipo.​20354.PubMedCrossRef
go back to reference Rudge, P., & Warrington, E. K. (1991). Selective impairment of memory and visual perception in splenial tumours. Brain, 114(Pt 1B), 349–360.PubMedCrossRef Rudge, P., & Warrington, E. K. (1991). Selective impairment of memory and visual perception in splenial tumours. Brain, 114(Pt 1B), 349–360.PubMedCrossRef
go back to reference Shelton, A. L., & Gabrieli, J. D. E. (2002). Neural correlates of encoding space from route and survey perspectives. Journal of Neuroscience, 22(7), 2711–2717.PubMed Shelton, A. L., & Gabrieli, J. D. E. (2002). Neural correlates of encoding space from route and survey perspectives. Journal of Neuroscience, 22(7), 2711–2717.PubMed
go back to reference Siegel, A. W., & White, S. H. (1975). The development of spatial representations of large-scale environments. Advances in Child Development and Behavior, 10, 9–55.PubMedCrossRef Siegel, A. W., & White, S. H. (1975). The development of spatial representations of large-scale environments. Advances in Child Development and Behavior, 10, 9–55.PubMedCrossRef
go back to reference Squire, L. A., & Alvarez, P. (1995). Retrograde amnesia and memory consolidation: a neurobiological perspective. Current Biology, 5, 169–177. Squire, L. A., & Alvarez, P. (1995). Retrograde amnesia and memory consolidation: a neurobiological perspective. Current Biology, 5, 169–177.
go back to reference Takahashi, N., Kawamura, M., Shiota, J., Kasahata, N., & Hirayama, K. (1997). Pure topographic disorientation due to right retrosplenial lesion. Neurology, 49, 464–469.PubMedCrossRef Takahashi, N., Kawamura, M., Shiota, J., Kasahata, N., & Hirayama, K. (1997). Pure topographic disorientation due to right retrosplenial lesion. Neurology, 49, 464–469.PubMedCrossRef
go back to reference Taube, J. S., Muller, R. U., & Ranck, J. B., Jr. (1990). Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. Journal of Neuroscience, 10(2), 420–435.PubMed Taube, J. S., Muller, R. U., & Ranck, J. B., Jr. (1990). Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. Journal of Neuroscience, 10(2), 420–435.PubMed
go back to reference Tolman, E. C. (1948). Cognitive maps in rats and men Psychological Review. American Psychological Association, 55(4), 189–208. doi:10.1037/h0061626. Tolman, E. C. (1948). Cognitive maps in rats and men Psychological Review. American Psychological Association, 55(4), 189–208. doi:10.​1037/​h0061626.
go back to reference Tulving, E. (1987). Multiple memory systems and consciousness. Human Neurobiol, 6, 67–80. Tulving, E. (1987). Multiple memory systems and consciousness. Human Neurobiol, 6, 67–80.
go back to reference Vann, S. D., Aggleton, J. P., & Maguire, E. A. (2009). What does the retrosplenial cortex do. Nature Reviews Neuroscience, 10(11), 792–802. doi:10.1038/nrn2733. Nature Publishing Group.PubMedCrossRef Vann, S. D., Aggleton, J. P., & Maguire, E. A. (2009). What does the retrosplenial cortex do. Nature Reviews Neuroscience, 10(11), 792–802. doi:10.​1038/​nrn2733. Nature Publishing Group.PubMedCrossRef
go back to reference Vinogradova, O. S. (2001). Hippocampus as comparator: role of the two input and two output systems of the hippocampus in selection and registration of information. HIPPOCAMPUS, 11, 578–598.PubMedCrossRef Vinogradova, O. S. (2001). Hippocampus as comparator: role of the two input and two output systems of the hippocampus in selection and registration of information. HIPPOCAMPUS, 11, 578–598.PubMedCrossRef
go back to reference Wegman, J., & Janzen, G. J. (2011). Neural encoding of objects relevant for navigation and resting state correlations with navigational ability. Journal of Cognitive Neuroscience, 23(12):3841–3854. doi:10.1162/jocn_a_00081. Wegman, J., & Janzen, G. J. (2011). Neural encoding of objects relevant for navigation and resting state correlations with navigational ability. Journal of Cognitive Neuroscience, 23(12):3841–3854. doi:10.​1162/​jocn_​a_​00081.
go back to reference Wolbers, T., & Hegarty, M. (2010). What determines our navigational abilities? Trends in Cognitive Sciences, 14, 138–146.PubMedCrossRef Wolbers, T., & Hegarty, M. (2010). What determines our navigational abilities? Trends in Cognitive Sciences, 14, 138–146.PubMedCrossRef
go back to reference Wolbers, T., Wiener, J. M., Mallot, H. A., & Buchel, C. (2007). Differential recruitment of the hippocampus, medial prefrontal cortex, and the human motion complex during path integration in humans. Journal of Neuroscience, 27(35), 9408–9416. doi:10.1523/JNEUROSCI.2146-07.2007.PubMedCrossRef Wolbers, T., Wiener, J. M., Mallot, H. A., & Buchel, C. (2007). Differential recruitment of the hippocampus, medial prefrontal cortex, and the human motion complex during path integration in humans. Journal of Neuroscience, 27(35), 9408–9416. doi:10.​1523/​JNEUROSCI.​2146-07.​2007.PubMedCrossRef
Metadata
Title
Neuropsychology of Environmental Navigation in Humans: Review and Meta-Analysis of fMRI Studies in Healthy Participants
Authors
Maddalena Boccia
Federico Nemmi
Cecilia Guariglia
Publication date
01-06-2014
Publisher
Springer US
Published in
Neuropsychology Review / Issue 2/2014
Print ISSN: 1040-7308
Electronic ISSN: 1573-6660
DOI
https://doi.org/10.1007/s11065-014-9247-8

Other articles of this Issue 2/2014

Neuropsychology Review 2/2014 Go to the issue