Skip to main content
Top
Published in: Neuropsychology Review 2/2007

01-06-2007 | Original Paper

A Primer on Functional Magnetic Resonance Imaging

Authors: Gregory G. Brown, Joanna E. Perthen, Thomas T. Liu, Richard B. Buxton

Published in: Neuropsychology Review | Issue 2/2007

Login to get access

Abstract

In this manuscript, basic principles of functional magnetic resonance imaging (fMRI) are reviewed. In the first section, two intrinsic mechanisms of magnetic resonance image contrast related to the longitudinal and transverse components of relaxing spins and their relaxation rates, T1 and T2, are described. In the second section, the biophysical mechanisms that alter the apparent transverse relaxation time, \(T_2^*\), in blood oxygenation level dependent (BOLD) studies and the creation of BOLD activation maps are discussed. The physiological complexity of the BOLD signal is emphasized. In the third section, arterial spin labeling (ASL) measures of cerebral blood flow are presented. Arterial spin labeling inverts or saturates the magnetization of flowing spins to measure the rate of delivery of blood to capillaries. In the fourth section, calibrated fMRI, which uses BOLD and ASL to infer alterations of oxygen utilization during behavioral activation, is reviewed. The discussion concludes with challenges confronting studies of individual cases.
Literature
go back to reference Aguirre, G. K., Detre, J. A., & Wang, J. (2005). Perfusion fMRI for functional neuroimaging. International Review of Neurobiology, 66, 213–236.PubMed Aguirre, G. K., Detre, J. A., & Wang, J. (2005). Perfusion fMRI for functional neuroimaging. International Review of Neurobiology, 66, 213–236.PubMed
go back to reference Aguirre, G. K., Detre, J. A., Zarahn, E., & Alsop, D. C. (2002). Experimental design and the relative sensitivity of BOLD and perfusion fMRI. NeuroImage, 15, 488–500.CrossRefPubMed Aguirre, G. K., Detre, J. A., Zarahn, E., & Alsop, D. C. (2002). Experimental design and the relative sensitivity of BOLD and perfusion fMRI. NeuroImage, 15, 488–500.CrossRefPubMed
go back to reference Aguirre, G. K., Zarahn, E., & D’esposito, M. (1998). The variability of human, BOLD hemodynamic responses. NeuroImage, 8, 360–369.CrossRefPubMed Aguirre, G. K., Zarahn, E., & D’esposito, M. (1998). The variability of human, BOLD hemodynamic responses. NeuroImage, 8, 360–369.CrossRefPubMed
go back to reference Alsop, D. C. (2006). Perfusion imaging of the brain: Contribution to clinical MRI. In R. R. Edelman, J. R. Hesselink, M. B. Zlatkin, & J. V. Cures III (Eds.), Clinical magnetic resonance imaging (3rd edn., Vol. 1, pp. 333–357). Philadelphia: Saunders Elsevier. Alsop, D. C. (2006). Perfusion imaging of the brain: Contribution to clinical MRI. In R. R. Edelman, J. R. Hesselink, M. B. Zlatkin, & J. V. Cures III (Eds.), Clinical magnetic resonance imaging (3rd edn., Vol. 1, pp. 333–357). Philadelphia: Saunders Elsevier.
go back to reference Attwell, D., & Iadecola, C. (2002). The neural basis of functional brain imaging signals. Trends in Neurosciences, 25, 621–625.CrossRefPubMed Attwell, D., & Iadecola, C. (2002). The neural basis of functional brain imaging signals. Trends in Neurosciences, 25, 621–625.CrossRefPubMed
go back to reference Attwell, D., & Laughlin, S. B. (2001). An energy budget for signaling in the grey matter of the brain. Journal of Cerebral Blood Flow and Metabolism, 21, 1133–1145.PubMed Attwell, D., & Laughlin, S. B. (2001). An energy budget for signaling in the grey matter of the brain. Journal of Cerebral Blood Flow and Metabolism, 21, 1133–1145.PubMed
go back to reference Bandettini, P. A., Wong, E. C., Hinks, R. S., Tikofsky, R. S., & Hyde, J. S. (1992). Time course EPI of human brain function during task activation. Magnetic Resonance in Medicine, 25, 390–397.CrossRefPubMed Bandettini, P. A., Wong, E. C., Hinks, R. S., Tikofsky, R. S., & Hyde, J. S. (1992). Time course EPI of human brain function during task activation. Magnetic Resonance in Medicine, 25, 390–397.CrossRefPubMed
go back to reference Bandettini, P. A., & Cox, R. W. (2000). Event-related fMRI contrast when using constant interstimulus interval: Theory and experiment. Magnetic Resonance in Medicine, 43, 540–548.CrossRefPubMed Bandettini, P. A., & Cox, R. W. (2000). Event-related fMRI contrast when using constant interstimulus interval: Theory and experiment. Magnetic Resonance in Medicine, 43, 540–548.CrossRefPubMed
go back to reference Berger, T. W. (1984). Neural representation of associative learning in the hippocampus. In L. R. Squire & N. Butters (Eds.), Neuropsychology of memory (pp. 443–461). New York: The Guilford Press. Berger, T. W. (1984). Neural representation of associative learning in the hippocampus. In L. R. Squire & N. Butters (Eds.), Neuropsychology of memory (pp. 443–461). New York: The Guilford Press.
go back to reference Boxerman, J. L., Bandettini, P. A., Kwong, K. K., Baker, J. R., Davis, T. L., Rosen, B. R., & Weisskoff, R. M. (1995a). The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo. Magnetic Resonance in Medicine, 34, 4–10.CrossRefPubMed Boxerman, J. L., Bandettini, P. A., Kwong, K. K., Baker, J. R., Davis, T. L., Rosen, B. R., & Weisskoff, R. M. (1995a). The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo. Magnetic Resonance in Medicine, 34, 4–10.CrossRefPubMed
go back to reference Boxerman, J. L., Hamberg, L. M., Rosen, B. R., & Weisskoff, R. M. (1995b). MR contrast due to intravascular magnetic susceptibility perturbations. Magnetic Resonance in Medicine, 34, 555–566.CrossRefPubMed Boxerman, J. L., Hamberg, L. M., Rosen, B. R., & Weisskoff, R. M. (1995b). MR contrast due to intravascular magnetic susceptibility perturbations. Magnetic Resonance in Medicine, 34, 555–566.CrossRefPubMed
go back to reference Boynton, G. M., Engel, S. A., Glover, G. H., & Heeger, D. J. (1996). Linear systems analysis of functional magnetic resonance imaging in humans. The Journal of Neuroscience, 16, 4207–4221.PubMed Boynton, G. M., Engel, S. A., Glover, G. H., & Heeger, D. J. (1996). Linear systems analysis of functional magnetic resonance imaging in humans. The Journal of Neuroscience, 16, 4207–4221.PubMed
go back to reference Brown, G. G., Eyler Zorrilla, L. T., Georgy, B., Kindermann, S. S., Wong, E. C., & Buxton, R. B. (2003). BOLD and perfusion response to finger-thumb apposition after acetazolamide administration: Differential relationship to global perfusion. Journal of Cerebral Blood Flow and Metabolism, 23, 829–837.PubMed Brown, G. G., Eyler Zorrilla, L. T., Georgy, B., Kindermann, S. S., Wong, E. C., & Buxton, R. B. (2003). BOLD and perfusion response to finger-thumb apposition after acetazolamide administration: Differential relationship to global perfusion. Journal of Cerebral Blood Flow and Metabolism, 23, 829–837.PubMed
go back to reference Burock, M. A., Buckner, R. L., Woldorff, M. G., Rosen, B. R., & Dale, A. M. (1998). Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI. NeuroReport, 9, 3735–3739.CrossRefPubMed Burock, M. A., Buckner, R. L., Woldorff, M. G., Rosen, B. R., & Dale, A. M. (1998). Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI. NeuroReport, 9, 3735–3739.CrossRefPubMed
go back to reference Buxton, R. B. (2002). Introduction to functional magnetic resonance imaging. Cambridge: Cambridge University Press. Buxton, R. B. (2002). Introduction to functional magnetic resonance imaging. Cambridge: Cambridge University Press.
go back to reference Buxton, R. B., Uludag, K., Dubowitz, D. J., & Liu, T. T. (2004). Modeling the hemodynamic response to brain activation. Neuroimage, 23(Suppl. 1), 220–233.CrossRef Buxton, R. B., Uludag, K., Dubowitz, D. J., & Liu, T. T. (2004). Modeling the hemodynamic response to brain activation. Neuroimage, 23(Suppl. 1), 220–233.CrossRef
go back to reference Buxton, R. B., Wong, E. C., & Frank, L. R. (1998). Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magnetic Resonance in Medicine, 39, 855–864.CrossRefPubMed Buxton, R. B., Wong, E. C., & Frank, L. R. (1998). Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magnetic Resonance in Medicine, 39, 855–864.CrossRefPubMed
go back to reference Chiarelli, P., Bulte, D. P., Piechnik, S., & Jezzard, P. (2007). Sources of systematic bias in hpercapnia-calibrated functional MRI estimation of oxygen metabolism. NeuroImage, 34, 35–43.CrossRefPubMed Chiarelli, P., Bulte, D. P., Piechnik, S., & Jezzard, P. (2007). Sources of systematic bias in hpercapnia-calibrated functional MRI estimation of oxygen metabolism. NeuroImage, 34, 35–43.CrossRefPubMed
go back to reference Cohen, M. S. (1997). Parametric analysis of fMRI data using linear systems methods. NeuroImage, 6, 93–103.CrossRefPubMed Cohen, M. S. (1997). Parametric analysis of fMRI data using linear systems methods. NeuroImage, 6, 93–103.CrossRefPubMed
go back to reference Dale, A. M. (1999). Optimal experimental design for event-related fMRI. Human Brain Mapping, 8, 109–114.CrossRefPubMed Dale, A. M. (1999). Optimal experimental design for event-related fMRI. Human Brain Mapping, 8, 109–114.CrossRefPubMed
go back to reference Dale, A. M., & Buckner, R. L. (1997). Selective averaging of rapidly presented individual trials using fMRI. Human Brain Mapping, 5, 329–340.CrossRef Dale, A. M., & Buckner, R. L. (1997). Selective averaging of rapidly presented individual trials using fMRI. Human Brain Mapping, 5, 329–340.CrossRef
go back to reference Daniels, F., & Alberty, R. A. (1966). Physical chemistry (3rd edn.). New York: John Wiley & Sons. Daniels, F., & Alberty, R. A. (1966). Physical chemistry (3rd edn.). New York: John Wiley & Sons.
go back to reference Davis, T. L., Kwong, K. K., Weisskoff, R. M., & Rosen, B. R. (1998). Calibrated functional MRI: Mapping the dynamics of oxidative metabolism. Proceedings of the National Academy of Science USA, 95, 1834–1839.CrossRef Davis, T. L., Kwong, K. K., Weisskoff, R. M., & Rosen, B. R. (1998). Calibrated functional MRI: Mapping the dynamics of oxidative metabolism. Proceedings of the National Academy of Science USA, 95, 1834–1839.CrossRef
go back to reference Detre, J. A., Leigh, J. S., WIlliams, D. S., & Koretsky, A. P. (1992). Perfusion imaging. Magnetic Resonance in Medicine, 23, 37–45.CrossRefPubMed Detre, J. A., Leigh, J. S., WIlliams, D. S., & Koretsky, A. P. (1992). Perfusion imaging. Magnetic Resonance in Medicine, 23, 37–45.CrossRefPubMed
go back to reference Donaldson, D. I., & Buckner, R. L. (2001). Effective paradigm design. In P. Jezzard, P. M. Matthews, & S. M. Smith (Eds.), Functional MRI: An Introduction to methods (pp. 177–195). New York: Oxford University Press. Donaldson, D. I., & Buckner, R. L. (2001). Effective paradigm design. In P. Jezzard, P. M. Matthews, & S. M. Smith (Eds.), Functional MRI: An Introduction to methods (pp. 177–195). New York: Oxford University Press.
go back to reference Edelman R. R., Siewert B., Darby D. G., Thangaraj V., Nobre A. C., Mesulam M. M., & Warach, S. (1994). Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. Radiology, 192, 513–520.PubMed Edelman R. R., Siewert B., Darby D. G., Thangaraj V., Nobre A. C., Mesulam M. M., & Warach, S. (1994). Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. Radiology, 192, 513–520.PubMed
go back to reference Elster, A. D., & Burdette, J. H. (2001). Questions & answers in magnetic resonance imaging (2nd edn.). St. Louis: Mosby. Elster, A. D., & Burdette, J. H. (2001). Questions & answers in magnetic resonance imaging (2nd edn.). St. Louis: Mosby.
go back to reference Frahm, J., Krüger, G., Merboldt, K.-D., & Kleinschmidt, A. (1996). Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal activation in man. Magnetic Resonance in Medicine, 35, 143–148.CrossRefPubMed Frahm, J., Krüger, G., Merboldt, K.-D., & Kleinschmidt, A. (1996). Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal activation in man. Magnetic Resonance in Medicine, 35, 143–148.CrossRefPubMed
go back to reference Friston, K. J., Josephs, O., Rees, G., & Turner, R. (1998). Nonlinear event-related responses in fMRI. Magnetic Resonance in Medicine, 39, 41–52.CrossRefPubMed Friston, K. J., Josephs, O., Rees, G., & Turner, R. (1998). Nonlinear event-related responses in fMRI. Magnetic Resonance in Medicine, 39, 41–52.CrossRefPubMed
go back to reference Friston, K. J., Price, C. J., Fletcher, P., Moore, C., Frackowiak, R. S. J., & Dolan, R. J. (1996). The trouble with cognitive subtraction. NeuroImage, 4, 97–104.CrossRefPubMed Friston, K. J., Price, C. J., Fletcher, P., Moore, C., Frackowiak, R. S. J., & Dolan, R. J. (1996). The trouble with cognitive subtraction. NeuroImage, 4, 97–104.CrossRefPubMed
go back to reference Fujita, N., Matsumoto, K., Tanaka, H., Watanabe, Y., & Murase, K. (2006). Quantitative study of changes in oxidative metabolism during visual stimulation using absolute relaxation rates. NMR in Biomedicine, 19, 60–68.CrossRefPubMed Fujita, N., Matsumoto, K., Tanaka, H., Watanabe, Y., & Murase, K. (2006). Quantitative study of changes in oxidative metabolism during visual stimulation using absolute relaxation rates. NMR in Biomedicine, 19, 60–68.CrossRefPubMed
go back to reference Garcia, D. M., Bazelaire, C. D., & Alsop, D. (2005). Pseudo-continuous flow drive adiabatic inversion for arterial spin labeling. Paper presented at the 13th ISMRM Sicentific Meeting, Miami Beach. Garcia, D. M., Bazelaire, C. D., & Alsop, D. (2005). Pseudo-continuous flow drive adiabatic inversion for arterial spin labeling. Paper presented at the 13th ISMRM Sicentific Meeting, Miami Beach.
go back to reference Gjedde, A. (2001). Brain energy metabolism and the physiological basis of the haemodynamic response. In P. Jezzard, P. M. Matthews, & S. M. Smith (Eds.), Functional MRI: An Introduction to methods (pp. 37–65). New York: Oxford University Press. Gjedde, A. (2001). Brain energy metabolism and the physiological basis of the haemodynamic response. In P. Jezzard, P. M. Matthews, & S. M. Smith (Eds.), Functional MRI: An Introduction to methods (pp. 37–65). New York: Oxford University Press.
go back to reference Grubb, R. L., Raichle, M. E., Eichling, J. O., & Ter-Pogossian, M. M. (1974). The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke, 5, 630–639.PubMed Grubb, R. L., Raichle, M. E., Eichling, J. O., & Ter-Pogossian, M. M. (1974). The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke, 5, 630–639.PubMed
go back to reference Guyton, A. C. (1977). Basic human physiology: Normal function and mechanisms of disease (2nd edn.). Philadelphia: W.B. Saunders Company. Guyton, A. C. (1977). Basic human physiology: Normal function and mechanisms of disease (2nd edn.). Philadelphia: W.B. Saunders Company.
go back to reference Hajnal, J. V., Bydder, G. M., & Young, I. R. (1995). fMRI: Does correlation imply activation. NMR in Biomedicine, 8, 97–100.CrossRefPubMed Hajnal, J. V., Bydder, G. M., & Young, I. R. (1995). fMRI: Does correlation imply activation. NMR in Biomedicine, 8, 97–100.CrossRefPubMed
go back to reference Hoge, R. D., Atkinson, J., Gill, B., Crelier, G. R., Marrett, S., & Pike, G. B. (1999). Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proceedings of the National Academy of Science USA, 96(16), 9403–9408.CrossRef Hoge, R. D., Atkinson, J., Gill, B., Crelier, G. R., Marrett, S., & Pike, G. B. (1999). Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proceedings of the National Academy of Science USA, 96(16), 9403–9408.CrossRef
go back to reference Horvath, I., Sandor, N. T., Ruttner, Z., & McLaughlin, A. C. (1994). Role of nitric oxide in regulating cerebrocortical oxygen consumption and blood flow during hypercapnia. Journal of Cerebral Blood Flow and Metabolism, 14, 503–509.PubMed Horvath, I., Sandor, N. T., Ruttner, Z., & McLaughlin, A. C. (1994). Role of nitric oxide in regulating cerebrocortical oxygen consumption and blood flow during hypercapnia. Journal of Cerebral Blood Flow and Metabolism, 14, 503–509.PubMed
go back to reference Huettel, S. A., Song, A. W., & McCarthy, G. (2004). Functional Magnetic Resonance Imaging. Sunderland, MA: Sinauer Associates. Huettel, S. A., Song, A. W., & McCarthy, G. (2004). Functional Magnetic Resonance Imaging. Sunderland, MA: Sinauer Associates.
go back to reference Jezzard, P., Matthews, P. M., & Smith, S. M. (Eds.). (2001). Functional MRI: An Introduction to methods. New York: Oxford University Press. Jezzard, P., Matthews, P. M., & Smith, S. M. (Eds.). (2001). Functional MRI: An Introduction to methods. New York: Oxford University Press.
go back to reference Jones, M., Berwick, J., Hewson-Stoate, N., Gias, C., & Mayhew, J. (2005). The effect of hypercapnia on the neural and hemodynamic responses to somatosensory stimulation. Neuroimage, 27, 609–623.CrossRefPubMed Jones, M., Berwick, J., Hewson-Stoate, N., Gias, C., & Mayhew, J. (2005). The effect of hypercapnia on the neural and hemodynamic responses to somatosensory stimulation. Neuroimage, 27, 609–623.CrossRefPubMed
go back to reference Karu, Z. Z. (1995). Signals and systems made ridiculously simple. Cambridge, MA: ZiZi Press. Karu, Z. Z. (1995). Signals and systems made ridiculously simple. Cambridge, MA: ZiZi Press.
go back to reference Kastrup, A., Kruger, G., Neumann-Haefelin, T., Glover, G. H., & Moseley, M. E. (2002). Changes of cerebral blood flow, oxygenation, and oxidative metabolism during graded motor activation. Neuroimage, 15, 74–82.CrossRefPubMed Kastrup, A., Kruger, G., Neumann-Haefelin, T., Glover, G. H., & Moseley, M. E. (2002). Changes of cerebral blood flow, oxygenation, and oxidative metabolism during graded motor activation. Neuroimage, 15, 74–82.CrossRefPubMed
go back to reference Kemeny S., Ye, F. Q., Birn, R., & Braun, A. R. (2005). Comparison of continuous overt speech fMRI using BOLD and arterial spin labeling. Human Brain Mapping, 24, 173–183.CrossRefPubMed Kemeny S., Ye, F. Q., Birn, R., & Braun, A. R. (2005). Comparison of continuous overt speech fMRI using BOLD and arterial spin labeling. Human Brain Mapping, 24, 173–183.CrossRefPubMed
go back to reference Kety, S. S., & Schmidt, C. F. (1948). The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. The Journal of Clinical Investigation, 27, 484–492.PubMedCrossRef Kety, S. S., & Schmidt, C. F. (1948). The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. The Journal of Clinical Investigation, 27, 484–492.PubMedCrossRef
go back to reference Kim, S. G., Rostrup, E., Larsson, H. B. W., Ogawa, S., & Paulson, O. B. (1999) Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation. Magnetic Resonance in Medicine, 41, 1152–1161.CrossRefPubMed Kim, S. G., Rostrup, E., Larsson, H. B. W., Ogawa, S., & Paulson, O. B. (1999) Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation. Magnetic Resonance in Medicine, 41, 1152–1161.CrossRefPubMed
go back to reference Kim, S.-G., & Tsekos, N. V. (1997). Perfusion imaging by a flow-sensitive alternating inversion recovery (FAIR) technique: Application to functional brain imaging. Magnetic Resonance in Medicine, 37, 425–435.CrossRefPubMed Kim, S.-G., & Tsekos, N. V. (1997). Perfusion imaging by a flow-sensitive alternating inversion recovery (FAIR) technique: Application to functional brain imaging. Magnetic Resonance in Medicine, 37, 425–435.CrossRefPubMed
go back to reference Kwong, K. K., Chesler, D. A., Weisskoff, R. M., Donahue, K. M., Davis, T. L., Ostergaard, L., Campbell, T. A., & Rosen, B. R. (1995). MR perfusion studies with T1-weighted echo planar imaging. Magnetic Resonance in Medicine, 34, 878–887.CrossRefPubMed Kwong, K. K., Chesler, D. A., Weisskoff, R. M., Donahue, K. M., Davis, T. L., Ostergaard, L., Campbell, T. A., & Rosen, B. R. (1995). MR perfusion studies with T1-weighted echo planar imaging. Magnetic Resonance in Medicine, 34, 878–887.CrossRefPubMed
go back to reference Latest IMV PET census shows fast growth in PET/CT installations. 2004 (Nov. 18). News from IMV’s Medical Information Division. http://www.imvlimited.com/mid/news_c.html. Latest IMV PET census shows fast growth in PET/CT installations. 2004 (Nov. 18). News from IMV’s Medical Information Division. http://​www.​imvlimited.​com/​mid/​news_​c.​html.​
go back to reference Latest IMV study shows MRI clinical utilization expanding. 2005 (Feb. 19). News from IMV’s Medical Information Division. http://www.imvlimited.com/ mid/news_a.hmtl. Latest IMV study shows MRI clinical utilization expanding. 2005 (Feb. 19). News from IMV’s Medical Information Division. http://​www.​imvlimited.​com/​ mid/news_a.hmtl.
go back to reference Leontiev, O., & Buxton, R. B. (2007). Reproducibility of BOLD, perfusion, and CMRO(2) measurements with calibrated-BOLD fMRI. NeuroImage, 35, 175–184.CrossRefPubMed Leontiev, O., & Buxton, R. B. (2007). Reproducibility of BOLD, perfusion, and CMRO(2) measurements with calibrated-BOLD fMRI. NeuroImage, 35, 175–184.CrossRefPubMed
go back to reference Leontiev, O., Dubowitz, D. J., & Buxton, R. B. (2007). CBF/CMRO2 coupling measured with calibrated-BOLD fMRI: Sources of bias. Manuscript submitted for publication. Leontiev, O., Dubowitz, D. J., & Buxton, R. B. (2007). CBF/CMRO2 coupling measured with calibrated-BOLD fMRI: Sources of bias. Manuscript submitted for publication.
go back to reference Liu T. T. (2004). Efficiency, power, and entropy in event-related fMRI with multiple trial types. Part II: Design of experiments. NeuroImage, 21, 401–413.CrossRefPubMed Liu T. T. (2004). Efficiency, power, and entropy in event-related fMRI with multiple trial types. Part II: Design of experiments. NeuroImage, 21, 401–413.CrossRefPubMed
go back to reference Liu T. T., Behzadi, Y., Restom, K., Uludag, K., Lu, K., Buracas, G. T., Dubowitz, D. J., & Buxton, R. B. (2004). Caffeine alters the temporal dynamics of the visual BOLD response. NeuroImage, 23, 1402–1413.CrossRefPubMed Liu T. T., Behzadi, Y., Restom, K., Uludag, K., Lu, K., Buracas, G. T., Dubowitz, D. J., & Buxton, R. B. (2004). Caffeine alters the temporal dynamics of the visual BOLD response. NeuroImage, 23, 1402–1413.CrossRefPubMed
go back to reference Liu, T. T., & Brown, G. G. (2007). Measurement of cerebral perfusion with arterial spin labeling: Part 1. methods. Journal of the International Neuropsychological Society. Liu, T. T., & Brown, G. G. (2007). Measurement of cerebral perfusion with arterial spin labeling: Part 1. methods. Journal of the International Neuropsychological Society.
go back to reference Liu T. T., & Frank, L. R. (2004). Efficiency, power, and entropy in event-related FMRI with multiple trial types. Part I: Theory. NeuroImage, 21, 387–400. Erratum in NeuroImage (2004), 22, 1427. Liu T. T., & Frank, L. R. (2004). Efficiency, power, and entropy in event-related FMRI with multiple trial types. Part I: Theory. NeuroImage, 21, 387–400. Erratum in NeuroImage (2004), 22, 1427.
go back to reference Liu, T. T., Frank, L. R., Wong, E. C., & Buxton, R. B. (2001). Detection power, estimation efficiency, and predictability in event-related fMRI. NeuroImage, 13, 759–773.CrossRefPubMed Liu, T. T., Frank, L. R., Wong, E. C., & Buxton, R. B. (2001). Detection power, estimation efficiency, and predictability in event-related fMRI. NeuroImage, 13, 759–773.CrossRefPubMed
go back to reference Liu, T. T., & Wong, E. C. (2005). A signal processing model for arterial spin labeling functional MRI. NeuroImage, 24, 207–215.CrossRefPubMed Liu, T. T., & Wong, E. C. (2005). A signal processing model for arterial spin labeling functional MRI. NeuroImage, 24, 207–215.CrossRefPubMed
go back to reference Liu, T. T., Wong, E. C., Frank, L. R., & Buxton, R. B. (2002). Analysis and design of perfusion-based event-related fMRI experiments. NeuroImage, 16, 269–282.CrossRefPubMed Liu, T. T., Wong, E. C., Frank, L. R., & Buxton, R. B. (2002). Analysis and design of perfusion-based event-related fMRI experiments. NeuroImage, 16, 269–282.CrossRefPubMed
go back to reference Mandeville, J. B., Marota, J. J. A., Ayata, C., Zaharchuk, G., Moskowitz, M. A., Rosen, B. R., & Weisskoff, R. M. (1999b). Evidence of a cerebrovascular post-arteriole Windkessel with delayed compliance. Journal of Cerebral Blood Flow and Metabolism, 19, 679–689.PubMed Mandeville, J. B., Marota, J. J. A., Ayata, C., Zaharchuk, G., Moskowitz, M. A., Rosen, B. R., & Weisskoff, R. M. (1999b). Evidence of a cerebrovascular post-arteriole Windkessel with delayed compliance. Journal of Cerebral Blood Flow and Metabolism, 19, 679–689.PubMed
go back to reference Mandeville, J. B., Marota, J. J. A., Kosofsky, B. E., Keltner, J. R., Weissleder, R., Rosen, B. R., & Weisskoff, R. M. (1998). Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation. Magnetic Resonance in Medicine, 39, 615–624.CrossRefPubMed Mandeville, J. B., Marota, J. J. A., Kosofsky, B. E., Keltner, J. R., Weissleder, R., Rosen, B. R., & Weisskoff, R. M. (1998). Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation. Magnetic Resonance in Medicine, 39, 615–624.CrossRefPubMed
go back to reference Mildner, T., Zysset, S., Trampel, R., Driesel, W., & Möller, H. E. (2005). Towards quantification of blood-flow changes during cognitive task activation using perfusion-based fMRI. NeuroImage, 27, 919–926.CrossRefPubMed Mildner, T., Zysset, S., Trampel, R., Driesel, W., & Möller, H. E. (2005). Towards quantification of blood-flow changes during cognitive task activation using perfusion-based fMRI. NeuroImage, 27, 919–926.CrossRefPubMed
go back to reference Miller, K. L., Luh, W. M., Liu, T. T., Martinez, A., Obata, T., Wong, E. C., Frank, L. R., & Buxton, R. B. (2001). Nonlinear temporal dynamics of the cerebral blood flow response. Human Brain Mapping, 13, 1–12.CrossRefPubMed Miller, K. L., Luh, W. M., Liu, T. T., Martinez, A., Obata, T., Wong, E. C., Frank, L. R., & Buxton, R. B. (2001). Nonlinear temporal dynamics of the cerebral blood flow response. Human Brain Mapping, 13, 1–12.CrossRefPubMed
go back to reference Moncada, S., & Bolanos, J. P. (2006). Nitric oxide, cell bioenergetics and neurodegeneration. Journal of Neurochemistry, 97, 1676–1689.CrossRefPubMed Moncada, S., & Bolanos, J. P. (2006). Nitric oxide, cell bioenergetics and neurodegeneration. Journal of Neurochemistry, 97, 1676–1689.CrossRefPubMed
go back to reference Mumford, J. A., Hernandez-Garcia, L., Lee, G. R., & Nichols, T. A. (2006) Estimation efficiency and statistical power in arterial spin labeling fMRI. NeuroImage, 33, 103–114.CrossRefPubMed Mumford, J. A., Hernandez-Garcia, L., Lee, G. R., & Nichols, T. A. (2006) Estimation efficiency and statistical power in arterial spin labeling fMRI. NeuroImage, 33, 103–114.CrossRefPubMed
go back to reference Novack, P., Shenkin, H. A., Bortin, L., Goluboff, B., & Soffe, A. M. (1953). The effects of carbon dioxide inhalation upon the cerebral blood flow and cerebral oxygen consumption in vascular disease. The Journal of Clinical Investigation, 32, 696–702.PubMed Novack, P., Shenkin, H. A., Bortin, L., Goluboff, B., & Soffe, A. M. (1953). The effects of carbon dioxide inhalation upon the cerebral blood flow and cerebral oxygen consumption in vascular disease. The Journal of Clinical Investigation, 32, 696–702.PubMed
go back to reference Obata, T., Liu, T. T., Miller, K. L., Luh, W. M., Wong, E. C., Frank, L. R., & Buxton, R. B. (2004). Discrepancies between BOLD and flow dynamics in primary and supplementary motor areas: application of the balloon model to the interpretation of BOLD transients. NeuroImage, 21, 144–153.CrossRefPubMed Obata, T., Liu, T. T., Miller, K. L., Luh, W. M., Wong, E. C., Frank, L. R., & Buxton, R. B. (2004). Discrepancies between BOLD and flow dynamics in primary and supplementary motor areas: application of the balloon model to the interpretation of BOLD transients. NeuroImage, 21, 144–153.CrossRefPubMed
go back to reference Ogawa, S., Tso-Ming, L., Nayak, A. S., & Glynn, P. (1990). Oxygen-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magnetic Resonance in Medicine, 14, 68–78.CrossRefPubMed Ogawa, S., Tso-Ming, L., Nayak, A. S., & Glynn, P. (1990). Oxygen-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magnetic Resonance in Medicine, 14, 68–78.CrossRefPubMed
go back to reference Ogawa, S., Menon, R. S., Tank, D. W., Kim, S.-G., Merkle, H., Ellerman, J. M., & Ugurbil, K. (1993). Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging: A comparison of signal characteristics with a biophysical model. Biophysical Journal, 64, 803–812.PubMedCrossRef Ogawa, S., Menon, R. S., Tank, D. W., Kim, S.-G., Merkle, H., Ellerman, J. M., & Ugurbil, K. (1993). Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging: A comparison of signal characteristics with a biophysical model. Biophysical Journal, 64, 803–812.PubMedCrossRef
go back to reference Rao, S. M., Salmeron, B. J., Durgerian S., Janowiak, J. A., Fischer, M., Risinger, R. C., Conant, L. L., & Stein, E. A. (2000). Effects of methylphenidate on functional MRI blood-oxygen-level-dependent contrast. American Journal of Psychiatry, 157, 1697–1699.CrossRefPubMed Rao, S. M., Salmeron, B. J., Durgerian S., Janowiak, J. A., Fischer, M., Risinger, R. C., Conant, L. L., & Stein, E. A. (2000). Effects of methylphenidate on functional MRI blood-oxygen-level-dependent contrast. American Journal of Psychiatry, 157, 1697–1699.CrossRefPubMed
go back to reference Restom, K., Behzadi, Y., & Liu, T. T. (2006). Physiological noise reduction for arterial spin labeling functional MRI. NeuroImage, 31, 1104–1115.CrossRefPubMed Restom, K., Behzadi, Y., & Liu, T. T. (2006). Physiological noise reduction for arterial spin labeling functional MRI. NeuroImage, 31, 1104–1115.CrossRefPubMed
go back to reference Rundus, D. (1971). Analysis of rehearsal processes in free recall. Journal of Experimental Psychology, 89, 63–77.CrossRef Rundus, D. (1971). Analysis of rehearsal processes in free recall. Journal of Experimental Psychology, 89, 63–77.CrossRef
go back to reference Shmuel, A., Yacoub, E., Pfeuffer, J., Van de Moortele, P. F., Adriany, G., Hu, X., Ugurbil, K. (2002). Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron, 36, 1195–1210.CrossRefPubMed Shmuel, A., Yacoub, E., Pfeuffer, J., Van de Moortele, P. F., Adriany, G., Hu, X., Ugurbil, K. (2002). Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron, 36, 1195–1210.CrossRefPubMed
go back to reference Sicard, K. M., & Duong, T. Q. (2005) Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals. NeuroImage, 25, 850–858.CrossRefPubMed Sicard, K. M., & Duong, T. Q. (2005) Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals. NeuroImage, 25, 850–858.CrossRefPubMed
go back to reference St Lawrence, K. S., Ye, F. Q., Lewis, B. K., Frank, J. A., & McLaughlin, A. C. (2003). Measuring the effects of indomethacin on changes in cerebral oxidative metabolism and cerebral blood flow during sensorimotor activation. Magnetic Resonance in Medicine, 50, 99–106.CrossRefPubMed St Lawrence, K. S., Ye, F. Q., Lewis, B. K., Frank, J. A., & McLaughlin, A. C. (2003). Measuring the effects of indomethacin on changes in cerebral oxidative metabolism and cerebral blood flow during sensorimotor activation. Magnetic Resonance in Medicine, 50, 99–106.CrossRefPubMed
go back to reference Stefanovic, B., Warnking, J. M., Kobayashi, E., Bagshaw, A. P., Hawco, C., Dubeau, F., Gotman, J., & Pike, G. B. (2005). Hemodynamic and metabolic responses to activation, deactivation and epileptic discharges. NeuroImage, 28, 205–215.CrossRefPubMed Stefanovic, B., Warnking, J. M., Kobayashi, E., Bagshaw, A. P., Hawco, C., Dubeau, F., Gotman, J., & Pike, G. B. (2005). Hemodynamic and metabolic responses to activation, deactivation and epileptic discharges. NeuroImage, 28, 205–215.CrossRefPubMed
go back to reference Stefanovic, B., Warnking, J. M., & Pike, G. B. (2004). Hemodynamic and metabolic responses to neuronal inhibition. NeuroImage, 22, 771–778.CrossRefPubMed Stefanovic, B., Warnking, J. M., & Pike, G. B. (2004). Hemodynamic and metabolic responses to neuronal inhibition. NeuroImage, 22, 771–778.CrossRefPubMed
go back to reference Sternberg, S. (1969). The discovery of processing stages: Extension of Donders method. Acta Psychologica, 30, 276–315.CrossRef Sternberg, S. (1969). The discovery of processing stages: Extension of Donders method. Acta Psychologica, 30, 276–315.CrossRef
go back to reference Thulborn, K. R., Waterton, J. C., Matthews, P. M., & Rada, G. K. (1982). Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochimica et Biophysica Acta, 714, 265–270.PubMed Thulborn, K. R., Waterton, J. C., Matthews, P. M., & Rada, G. K. (1982). Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochimica et Biophysica Acta, 714, 265–270.PubMed
go back to reference Tjandra, T., Brooks, J. C., Figueiredo, P., Wise, R., Matthews, P. M., & Tracey, I. (2005). Quantitative assessment of the reproducibility of functional activation measured with BOLD and MR perfusion imaging: Implications for clinical trial design. NeuroImage, 27, 393–401.CrossRefPubMed Tjandra, T., Brooks, J. C., Figueiredo, P., Wise, R., Matthews, P. M., & Tracey, I. (2005). Quantitative assessment of the reproducibility of functional activation measured with BOLD and MR perfusion imaging: Implications for clinical trial design. NeuroImage, 27, 393–401.CrossRefPubMed
go back to reference Townsend, J. T., & Ashby, F. G. (1983). Stochastic modeling of elementary psychological processes. New York: Cambridge University Press. Townsend, J. T., & Ashby, F. G. (1983). Stochastic modeling of elementary psychological processes. New York: Cambridge University Press.
go back to reference Twieg, D. B. (1983) The k-trajectory formulation of the NMR imaging process with applications in analsysis and synthesis of imaging methods. Medical Physics, 10, 610–621.CrossRefPubMed Twieg, D. B. (1983) The k-trajectory formulation of the NMR imaging process with applications in analsysis and synthesis of imaging methods. Medical Physics, 10, 610–621.CrossRefPubMed
go back to reference Uludag, K., & Buxton, R. B. (2004). Measuring the effects of indomethacin on changes in cerebral oxidative metabolism and cerebral blood flow during sensorimotor activation. Magnetic Resonance in Medicine, 51, 1088–1089; author reply 1090. Uludag, K., & Buxton, R. B. (2004). Measuring the effects of indomethacin on changes in cerebral oxidative metabolism and cerebral blood flow during sensorimotor activation. Magnetic Resonance in Medicine, 51, 1088–1089; author reply 1090.
go back to reference Uludağ, K., Dubowitz, D. J., & Buxton, R. B. (2006). Basic principles of functional MRI. In R. R. Edelman, J. R. Hesselink, M. B. Zlatkin, & J. V. Crues III (Eds.), Clinical magnetic resonance imaging (3rd edn., Vol. 1, pp. 249–287). Philadelphia: Saunders Elsevier. Uludağ, K., Dubowitz, D. J., & Buxton, R. B. (2006). Basic principles of functional MRI. In R. R. Edelman, J. R. Hesselink, M. B. Zlatkin, & J. V. Crues III (Eds.), Clinical magnetic resonance imaging (3rd edn., Vol. 1, pp. 249–287). Philadelphia: Saunders Elsevier.
go back to reference Uludag, K., Dubowitz, D. J., Yoder, E. J., Restom, K., Liu, T. T., & Buxton, R. B. (2004). Coupling of cerebral blood flow and oxygen consumption during physiological activation and deactivation measured with fMRI. NeuroImage, 23, 148–155.CrossRefPubMed Uludag, K., Dubowitz, D. J., Yoder, E. J., Restom, K., Liu, T. T., & Buxton, R. B. (2004). Coupling of cerebral blood flow and oxygen consumption during physiological activation and deactivation measured with fMRI. NeuroImage, 23, 148–155.CrossRefPubMed
go back to reference Wang, J., Aguirre, G. K., Kimberg, D. Y., Roc, A. C., Li, L., & Detre, J. A. (2003). Arterial spin labeling perfusion fMRI with very low task frequency. Magnetic Resonance in Medicine, 49, 796–802.CrossRefPubMed Wang, J., Aguirre, G. K., Kimberg, D. Y., Roc, A. C., Li, L., & Detre, J. A. (2003). Arterial spin labeling perfusion fMRI with very low task frequency. Magnetic Resonance in Medicine, 49, 796–802.CrossRefPubMed
go back to reference Wong, E. C., Buxton, R. B., & Frank, L. R. (1997). Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR in Biomedicine, 10, 237–249.CrossRefPubMed Wong, E. C., Buxton, R. B., & Frank, L. R. (1997). Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR in Biomedicine, 10, 237–249.CrossRefPubMed
go back to reference Wong, E. C., Buxton, R. B., & Frank, L. R. (1998a). Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magnetic Resonance in Medicine, 39, 702–708.CrossRefPubMed Wong, E. C., Buxton, R. B., & Frank, L. R. (1998a). Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magnetic Resonance in Medicine, 39, 702–708.CrossRefPubMed
go back to reference Wong, E. C., Buxton, R. B., & Frank, L. R. (1998b). A theoretical and experimental comparison of continuous and pulsed arterial spin labeling techniques for quantitative perfusion imaging. Magnetic Resonance in Medicine, 40, 348–355.CrossRefPubMed Wong, E. C., Buxton, R. B., & Frank, L. R. (1998b). A theoretical and experimental comparison of continuous and pulsed arterial spin labeling techniques for quantitative perfusion imaging. Magnetic Resonance in Medicine, 40, 348–355.CrossRefPubMed
go back to reference Wong, E. C., Cronin, M., Wu, W. C., Inglis, B., Frank, L. R., & Liu, T. T. (2006). Velocity-selective arterial spin labeling. Magnetic Resonance in Medicine, 55, 1334–1341.CrossRefPubMed Wong, E. C., Cronin, M., Wu, W. C., Inglis, B., Frank, L. R., & Liu, T. T. (2006). Velocity-selective arterial spin labeling. Magnetic Resonance in Medicine, 55, 1334–1341.CrossRefPubMed
go back to reference Wong, E. C., Luh, W.-M., & Liu, T. T. (2000). Turbo ASL: Arterial spin labeling with higher SNR and temporal resolution. Magnetic Resonance in Medicine, 44, 511–515. Wong, E. C., Luh, W.-M., & Liu, T. T. (2000). Turbo ASL: Arterial spin labeling with higher SNR and temporal resolution. Magnetic Resonance in Medicine, 44, 511–515.
go back to reference Yang, S. P., & Krasny, J. A. (1995). Cerebral blood flow and metabolic responses to sustained hypercapnia in awake sheep. Journal of Cerebral Blood Flow and Metabololism, 15, 115– 123. Yang, S. P., & Krasny, J. A. (1995). Cerebral blood flow and metabolic responses to sustained hypercapnia in awake sheep. Journal of Cerebral Blood Flow and Metabololism, 15, 115– 123.
go back to reference Zappe, A. C., Uludag, K., Rainer, G., & Logothetis, N. K. (2005). Influence of moderate hypercapnia on neural activity in monkey by simultaneous intracortical recordings and fMRI at 4.7T. In: 35th meeting, Society for Neuroscience, Washington D.C., p 10.11. Zappe, A. C., Uludag, K., Rainer, G., & Logothetis, N. K. (2005). Influence of moderate hypercapnia on neural activity in monkey by simultaneous intracortical recordings and fMRI at 4.7T. In: 35th meeting, Society for Neuroscience, Washington D.C., p 10.11.
go back to reference Zarahn, E., Aguirre, G., & D’Esposito, M. (1997). A trial-based experimental design for fMRI. Neuroimage, 6, 122– 138.CrossRefPubMed Zarahn, E., Aguirre, G., & D’Esposito, M. (1997). A trial-based experimental design for fMRI. Neuroimage, 6, 122– 138.CrossRefPubMed
Metadata
Title
A Primer on Functional Magnetic Resonance Imaging
Authors
Gregory G. Brown
Joanna E. Perthen
Thomas T. Liu
Richard B. Buxton
Publication date
01-06-2007
Publisher
Springer US
Published in
Neuropsychology Review / Issue 2/2007
Print ISSN: 1040-7308
Electronic ISSN: 1573-6660
DOI
https://doi.org/10.1007/s11065-007-9028-8

Other articles of this Issue 2/2007

Neuropsychology Review 2/2007 Go to the issue