Skip to main content
Top
Published in: Journal of Neuro-Oncology 2/2018

01-09-2018 | Clinical Study

MR-spectroscopic imaging of glial tumors in the spotlight of the 2016 WHO classification

Authors: Elie Diamandis, Carl Phillip Simon Gabriel, Urs Würtemberger, Konstanze Guggenberger, Horst Urbach, Ori Staszewski, Silke Lassmann, Oliver Schnell, Jürgen Grauvogel, Irina Mader, Dieter Henrik Heiland

Published in: Journal of Neuro-Oncology | Issue 2/2018

Login to get access

Abstract

Background

The purpose of this study is to map spatial metabolite differences across three molecular subgroups of glial tumors, defined by the IDH1/2 mutation and 1p19q-co-deletion, using magnetic resonance spectroscopy. This work reports a new MR spectroscopy based classification algorithm by applying a radiomics analytics pipeline.

Materials

65 patients received anatomical and chemical shift imaging (5 × 5 × 20 mm voxel size). Tumor regions were segmented and registered to corresponding spectroscopic voxels. Spectroscopic features were computed (n = 860) in a radiomic approach and selected by a classification algorithm. Finally, a random forest machine-learning model was trained to predict the molecular subtypes.

Results

A cluster analysis identified three robust spectroscopic clusters based on the mean silhouette widths. Molecular subgroups were significantly associated with the computed spectroscopic clusters (Fisher’s Exact test p < 0.01). A machine-learning model was trained and validated by public available MRS data (n = 19). The analysis showed an accuracy rate in the Random Forest model by 93.8%.

Conclusions

MR spectroscopy is a robust tool for predicting the molecular subtype in gliomas and adds important diagnostic information to the preoperative diagnostic work-up of glial tumor patients. MR-spectroscopy could improve radiological diagnostics in the future and potentially influence clinical and surgical decisions to improve individual tumor treatment.
Literature
1.
go back to reference Crocetti E, Trama A, Stiller C et al (2012) Epidemiology of glial and non-glial brain tumours in Europe. Eur J Cancer 48:1532–1542CrossRefPubMed Crocetti E, Trama A, Stiller C et al (2012) Epidemiology of glial and non-glial brain tumours in Europe. Eur J Cancer 48:1532–1542CrossRefPubMed
2.
3.
go back to reference Ostrom QT, Gittleman H, Liao P, Rouse C, Chen Y, Dowling J, Wolinsky Y, Kruchko C, Barnholtz-Sloan J (2014) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro-Oncology 16(Suppl 4):iv1–iv63CrossRefPubMedPubMedCentral Ostrom QT, Gittleman H, Liao P, Rouse C, Chen Y, Dowling J, Wolinsky Y, Kruchko C, Barnholtz-Sloan J (2014) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro-Oncology 16(Suppl 4):iv1–iv63CrossRefPubMedPubMedCentral
4.
go back to reference Brat DJ, Verhaak RGW, Aldape KD et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372:2481–2498CrossRefPubMed Brat DJ, Verhaak RGW, Aldape KD et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372:2481–2498CrossRefPubMed
5.
go back to reference Wiestler B, Capper D, Sill M et al (2014) Integrated DNA methylation and copy-number profiling identify three clinically and biologically relevant groups of anaplastic glioma. Acta Neuropathol 128:561–571CrossRefPubMed Wiestler B, Capper D, Sill M et al (2014) Integrated DNA methylation and copy-number profiling identify three clinically and biologically relevant groups of anaplastic glioma. Acta Neuropathol 128:561–571CrossRefPubMed
6.
go back to reference Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:1–18CrossRef Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:1–18CrossRef
7.
go back to reference Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109CrossRefPubMedPubMedCentral Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109CrossRefPubMedPubMedCentral
8.
go back to reference Naeini KM, Pope WB, Cloughesy TF et al (2013) Identifying the mesenchymal molecular subtype of glioblastoma using quantitative resonance images. Neuro-Oncology 15:626–634CrossRefPubMedPubMedCentral Naeini KM, Pope WB, Cloughesy TF et al (2013) Identifying the mesenchymal molecular subtype of glioblastoma using quantitative resonance images. Neuro-Oncology 15:626–634CrossRefPubMedPubMedCentral
10.
go back to reference Heiland DH, Demerath T, Haaker JG et al (2017) Integrative diffusion-weighted imaging and radiogenomic network analysis of glioblastoma multiforme. Sci Rep 7:43523CrossRefPubMedPubMedCentral Heiland DH, Demerath T, Haaker JG et al (2017) Integrative diffusion-weighted imaging and radiogenomic network analysis of glioblastoma multiforme. Sci Rep 7:43523CrossRefPubMedPubMedCentral
11.
go back to reference Pope WB, Mirsadraei L, Lai A et al (2012) Differential gene expression in glioblastoma defined by ADC histogram analysis: relationship to extracellular matrix molecules and survival. Am J Neuroradiol 33:1059–1064CrossRefPubMed Pope WB, Mirsadraei L, Lai A et al (2012) Differential gene expression in glioblastoma defined by ADC histogram analysis: relationship to extracellular matrix molecules and survival. Am J Neuroradiol 33:1059–1064CrossRefPubMed
12.
go back to reference Kickingereder P, Bonekamp D, Nowosielski M et al (2016) Radiogenomics of glioblastoma: machine learning-based classification of molecular characteristics by using multiparametric and multiregional MR imaging features. Radiology 281:907–918CrossRefPubMed Kickingereder P, Bonekamp D, Nowosielski M et al (2016) Radiogenomics of glioblastoma: machine learning-based classification of molecular characteristics by using multiparametric and multiregional MR imaging features. Radiology 281:907–918CrossRefPubMed
13.
go back to reference Zinn PO, Mahajan B, Majadan B, Sathyan P, Singh SK, Majumder S, Jolesz FA, Colen RR (2011) Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS ONE 6:e25451CrossRefPubMedPubMedCentral Zinn PO, Mahajan B, Majadan B, Sathyan P, Singh SK, Majumder S, Jolesz FA, Colen RR (2011) Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS ONE 6:e25451CrossRefPubMedPubMedCentral
14.
go back to reference Kickingereder P, Sahm F, Radbruch A, Wick W, Heiland S, Deimling A von, Bendszus M, Wiestler B (2015) IDH mutation status is associated with a distinct hypoxia/angiogenesis transcriptome signature which is non-invasively predictable with rCBV imaging in human glioma. Sci Rep 5:16238CrossRefPubMedPubMedCentral Kickingereder P, Sahm F, Radbruch A, Wick W, Heiland S, Deimling A von, Bendszus M, Wiestler B (2015) IDH mutation status is associated with a distinct hypoxia/angiogenesis transcriptome signature which is non-invasively predictable with rCBV imaging in human glioma. Sci Rep 5:16238CrossRefPubMedPubMedCentral
15.
go back to reference Heiland DH, Wörner J, Gerrit Haaker J et al (2017) The integrative metabolomic-transcriptomic landscape of glioblastome multiforme. Oncotarget 8:49178–49190PubMedPubMedCentral Heiland DH, Wörner J, Gerrit Haaker J et al (2017) The integrative metabolomic-transcriptomic landscape of glioblastome multiforme. Oncotarget 8:49178–49190PubMedPubMedCentral
16.
go back to reference Choi C, Ganji SK, DeBerardinis RJ et al (2012) 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med 18:624–629CrossRefPubMedPubMedCentral Choi C, Ganji SK, DeBerardinis RJ et al (2012) 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med 18:624–629CrossRefPubMedPubMedCentral
17.
go back to reference Baslow MH (2000) Functions of N-acetyl-l-aspartate and N-acetyl-l-aspartylglutamate in the vertebrate brain: role in glial cell-specific signaling. J Neurochem 75:453–459CrossRefPubMed Baslow MH (2000) Functions of N-acetyl-l-aspartate and N-acetyl-l-aspartylglutamate in the vertebrate brain: role in glial cell-specific signaling. J Neurochem 75:453–459CrossRefPubMed
18.
20.
go back to reference Lehnhardt FG, Rhn G, Ernestus RI, Grne M, Hoehn M (2001) 1H-and 31P-MR spectroscopy of primary and recurrent human brain tumors in vitro: malignancy-characteristic profiles of water soluble and lipophilic spectral components. NMR Biomed 14:307–317CrossRefPubMed Lehnhardt FG, Rhn G, Ernestus RI, Grne M, Hoehn M (2001) 1H-and 31P-MR spectroscopy of primary and recurrent human brain tumors in vitro: malignancy-characteristic profiles of water soluble and lipophilic spectral components. NMR Biomed 14:307–317CrossRefPubMed
21.
go back to reference Wise DR, DeBerardinis RJ, Mancuso A et al (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 105:18782–18787CrossRefPubMed Wise DR, DeBerardinis RJ, Mancuso A et al (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 105:18782–18787CrossRefPubMed
22.
go back to reference van Lith SAM, Navis AC, Verrijp K, Niclou SP, Bjerkvig R, Wesseling P, Tops B, Molenaar R, van Noorden CJF, Leenders WPJ (2014) Glutamate as chemotactic fuel for diffuse glioma cells: are they glutamate suckers? Biochim Biophys Acta 1846:66–74PubMed van Lith SAM, Navis AC, Verrijp K, Niclou SP, Bjerkvig R, Wesseling P, Tops B, Molenaar R, van Noorden CJF, Leenders WPJ (2014) Glutamate as chemotactic fuel for diffuse glioma cells: are they glutamate suckers? Biochim Biophys Acta 1846:66–74PubMed
24.
go back to reference Blanc EM, Jallageas M, Recasens M, Guiramand J (1999) Potentiation of glutamatergic agonist-induced inositol phosphate formation by basic fibroblast growth factor is related to developmental features in hippocampal cultures: neuronal survival and glial cell proliferation. Eur J Neurosci 11:3377–3386CrossRefPubMed Blanc EM, Jallageas M, Recasens M, Guiramand J (1999) Potentiation of glutamatergic agonist-induced inositol phosphate formation by basic fibroblast growth factor is related to developmental features in hippocampal cultures: neuronal survival and glial cell proliferation. Eur J Neurosci 11:3377–3386CrossRefPubMed
25.
go back to reference Callot V, Galanaud D, Le Fur Y, Confort-Gouny S, Ranjeva J-P, Cozzone PJ (2008) 1H MR spectroscopy of human brain tumours: a practical approach. Eur J Radiol 67:268–274CrossRefPubMed Callot V, Galanaud D, Le Fur Y, Confort-Gouny S, Ranjeva J-P, Cozzone PJ (2008) 1H MR spectroscopy of human brain tumours: a practical approach. Eur J Radiol 67:268–274CrossRefPubMed
26.
go back to reference Heiland DH, Mader I, Schlosser P, Pfeifer D, Carro MS, Lange T, Schwarzwald R, Vasilikos I, Urbach H, Weyerbrock A (2016) Integrative network-based analysis of magnetic resonance spectroscopy and genome wide expression in glioblastoma multiforme. Sci Rep 6:29052CrossRefPubMedPubMedCentral Heiland DH, Mader I, Schlosser P, Pfeifer D, Carro MS, Lange T, Schwarzwald R, Vasilikos I, Urbach H, Weyerbrock A (2016) Integrative network-based analysis of magnetic resonance spectroscopy and genome wide expression in glioblastoma multiforme. Sci Rep 6:29052CrossRefPubMedPubMedCentral
27.
go back to reference Scheenen TWJ, Klomp DWJ, Wijnen JP, Heerschap A (2008) Short echo time 1H-MRSI of the human brain at 3T with minimal chemical shift displacement errors using adiabatic refocusing pulses. Magn Reson Med 59:1–6CrossRefPubMed Scheenen TWJ, Klomp DWJ, Wijnen JP, Heerschap A (2008) Short echo time 1H-MRSI of the human brain at 3T with minimal chemical shift displacement errors using adiabatic refocusing pulses. Magn Reson Med 59:1–6CrossRefPubMed
28.
go back to reference Felsberg J, Erkwoh A, Sabel MC, Kirsch L, Fimmers R, Blaschke B, Schlegel U, Schramm J, Wiestler OD (2004) Oligodendroglial tumors: refinement of candidate regions on chromosome Arm 1p and correlation of 1p/19q status with survival. Brain Pathol 14:121–130CrossRefPubMed Felsberg J, Erkwoh A, Sabel MC, Kirsch L, Fimmers R, Blaschke B, Schlegel U, Schramm J, Wiestler OD (2004) Oligodendroglial tumors: refinement of candidate regions on chromosome Arm 1p and correlation of 1p/19q status with survival. Brain Pathol 14:121–130CrossRefPubMed
29.
go back to reference Wick W, Hartmann C, Engel C et al (2009) NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J Clin Oncol 27:5874–5880CrossRefPubMed Wick W, Hartmann C, Engel C et al (2009) NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J Clin Oncol 27:5874–5880CrossRefPubMed
30.
go back to reference Rosenstein BS, West CM, Bentzen SM et al (2014) Radiogenomics: radiobiology enters the era of big data and team science. Int J Radiat Oncol Biol Phys 89:709–713CrossRefPubMedPubMedCentral Rosenstein BS, West CM, Bentzen SM et al (2014) Radiogenomics: radiobiology enters the era of big data and team science. Int J Radiat Oncol Biol Phys 89:709–713CrossRefPubMedPubMedCentral
31.
go back to reference Brand A, Richter-Landsberg C, Leibfritz D (1993) Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci 15:289–298CrossRefPubMed Brand A, Richter-Landsberg C, Leibfritz D (1993) Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci 15:289–298CrossRefPubMed
32.
go back to reference Godlewski J, Ferrer-Luna R, Rooj AK et al (2017) MicroRNA signatures and molecular subtypes of glioblastoma: the role of extracellular transfer. Stem Cell Rep 8:1497–1505CrossRef Godlewski J, Ferrer-Luna R, Rooj AK et al (2017) MicroRNA signatures and molecular subtypes of glioblastoma: the role of extracellular transfer. Stem Cell Rep 8:1497–1505CrossRef
Metadata
Title
MR-spectroscopic imaging of glial tumors in the spotlight of the 2016 WHO classification
Authors
Elie Diamandis
Carl Phillip Simon Gabriel
Urs Würtemberger
Konstanze Guggenberger
Horst Urbach
Ori Staszewski
Silke Lassmann
Oliver Schnell
Jürgen Grauvogel
Irina Mader
Dieter Henrik Heiland
Publication date
01-09-2018
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 2/2018
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-018-2881-x

Other articles of this Issue 2/2018

Journal of Neuro-Oncology 2/2018 Go to the issue