Skip to main content
Top
Published in: Journal of Neuro-Oncology 3/2012

01-02-2012 | Laboratory Investigation - Human/Animal Tissue

Isolation of a new cell population in the glioblastoma microenvironment

Authors: Anne Clavreul, Amandine Etcheverry, Agnès Chassevent, Véronique Quillien, Tony Avril, Marie-Lise Jourdan, Sophie Michalak, Patrick François, Jean-Luc Carré, Jean Mosser, Philippe Menei, The Grand Ouest Glioma Project Network

Published in: Journal of Neuro-Oncology | Issue 3/2012

Login to get access

Abstract

Glioblastoma (GB) is a highly infiltrative tumor recurring in 90% of cases within a few centimeters of the resection cavity, even in cases of complete tumor resection and adjuvant chemo/radiotherapy. This observation highlights the importance of understanding this special zone of brain tissue surrounding the tumor. It is becoming clear that the nonneoplastic stromal compartment of most solid cancers plays an active role in tumor proliferation, invasion, and metastasis. Very little information, other than that concerning angiogenesis and immune cells, has been collected for stromal cells from GB. As part of a translational research program, we have isolated a new stromal cell population surrounding GB by computer-guided stereotaxic biopsies and primary culture. We named these cells GB-associated stromal cells (GASCs). GASCs are diploid, do not display the genomic alterations typical of GB cells, and have phenotypic and functional properties in common with the cancer-associated fibroblasts (CAFs) described in the stroma of carcinomas. In particular, GASCs express markers associated with CAFs such as fibroblast surface protein, alpha-smooth muscle actin (α-SMA), and platelet-derived growth factor receptor-beta (PDGFRβ). Furthermore, GASCs have a molecular expression profile different from that of control stromal cells derived from non-GB peripheral brain tissues. GASCs were also found to have tumor-promoting effects on glioma cells in vitro and in vivo. The isolation of GASCs in a tumor of neuroepithelial origin was unexpected, and further studies are required to determine their potential as a target for antiglioma treatment.
Literature
1.
go back to reference Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC–NCIC trial. Lancet Oncol 10:459–466PubMedCrossRef Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC–NCIC trial. Lancet Oncol 10:459–466PubMedCrossRef
2.
go back to reference Giese A, Kucinski T, Knopp U et al (2004) Pattern of recurrence following local chemotherapy with biodegradable carmustine (BCNU) implants in patients with glioblastoma. J Neurooncol 66:351–360PubMedCrossRef Giese A, Kucinski T, Knopp U et al (2004) Pattern of recurrence following local chemotherapy with biodegradable carmustine (BCNU) implants in patients with glioblastoma. J Neurooncol 66:351–360PubMedCrossRef
3.
go back to reference Lefranc F, Brotchi J, Kiss R (2005) Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J Clin Oncol 23:2411–2422PubMedCrossRef Lefranc F, Brotchi J, Kiss R (2005) Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J Clin Oncol 23:2411–2422PubMedCrossRef
4.
go back to reference Liang BC, Thornton AF Jr, Sandler HM et al (1991) Malignant astrocytomas: focal tumor recurrence after focal external beam radiation therapy. J Neurosurg 75:559–563PubMedCrossRef Liang BC, Thornton AF Jr, Sandler HM et al (1991) Malignant astrocytomas: focal tumor recurrence after focal external beam radiation therapy. J Neurosurg 75:559–563PubMedCrossRef
5.
go back to reference Tlsty TD, Coussens LM (2006) Tumor stroma and regulation of cancer development. Annu Rev Pathol 1:119–150PubMedCrossRef Tlsty TD, Coussens LM (2006) Tumor stroma and regulation of cancer development. Annu Rev Pathol 1:119–150PubMedCrossRef
6.
go back to reference Ostman A, Augsten M (2009) Cancer-associated fibroblasts and tumor growth-bystanders turning into key players. Curr Opin Genet Dev 19:67–73PubMedCrossRef Ostman A, Augsten M (2009) Cancer-associated fibroblasts and tumor growth-bystanders turning into key players. Curr Opin Genet Dev 19:67–73PubMedCrossRef
7.
go back to reference Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432:332–337PubMedCrossRef Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432:332–337PubMedCrossRef
8.
go back to reference Shimoda M, Mellody KT, Orimo A (2010) Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Semin Cell Dev Biol 21:19–25PubMedCrossRef Shimoda M, Mellody KT, Orimo A (2010) Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Semin Cell Dev Biol 21:19–25PubMedCrossRef
9.
go back to reference Franco OE, Shaw AK, Strand DW et al (2010) Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol 21:33–39PubMedCrossRef Franco OE, Shaw AK, Strand DW et al (2010) Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol 21:33–39PubMedCrossRef
11.
go back to reference Chen R, Nishimura MC, Bumbaca SM et al (2010) A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell 17:362–375PubMedCrossRef Chen R, Nishimura MC, Bumbaca SM et al (2010) A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell 17:362–375PubMedCrossRef
12.
go back to reference Jain RK, di Tomaso E, Duda DG et al (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8:610–622PubMedCrossRef Jain RK, di Tomaso E, Duda DG et al (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8:610–622PubMedCrossRef
13.
go back to reference Yang I, Han SJ, Kaur G et al (2010) The role of microglia in central nervous system immunity and glioma immunology. J Clin Neurosci 17:6–10PubMedCrossRef Yang I, Han SJ, Kaur G et al (2010) The role of microglia in central nervous system immunity and glioma immunology. J Clin Neurosci 17:6–10PubMedCrossRef
14.
go back to reference Sonabend AM, Rolle CE, Lesniak MS (2008) The role of regulatory T cells in malignant glioma. Anticancer Res 28:1143–1150PubMed Sonabend AM, Rolle CE, Lesniak MS (2008) The role of regulatory T cells in malignant glioma. Anticancer Res 28:1143–1150PubMed
15.
go back to reference Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109PubMedCrossRef Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109PubMedCrossRef
16.
go back to reference Vindelov LL, Christensen IJ, Nissen NI (1983) A detergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry 3:323–327PubMedCrossRef Vindelov LL, Christensen IJ, Nissen NI (1983) A detergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry 3:323–327PubMedCrossRef
17.
go back to reference Roger M, Clavreul A, Venier-Julienne MC et al (2010) Mesenchymal stem cells as cellular vehicles for delivery of nanoparticles to brain tumors. Biomaterials 31:8393–8401PubMedCrossRef Roger M, Clavreul A, Venier-Julienne MC et al (2010) Mesenchymal stem cells as cellular vehicles for delivery of nanoparticles to brain tumors. Biomaterials 31:8393–8401PubMedCrossRef
18.
go back to reference Hupe P, Stransky N, Thiery JP et al (2004) Analysis of array CGH data: from signal ratio to gain and loss of DNA regions. Bioinformatics 20:3413–3422PubMedCrossRef Hupe P, Stransky N, Thiery JP et al (2004) Analysis of array CGH data: from signal ratio to gain and loss of DNA regions. Bioinformatics 20:3413–3422PubMedCrossRef
19.
go back to reference Clavreul A, Jean I, Preisser L et al (2009) Human glioma cell culture: two FCS-free media could be recommended for clinical use in immunotherapy. In Vitro Cell Dev Biol Anim 45:500–511PubMedCrossRef Clavreul A, Jean I, Preisser L et al (2009) Human glioma cell culture: two FCS-free media could be recommended for clinical use in immunotherapy. In Vitro Cell Dev Biol Anim 45:500–511PubMedCrossRef
20.
go back to reference Glas M, Rath BH, Simon M et al (2010) Residual tumor cells are unique cellular targets in glioblastoma. Ann Neurol 68:264–269PubMed Glas M, Rath BH, Simon M et al (2010) Residual tumor cells are unique cellular targets in glioblastoma. Ann Neurol 68:264–269PubMed
21.
go back to reference Westermark B, Ponten J, Hugosson R (1973) Determinants for the establishment of permanent tissue culture lines from human gliomas. Acta Pathol Microbiol Scand A 81:791–805PubMed Westermark B, Ponten J, Hugosson R (1973) Determinants for the establishment of permanent tissue culture lines from human gliomas. Acta Pathol Microbiol Scand A 81:791–805PubMed
22.
go back to reference Rutka JT, Giblin JR, Dougherty DY et al (1987) Establishment and characterization of five cell lines derived from human malignant gliomas. Acta Neuropathol 75:92–103PubMedCrossRef Rutka JT, Giblin JR, Dougherty DY et al (1987) Establishment and characterization of five cell lines derived from human malignant gliomas. Acta Neuropathol 75:92–103PubMedCrossRef
23.
go back to reference Gibbons HM, Hughes SM, Van Roon-Mom W et al (2007) Cellular composition of human glial cultures from adult biopsy brain tissue. J Neurosci Methods 166:89–98PubMedCrossRef Gibbons HM, Hughes SM, Van Roon-Mom W et al (2007) Cellular composition of human glial cultures from adult biopsy brain tissue. J Neurosci Methods 166:89–98PubMedCrossRef
24.
go back to reference Orimo A, Weinberg RA (2007) Heterogeneity of stromal fibroblasts in tumors. Cancer Biol Ther 6:618–619PubMed Orimo A, Weinberg RA (2007) Heterogeneity of stromal fibroblasts in tumors. Cancer Biol Ther 6:618–619PubMed
25.
go back to reference Raica M, Cimpean AM (2010) Platelet-derived growth factor (PDGF)/PDGF receptors (PDGFR) axis as target for antitumor and antiangiogenic therapy. Pharmaceuticals 3:572–599CrossRef Raica M, Cimpean AM (2010) Platelet-derived growth factor (PDGF)/PDGF receptors (PDGFR) axis as target for antitumor and antiangiogenic therapy. Pharmaceuticals 3:572–599CrossRef
26.
go back to reference Amillet JM, Ferbus D, Real FX et al (2006) Characterization of human Rab20 overexpressed in exocrine pancreatic carcinoma. Hum Pathol 37:256–263PubMedCrossRef Amillet JM, Ferbus D, Real FX et al (2006) Characterization of human Rab20 overexpressed in exocrine pancreatic carcinoma. Hum Pathol 37:256–263PubMedCrossRef
27.
go back to reference Lee HS, Han J, Bai HJ et al (2009) Brain angiogenesis in developmental and pathological processes: regulation, molecular and cellular communication at the neurovascular interface. FEBS J 276:4622–4635PubMedCrossRef Lee HS, Han J, Bai HJ et al (2009) Brain angiogenesis in developmental and pathological processes: regulation, molecular and cellular communication at the neurovascular interface. FEBS J 276:4622–4635PubMedCrossRef
28.
go back to reference Idbaih A, Carvalho Silva R, Criniere E et al (2008) Genomic changes in progression of low-grade gliomas. J Neurooncol 90:133–140PubMedCrossRef Idbaih A, Carvalho Silva R, Criniere E et al (2008) Genomic changes in progression of low-grade gliomas. J Neurooncol 90:133–140PubMedCrossRef
29.
go back to reference van Agthoven T, Sieuwerts AM, Meijer-van Gelder ME et al (2009) Relevance of breast cancer antiestrogen resistance genes in human breast cancer progression and tamoxifen resistance. J Clin Oncol 27:542–549PubMedCrossRef van Agthoven T, Sieuwerts AM, Meijer-van Gelder ME et al (2009) Relevance of breast cancer antiestrogen resistance genes in human breast cancer progression and tamoxifen resistance. J Clin Oncol 27:542–549PubMedCrossRef
30.
go back to reference Blaschuk OW, Devemy E (2009) Cadherins as novel targets for anti-cancer therapy. Eur J Pharmacol 625:195–198PubMedCrossRef Blaschuk OW, Devemy E (2009) Cadherins as novel targets for anti-cancer therapy. Eur J Pharmacol 625:195–198PubMedCrossRef
31.
go back to reference Krishna K, Redies C (2009) Expression of cadherin superfamily genes in brain vascular development. J Cereb Blood Flow Metab 29:224–229CrossRef Krishna K, Redies C (2009) Expression of cadherin superfamily genes in brain vascular development. J Cereb Blood Flow Metab 29:224–229CrossRef
32.
go back to reference Teodorczyk M, Martin-Villalba A (2009) Sensing invasion: cell surface receptors driving spreading of glioblastoma. J Cell Physiol 222:1–10CrossRef Teodorczyk M, Martin-Villalba A (2009) Sensing invasion: cell surface receptors driving spreading of glioblastoma. J Cell Physiol 222:1–10CrossRef
33.
go back to reference Hayward SW, Wang Y, Cao M et al (2001) Malignant transformation in a nontumorigenic human prostatic epithelial cell line. Cancer Res 61:8135–8142PubMed Hayward SW, Wang Y, Cao M et al (2001) Malignant transformation in a nontumorigenic human prostatic epithelial cell line. Cancer Res 61:8135–8142PubMed
34.
go back to reference Orimo A, Gupta PB, Sgroi DC et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:335–348PubMedCrossRef Orimo A, Gupta PB, Sgroi DC et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:335–348PubMedCrossRef
35.
go back to reference Gonda TA, Varro A, Wang TC et al (2010) Molecular biology of cancer-associated fibroblasts: can these cells be targeted in anti-cancer therapy? Semin Cell Dev Biol 21:2–10PubMedCrossRef Gonda TA, Varro A, Wang TC et al (2010) Molecular biology of cancer-associated fibroblasts: can these cells be targeted in anti-cancer therapy? Semin Cell Dev Biol 21:2–10PubMedCrossRef
36.
go back to reference Bauchet L, Mathieu-Daude H, Fabbro-Peray P et al (2010) Oncological patterns of care and outcome for 952 patients with newly diagnosed glioblastoma in 2004. Neuro Oncol Bauchet L, Mathieu-Daude H, Fabbro-Peray P et al (2010) Oncological patterns of care and outcome for 952 patients with newly diagnosed glioblastoma in 2004. Neuro Oncol
37.
go back to reference Pietras K, Ostman A (2010) Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res 316:1324–1331PubMedCrossRef Pietras K, Ostman A (2010) Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res 316:1324–1331PubMedCrossRef
38.
go back to reference Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9:265–273PubMedCrossRef Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9:265–273PubMedCrossRef
39.
go back to reference Phillips HS, Kharbanda S, Chen R et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173PubMedCrossRef Phillips HS, Kharbanda S, Chen R et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173PubMedCrossRef
40.
go back to reference Tso CL, Shintaku P, Chen J et al (2006) Primary glioblastomas express mesenchymal stem-like properties. Mol Cancer Res 4:607–619PubMedCrossRef Tso CL, Shintaku P, Chen J et al (2006) Primary glioblastomas express mesenchymal stem-like properties. Mol Cancer Res 4:607–619PubMedCrossRef
41.
go back to reference Ricci-Vitiani L, Pallini R, Larocca LM et al (2008) Mesenchymal differentiation of glioblastoma stem cells. Cell Death Differ 15:1491–1498PubMedCrossRef Ricci-Vitiani L, Pallini R, Larocca LM et al (2008) Mesenchymal differentiation of glioblastoma stem cells. Cell Death Differ 15:1491–1498PubMedCrossRef
42.
go back to reference Gunther HS, Schmidt NO, Phillips HS et al (2008) Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene 27:2897–2909PubMedCrossRef Gunther HS, Schmidt NO, Phillips HS et al (2008) Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene 27:2897–2909PubMedCrossRef
43.
go back to reference Rieske P, Golanska E, Zakrzewska M et al (2009) Arrested neural and advanced mesenchymal differentiation of glioblastoma cells-comparative study with neural progenitors. BMC Cancer 9:54PubMedCrossRef Rieske P, Golanska E, Zakrzewska M et al (2009) Arrested neural and advanced mesenchymal differentiation of glioblastoma cells-comparative study with neural progenitors. BMC Cancer 9:54PubMedCrossRef
44.
go back to reference Carro MS, Lim WK, Alvarez MJ et al (2010) The transcriptional network for mesenchymal transformation of brain tumours. Nature 463:318–325PubMedCrossRef Carro MS, Lim WK, Alvarez MJ et al (2010) The transcriptional network for mesenchymal transformation of brain tumours. Nature 463:318–325PubMedCrossRef
45.
go back to reference Nakamizo A, Marini F, Amano T et al (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 65:3307–3318PubMed Nakamizo A, Marini F, Amano T et al (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 65:3307–3318PubMed
46.
go back to reference Nakamura K, Ito Y, Kawano Y et al (2004) Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 11:1155–1164PubMedCrossRef Nakamura K, Ito Y, Kawano Y et al (2004) Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 11:1155–1164PubMedCrossRef
47.
go back to reference Kang SG, Shinojima N, Hossain A et al (2010) Isolation and perivascular localization of mesenchymal stem cells from mouse brain. Neurosurgery 67:711–720PubMedCrossRef Kang SG, Shinojima N, Hossain A et al (2010) Isolation and perivascular localization of mesenchymal stem cells from mouse brain. Neurosurgery 67:711–720PubMedCrossRef
48.
go back to reference Mishra PJ, Humeniuk R, Medina DJ et al (2008) Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 68:4331–4339PubMedCrossRef Mishra PJ, Humeniuk R, Medina DJ et al (2008) Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 68:4331–4339PubMedCrossRef
Metadata
Title
Isolation of a new cell population in the glioblastoma microenvironment
Authors
Anne Clavreul
Amandine Etcheverry
Agnès Chassevent
Véronique Quillien
Tony Avril
Marie-Lise Jourdan
Sophie Michalak
Patrick François
Jean-Luc Carré
Jean Mosser
Philippe Menei
The Grand Ouest Glioma Project Network
Publication date
01-02-2012
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 3/2012
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-011-0701-7

Other articles of this Issue 3/2012

Journal of Neuro-Oncology 3/2012 Go to the issue