Skip to main content
Top
Published in: Journal of Neuro-Oncology 3/2010

01-05-2010 | Laboratory Investigation - Human/Animal Tissue

p53 regulates LIF expression in human medulloblastoma cells

Authors: Euan W. Baxter, Jo Milner

Published in: Journal of Neuro-Oncology | Issue 3/2010

Login to get access

Abstract

Medulloblastomas are highly malignant, poorly differentiated childhood tumours arising in the cerebellum. These tumors rarely lose TP53, which is the most commonly mutated gene in cancer. Recent work has shown that the basal level of p53 plays an important role in maternal reproduction by maintaining the expression of LIF in the uterus. Since LIF can maintain the undifferentiated state of stem cells we set out to ask if p53 regulates LIF in the human medulloblastoma cell lines DAOY and D283MED. We also used p53−/− and p53+/+ isogenic HCT116 colorectal carcinoma cell lines, already reported to exhibit p53-dependent expression of the LIF D transcript, to establish the extent of p53-dependency for LIF M and T alternative transcripts. Whilst all three known, full-length alternative transcripts are more abundant in p53+/+ cells, the alternative LIF M and T transcripts appear particularly sensitive to p53. In the p53 wild-type medulloblastoma cell line D283MED chromatin immunoprecipitation experiments showed p53 binding to the LIF gene. The mutant p53 expressed in line DAOY did not bind to this region or to the p21WAF1 p53 binding site. RNA interference against either WIP1 or SIRT1 stabilized p53 and enhanced the transcription of LIF in D283MED cells. Interestingly, siRNA against WIP1 or SIRT1 also induced increased apoptosis in the medulloblastoma line D283MED and, over a longer time period, in DAOY cells. We speculate that suppression of p53 function by combined WIP1-mediated dephosphorylation and SIRT1 deacetylation enables medulloblastoma cell survival but p53-dependent and independent apoptotic pathways remain intact. Thus small molecule inhibitors of SIRT1 may be useful in treatment of medulloblastoma.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Liu J, Gang Y, Guo L, Li H (1999) Expression of leukemia-inhibitory factor as an autocrinal growth factor in human medulloblastomas. J Cancer Res Clin Oncol 125:475–480CrossRefPubMed Liu J, Gang Y, Guo L, Li H (1999) Expression of leukemia-inhibitory factor as an autocrinal growth factor in human medulloblastomas. J Cancer Res Clin Oncol 125:475–480CrossRefPubMed
3.
go back to reference Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL, Gearing DP, Wagner EF, Metcalf D, Nicola NA, Gough NM (1988) Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336:684–687CrossRefPubMed Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL, Gearing DP, Wagner EF, Metcalf D, Nicola NA, Gough NM (1988) Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336:684–687CrossRefPubMed
4.
go back to reference Bauer S, Patterson PH (2006) Leukemia inhibitory factor promotes neural stem cell self-renewal in the adult brain. J Neurosci 26:12089–12099CrossRefPubMed Bauer S, Patterson PH (2006) Leukemia inhibitory factor promotes neural stem cell self-renewal in the adult brain. J Neurosci 26:12089–12099CrossRefPubMed
5.
go back to reference Hambardzumyan D, Becher OJ, Rosenblum MK, Pandolfi PP, Manova-Todorova K, Holland EC (2008) PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev 22:436–448CrossRefPubMed Hambardzumyan D, Becher OJ, Rosenblum MK, Pandolfi PP, Manova-Todorova K, Holland EC (2008) PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev 22:436–448CrossRefPubMed
6.
go back to reference Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401CrossRefPubMed Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401CrossRefPubMed
7.
go back to reference Nichols J, Davidson D, Taga T, Yoshida K, Chambers I, Smith A (1996) Complementary tissue-specific expression of LIF and LIF-receptor RNAs in early mouse embryogenesis. Mech Dev 57:123–131CrossRefPubMed Nichols J, Davidson D, Taga T, Yoshida K, Chambers I, Smith A (1996) Complementary tissue-specific expression of LIF and LIF-receptor RNAs in early mouse embryogenesis. Mech Dev 57:123–131CrossRefPubMed
8.
go back to reference Hu W, Feng Z, Teresky AK, Levine AJ (2007) p53 regulates maternal reproduction through LIF. Nature 450:721–724CrossRefPubMed Hu W, Feng Z, Teresky AK, Levine AJ (2007) p53 regulates maternal reproduction through LIF. Nature 450:721–724CrossRefPubMed
9.
go back to reference Auernhammer CJ, Melmed S (2000) Leukemia-inhibitory factor—neuroimmune modulator of endocrine function. Endocr Rev 21:313–345CrossRefPubMed Auernhammer CJ, Melmed S (2000) Leukemia-inhibitory factor—neuroimmune modulator of endocrine function. Endocr Rev 21:313–345CrossRefPubMed
10.
go back to reference Yang F, Van Meter TE, Buettner R, Hedvat M, Liang W, Kowolik CM, Mepani N, Mirosevich J, Nam S, Chen MY, Tye G, Kirschbaum M, Jove R (2008) Sorafenib inhibits signal transducer and activator of transcription 3 signaling associated with growth arrest and apoptosis of medulloblastomas. Mol Cancer Ther 7:3519–3526CrossRefPubMed Yang F, Van Meter TE, Buettner R, Hedvat M, Liang W, Kowolik CM, Mepani N, Mirosevich J, Nam S, Chen MY, Tye G, Kirschbaum M, Jove R (2008) Sorafenib inhibits signal transducer and activator of transcription 3 signaling associated with growth arrest and apoptosis of medulloblastomas. Mol Cancer Ther 7:3519–3526CrossRefPubMed
11.
go back to reference Haines BP, Voyle RB, Pelton TA, Forrest R, Rathjen PD (1999) Complex conserved organization of the mammalian leukemia inhibitory factor gene: regulated expression of intracellular and extracellular cytokines. J Immunol 162:4637–4646PubMed Haines BP, Voyle RB, Pelton TA, Forrest R, Rathjen PD (1999) Complex conserved organization of the mammalian leukemia inhibitory factor gene: regulated expression of intracellular and extracellular cytokines. J Immunol 162:4637–4646PubMed
12.
go back to reference Rathjen PD, Toth S, Willis A, Heath JK, Smith AG (1990) Differentiation inhibiting activity is produced in matrix-associated and diffusible forms that are generated by alternate promoter usage. Cell 62:1105–1114CrossRefPubMed Rathjen PD, Toth S, Willis A, Heath JK, Smith AG (1990) Differentiation inhibiting activity is produced in matrix-associated and diffusible forms that are generated by alternate promoter usage. Cell 62:1105–1114CrossRefPubMed
13.
go back to reference Haines BP, Voyle RB, Rathjen PD (2000) Intracellular and extracellular leukaemia inhibitory factor proteins have different cellular activities that are mediated by distinct protein motifs. Mol Biol Cell 11:1369–1383PubMed Haines BP, Voyle RB, Rathjen PD (2000) Intracellular and extracellular leukaemia inhibitory factor proteins have different cellular activities that are mediated by distinct protein motifs. Mol Biol Cell 11:1369–1383PubMed
14.
go back to reference Adesina AM, Nalbantoglu J, Cavanee WK (1994) p53 gene mutation and mdm2 amplification are uncommon in medulloblastoma. Cancer Res 54:5649–5651PubMed Adesina AM, Nalbantoglu J, Cavanee WK (1994) p53 gene mutation and mdm2 amplification are uncommon in medulloblastoma. Cancer Res 54:5649–5651PubMed
15.
go back to reference Castellino RC, De Bartoli M, Lu X, Moon S-H, Nguyen T-A, Shepard MA, Rao PH, Donehower LA (2008) Medulloblastomas overexpress the p53-inactivating oncogene WIP1/PPM1D. J Neurooncol 86:245–256CrossRefPubMed Castellino RC, De Bartoli M, Lu X, Moon S-H, Nguyen T-A, Shepard MA, Rao PH, Donehower LA (2008) Medulloblastomas overexpress the p53-inactivating oncogene WIP1/PPM1D. J Neurooncol 86:245–256CrossRefPubMed
16.
go back to reference Lu X, Nguyen T-A, Moon S-H, Darlington Y, Sommer M, Donehower LA (2008) The type 2C phosphatase WIP1: an oncogenic regulator of tumor suppressor and DNA damage response pathways. Cancer Metastasis Rev 27:123–135CrossRefPubMed Lu X, Nguyen T-A, Moon S-H, Darlington Y, Sommer M, Donehower LA (2008) The type 2C phosphatase WIP1: an oncogenic regulator of tumor suppressor and DNA damage response pathways. Cancer Metastasis Rev 27:123–135CrossRefPubMed
17.
go back to reference Brooks CL, Gu W (2003) Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15:164–171CrossRefPubMed Brooks CL, Gu W (2003) Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15:164–171CrossRefPubMed
18.
go back to reference Parssinen J, Alarmo EL, Karhu R, Kallioniemi A (2008) PPM1D silencing by RNA interference inhibits proliferation and induces apoptosis in breast cancer cells with wild-type p53. Cancer Genet Cytogenet 182:33–39CrossRefPubMed Parssinen J, Alarmo EL, Karhu R, Kallioniemi A (2008) PPM1D silencing by RNA interference inhibits proliferation and induces apoptosis in breast cancer cells with wild-type p53. Cancer Genet Cytogenet 182:33–39CrossRefPubMed
19.
go back to reference Michael D, Oren M (1992) The p53 and Mdm2 families in cancer. Curr Opin Genet Dev 12:53–59CrossRef Michael D, Oren M (1992) The p53 and Mdm2 families in cancer. Curr Opin Genet Dev 12:53–59CrossRef
20.
go back to reference Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107:137–148CrossRefPubMed Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107:137–148CrossRefPubMed
21.
go back to reference Vaziri H, Dessain SK, Ng Eaton E, Imai S, Frye RA, Pandita TK, Guarente L, Weinberg RA (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107:149–159CrossRefPubMed Vaziri H, Dessain SK, Ng Eaton E, Imai S, Frye RA, Pandita TK, Guarente L, Weinberg RA (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107:149–159CrossRefPubMed
22.
go back to reference Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S, Pelicci PG, Kouzarides T (2002) Human SIR2 deacetylates p53 and antagonises PML/p53-induced cellular senescence. EMBO J 21:2383–2396CrossRefPubMed Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S, Pelicci PG, Kouzarides T (2002) Human SIR2 deacetylates p53 and antagonises PML/p53-induced cellular senescence. EMBO J 21:2383–2396CrossRefPubMed
23.
go back to reference Ford J, Jiang M, Milner J (2005) Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival. Cancer Res 65:10457–10463CrossRefPubMed Ford J, Jiang M, Milner J (2005) Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival. Cancer Res 65:10457–10463CrossRefPubMed
24.
go back to reference Zhang Q, Wang S-Y, Fleuriel C, Leprince D, Rocheleau JV, Piston DW, Goodman RH (2007) Metabolic regulation of SIRT1 transcription via a HIC1:CtBPcorepressor complex. Proc Natl Acad Sci (USA) 104:829–833 Zhang Q, Wang S-Y, Fleuriel C, Leprince D, Rocheleau JV, Piston DW, Goodman RH (2007) Metabolic regulation of SIRT1 transcription via a HIC1:CtBPcorepressor complex. Proc Natl Acad Sci (USA) 104:829–833
25.
go back to reference Lindsey JC, Lusher ME, Anderton JA, Bailey S, Gilbertson RJ, Pearson ADJ, Ellison DW, Clifford SC (2004) Identification of tumour-specific epigenetic events in medulloblastoma development by hypermethylation profiling. Carcinogenesis 25:661–668CrossRefPubMed Lindsey JC, Lusher ME, Anderton JA, Bailey S, Gilbertson RJ, Pearson ADJ, Ellison DW, Clifford SC (2004) Identification of tumour-specific epigenetic events in medulloblastoma development by hypermethylation profiling. Carcinogenesis 25:661–668CrossRefPubMed
26.
go back to reference Saylors RLI, Sidransky D, Friedman HS, Bigner SH, Bigner DD, Vogelstein B, Brodeur GM (1991) Infrequent p53 gene mutations in medulloblastoma. Cancer Res 51:4721–4723PubMed Saylors RLI, Sidransky D, Friedman HS, Bigner SH, Bigner DD, Vogelstein B, Brodeur GM (1991) Infrequent p53 gene mutations in medulloblastoma. Cancer Res 51:4721–4723PubMed
27.
go back to reference Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L, Williams J, Lengauer C, Kinzler KW, Vogelstein B (1999) Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Investig 104:263–269CrossRefPubMed Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L, Williams J, Lengauer C, Kinzler KW, Vogelstein B (1999) Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Investig 104:263–269CrossRefPubMed
28.
go back to reference Fujimoto H, Onishi N, Kato N, Takekawa M, Xu X, Kosugi A, Kondo T, Imamura M, Oishi I, Yoda A, Minami Y (2006) Regulation of the antioncogenic Chk2 kinase b the oncogenic Wip1 phosphatase. Cell Death Differ 13:1170–1180CrossRefPubMed Fujimoto H, Onishi N, Kato N, Takekawa M, Xu X, Kosugi A, Kondo T, Imamura M, Oishi I, Yoda A, Minami Y (2006) Regulation of the antioncogenic Chk2 kinase b the oncogenic Wip1 phosphatase. Cell Death Differ 13:1170–1180CrossRefPubMed
29.
go back to reference Castellino RC, De Bortoli M, Lin LL, Skapura DG, Rajan JA, Adesina AM, Perlaky L, Irwin MS, Kim JY (2007) Overexpressed TP73 induces apoptosis in medulloblastoma. BMC Cancer 7:127–142CrossRefPubMed Castellino RC, De Bortoli M, Lin LL, Skapura DG, Rajan JA, Adesina AM, Perlaky L, Irwin MS, Kim JY (2007) Overexpressed TP73 induces apoptosis in medulloblastoma. BMC Cancer 7:127–142CrossRefPubMed
30.
go back to reference Briggs KJ, Corcoran-Schwartz IM, Zhang W, Harcke T, Devereux WL, Baylin SB, Eberhart CG, Watkins DN (2008) Cooperation between the Hic1 and Ptch1 tumor suppressors in medulloblastoma. Genes Dev 22:770–785CrossRefPubMed Briggs KJ, Corcoran-Schwartz IM, Zhang W, Harcke T, Devereux WL, Baylin SB, Eberhart CG, Watkins DN (2008) Cooperation between the Hic1 and Ptch1 tumor suppressors in medulloblastoma. Genes Dev 22:770–785CrossRefPubMed
31.
go back to reference Bulavin DV, Phillips C, Nannenga B, Timofeev O, Donehower LA, Anderson CW, Appella E, Fornace AJ Jr (2004) Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16(Ink4a)-p19(Arf) pathway. Nature Genet 36(4):319–320CrossRef Bulavin DV, Phillips C, Nannenga B, Timofeev O, Donehower LA, Anderson CW, Appella E, Fornace AJ Jr (2004) Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16(Ink4a)-p19(Arf) pathway. Nature Genet 36(4):319–320CrossRef
Metadata
Title
p53 regulates LIF expression in human medulloblastoma cells
Authors
Euan W. Baxter
Jo Milner
Publication date
01-05-2010
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 3/2010
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-009-0043-x

Other articles of this Issue 3/2010

Journal of Neuro-Oncology 3/2010 Go to the issue