Skip to main content
Top
Published in: Journal of Neuro-Oncology 3/2007

01-07-2007 | Lab Investigation

Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines

Authors: Tobias Birnbaum, Julia Roider, Christoph J. Schankin, Claudio S. Padovan, Christian Schichor, Roland Goldbrunner, Andreas Straube

Published in: Journal of Neuro-Oncology | Issue 3/2007

Login to get access

Abstract

The transplantation of progenitor cells is a promising new approach for the treatment of gliomas. Marrow stromal cells (MSC) are possible candidates for such a cell-based therapy, since they are readily and autologously available and show an extensive tropism to gliomas in vitro and in vivo. However, the signals that guide the MSC are still poorly understood. In this study, we show that gliomas have the capacity to actively attract MSC by secreting a multitude of angiogenic cytokines. We demonstrate that interleukin-8 (IL-8), transforming growth factor-ß1 (TGF-ß1) and neurotrophin-3 (NT-3) contribute to this glioma-directed tropism of human MSC. Together with the finding that vascular endothelial growth factor (VEGF) is another MSC-attracting factor secreted by glioma cells, these data support the hypothesis that gliomas use their angiogenic pathways to recruit mesenchymal progenitor cells.
Literature
1.
go back to reference Sathornsumetee S, Rich J (2006) New treatment strategies for malignant gliomas. Expert Rev Anticancer Ther 6:1087–1104PubMedCrossRef Sathornsumetee S, Rich J (2006) New treatment strategies for malignant gliomas. Expert Rev Anticancer Ther 6:1087–1104PubMedCrossRef
2.
go back to reference Aboody K, Brown A, Rainov N, Bower K, Liu S, Yang W, Small J, Herrlinger U, Ourednik V, Black P, Breakefield X, Snyder E (2000) Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 97:12846–12851PubMedCrossRef Aboody K, Brown A, Rainov N, Bower K, Liu S, Yang W, Small J, Herrlinger U, Ourednik V, Black P, Breakefield X, Snyder E (2000) Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 97:12846–12851PubMedCrossRef
3.
go back to reference Schichor C, Birnbaum T, Etminan N, Schnell O, Grau S, Miebach S, Aboody K, Padovan C, Straube A, Tonn J, Goldbrunner R (2006) Vascular endothelial growth factor A contributes to glioma-induced migration of human marrow stromal cells (hMSC). Exp Neurol 199:301–310PubMedCrossRef Schichor C, Birnbaum T, Etminan N, Schnell O, Grau S, Miebach S, Aboody K, Padovan C, Straube A, Tonn J, Goldbrunner R (2006) Vascular endothelial growth factor A contributes to glioma-induced migration of human marrow stromal cells (hMSC). Exp Neurol 199:301–310PubMedCrossRef
4.
go back to reference Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, Chen J, Hentschel S, Vecil G, Dembinski J, Andreeff M, Lang F (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 65:3307–3318PubMed Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, Chen J, Hentschel S, Vecil G, Dembinski J, Andreeff M, Lang F (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 65:3307–3318PubMed
5.
go back to reference Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H, Bizen A, Honmou O, Niitsu Y, Hamada H (2004) Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 11:1155–1164PubMedCrossRef Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H, Bizen A, Honmou O, Niitsu Y, Hamada H (2004) Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 11:1155–1164PubMedCrossRef
6.
go back to reference Kargiotis O, Rao J, Kyritsis A (2006) Mechanisms of angiogenesis in gliomas. J Neurooncol 78:281–293PubMedCrossRef Kargiotis O, Rao J, Kyritsis A (2006) Mechanisms of angiogenesis in gliomas. J Neurooncol 78:281–293PubMedCrossRef
7.
go back to reference Hamel W, Westphal M, Szönyi E, Escandón E, Nikolics K (1993) Neurotrophin gene expression by cell lines derived from human gliomas. J Neurosci Res 34:147–157PubMedCrossRef Hamel W, Westphal M, Szönyi E, Escandón E, Nikolics K (1993) Neurotrophin gene expression by cell lines derived from human gliomas. J Neurosci Res 34:147–157PubMedCrossRef
8.
go back to reference Donovan M, Miranda R, Kraemer R, McCaffrey T, Tessarollo L, Mahadeo D, Sharif S, Kaplan D, Tsoulfas P, Parada L (1995) Neurotrophin and neurotrophin receptors in vascular smooth muscle cells. Regulation of expression in response to injury. Am J Pathol 147:309–324PubMed Donovan M, Miranda R, Kraemer R, McCaffrey T, Tessarollo L, Mahadeo D, Sharif S, Kaplan D, Tsoulfas P, Parada L (1995) Neurotrophin and neurotrophin receptors in vascular smooth muscle cells. Regulation of expression in response to injury. Am J Pathol 147:309–324PubMed
9.
go back to reference Weis J, Schönrock L, Züchner S, Lie D, Sure U, Schul C, Stögbauer F, Ringelstein E, Halfter H (1999) CNTF and its receptor subunits in human gliomas. J Neurooncol 44:243–253PubMedCrossRef Weis J, Schönrock L, Züchner S, Lie D, Sure U, Schul C, Stögbauer F, Ringelstein E, Halfter H (1999) CNTF and its receptor subunits in human gliomas. J Neurooncol 44:243–253PubMedCrossRef
10.
go back to reference Wiesenhofer B, Stockhammer G, Kostron H, Maier H, Hinterhuber H, Humpel C (2000) Glial cell line-derived neurotrophic factor (GDNF) and its receptor (GFR-alpha 1) are strongly expressed in human gliomas. Acta Neuropathol (Berl) 99:131–137CrossRef Wiesenhofer B, Stockhammer G, Kostron H, Maier H, Hinterhuber H, Humpel C (2000) Glial cell line-derived neurotrophic factor (GDNF) and its receptor (GFR-alpha 1) are strongly expressed in human gliomas. Acta Neuropathol (Berl) 99:131–137CrossRef
11.
go back to reference Yamauchi J, Chan J, Shooter E (2003) Neurotrophin 3 activation of TrkC induces Schwann cell migration through the c-Jun N-terminal kinase pathway. Proc Natl Acad Sci U S A 100:14421–14426PubMedCrossRef Yamauchi J, Chan J, Shooter E (2003) Neurotrophin 3 activation of TrkC induces Schwann cell migration through the c-Jun N-terminal kinase pathway. Proc Natl Acad Sci U S A 100:14421–14426PubMedCrossRef
12.
go back to reference Padovan C, Jahn K, Birnbaum T, Reich P, Sostak P, Strupp M, Straube A (2003) Expression of neuronal markers in differentiated marrow stromal cells and CD133+ stem-like cells. Cell Transplant 12:839–848PubMed Padovan C, Jahn K, Birnbaum T, Reich P, Sostak P, Strupp M, Straube A (2003) Expression of neuronal markers in differentiated marrow stromal cells and CD133+ stem-like cells. Cell Transplant 12:839–848PubMed
13.
go back to reference Tabatabai G, Bähr O, Möhle R, Eyüpoglu I, Boehmler A, Wischhusen J, Rieger J, Blümcke I, Weller M, Wick W (2005) Lessons from the bone marrow: how malignant glioma cells attract adult haematopoietic progenitor cells. Brain 128:2200–2211PubMedCrossRef Tabatabai G, Bähr O, Möhle R, Eyüpoglu I, Boehmler A, Wischhusen J, Rieger J, Blümcke I, Weller M, Wick W (2005) Lessons from the bone marrow: how malignant glioma cells attract adult haematopoietic progenitor cells. Brain 128:2200–2211PubMedCrossRef
14.
go back to reference Von Lüttichau I, Notohamiprodjo M, Wechselberger A, Peters C, Henger A, Seliger C, Djafarzadeh R, Huss R, Nelson P (2005) Human adult CD34- progenitor cells functionally express the chemokine receptors CCR1, CCR4, CCR7, CXCR5, and CCR10 but not CXCR4. Stem Cells Dev 14:329–336CrossRef Von Lüttichau I, Notohamiprodjo M, Wechselberger A, Peters C, Henger A, Seliger C, Djafarzadeh R, Huss R, Nelson P (2005) Human adult CD34- progenitor cells functionally express the chemokine receptors CCR1, CCR4, CCR7, CXCR5, and CCR10 but not CXCR4. Stem Cells Dev 14:329–336CrossRef
15.
go back to reference Honczarenko M, Le Y, Swierkowski M, Ghiran I, Glodek A, Silberstein L (2006) Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 24:1030–1041PubMedCrossRef Honczarenko M, Le Y, Swierkowski M, Ghiran I, Glodek A, Silberstein L (2006) Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 24:1030–1041PubMedCrossRef
16.
go back to reference Sordi V, Malosio M, Marchesi F, Mercalli A, Melzi R, Giordano T, Belmonte N, Ferrari G, Leone B, Bertuzzi F, Zerbini G, Allavena P, Bonifacio E, Piemonti L (2005) Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 106:419–427PubMedCrossRef Sordi V, Malosio M, Marchesi F, Mercalli A, Melzi R, Giordano T, Belmonte N, Ferrari G, Leone B, Bertuzzi F, Zerbini G, Allavena P, Bonifacio E, Piemonti L (2005) Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 106:419–427PubMedCrossRef
17.
go back to reference Son B, Marquez-Curtis L, Kucia M, Wysoczynski M, Turner A, Ratajczak J, Ratajczak M, Janowska-Wieczorek A (2006) Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 24:1254–1264PubMedCrossRef Son B, Marquez-Curtis L, Kucia M, Wysoczynski M, Turner A, Ratajczak J, Ratajczak M, Janowska-Wieczorek A (2006) Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 24:1254–1264PubMedCrossRef
18.
go back to reference Wang L, Li Y, Chen X, Chen J, Gautam S, Xu Y, Chopp M (2002) MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematology 7:113–117PubMedCrossRef Wang L, Li Y, Chen X, Chen J, Gautam S, Xu Y, Chopp M (2002) MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematology 7:113–117PubMedCrossRef
19.
go back to reference Charalambous C, Pen L, Su Y, Milan J, Chen T, Hofman F (2005) Interleukin-8 differentially regulates migration of tumor-associated and normal human brain endothelial cells. Cancer Res 65:10347–10354PubMedCrossRef Charalambous C, Pen L, Su Y, Milan J, Chen T, Hofman F (2005) Interleukin-8 differentially regulates migration of tumor-associated and normal human brain endothelial cells. Cancer Res 65:10347–10354PubMedCrossRef
20.
go back to reference Desbaillets I, Diserens A, de Tribolet N, Hamou M, Van Meir E (1999) Regulation of interleukin-8 expression by reduced oxygen pressure in human glioblastoma. Oncogene 18:1447–1456PubMedCrossRef Desbaillets I, Diserens A, de Tribolet N, Hamou M, Van Meir E (1999) Regulation of interleukin-8 expression by reduced oxygen pressure in human glioblastoma. Oncogene 18:1447–1456PubMedCrossRef
21.
go back to reference Platten M, Wick W, Weller M (2001) Malignant glioma biology: role for TGF-beta in growth, motility, angiogenesis, and immune escape. Microsc Res Tech 52:401–410PubMedCrossRef Platten M, Wick W, Weller M (2001) Malignant glioma biology: role for TGF-beta in growth, motility, angiogenesis, and immune escape. Microsc Res Tech 52:401–410PubMedCrossRef
22.
go back to reference Brat D, Bellail A, Van Meir E (2005) The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol 7:122–133PubMedCrossRef Brat D, Bellail A, Van Meir E (2005) The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol 7:122–133PubMedCrossRef
23.
go back to reference Silva G, Litovsky S, Assad J, Sousa A, Martin B, Vela D, Coulter S, Lin J, Ober J, Vaughn W, Branco R, Oliveira E, He R, Geng Y, Willerson J, Perin E (2005) Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111:150–156PubMedCrossRef Silva G, Litovsky S, Assad J, Sousa A, Martin B, Vela D, Coulter S, Lin J, Ober J, Vaughn W, Branco R, Oliveira E, He R, Geng Y, Willerson J, Perin E (2005) Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111:150–156PubMedCrossRef
24.
go back to reference Li Y, Chen J, Zhang C, Wang L, Lu D, Katakowski M, Gao Q, Shen L, Zhang J, Lu M, Chopp M (2005) Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia 49:407–417PubMedCrossRef Li Y, Chen J, Zhang C, Wang L, Lu D, Katakowski M, Gao Q, Shen L, Zhang J, Lu M, Chopp M (2005) Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia 49:407–417PubMedCrossRef
25.
go back to reference Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, Lu M, Gautam S, Chopp M (2003) Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res 73:778–786PubMedCrossRef Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, Lu M, Gautam S, Chopp M (2003) Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res 73:778–786PubMedCrossRef
26.
go back to reference Tille J, Pepper M (2002) Mesenchymal cells potentiate vascular endothelial growth factor-induced angiogenesis in vitro. Exp Cell Res 280:179–191PubMedCrossRef Tille J, Pepper M (2002) Mesenchymal cells potentiate vascular endothelial growth factor-induced angiogenesis in vitro. Exp Cell Res 280:179–191PubMedCrossRef
27.
go back to reference Majumdar M, Banks V, Peluso D, Morris E (2000) Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. J Cell Physiol 185:98–106PubMedCrossRef Majumdar M, Banks V, Peluso D, Morris E (2000) Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. J Cell Physiol 185:98–106PubMedCrossRef
28.
go back to reference Reyes M, Verfaillie C (2001) Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Ann NY Acad Sci 938:231–233PubMedCrossRef Reyes M, Verfaillie C (2001) Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Ann NY Acad Sci 938:231–233PubMedCrossRef
29.
go back to reference Conget P, Minguell J (1999) Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 181:67–73PubMedCrossRef Conget P, Minguell J (1999) Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 181:67–73PubMedCrossRef
30.
go back to reference De Ugarte D, Alfonso Z, Zuk P, Elbarbary A, Zhu M, Ashjian P, Benhaim P, Hedrick M, Fraser J (2003) Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol Lett 89:267–270PubMedCrossRef De Ugarte D, Alfonso Z, Zuk P, Elbarbary A, Zhu M, Ashjian P, Benhaim P, Hedrick M, Fraser J (2003) Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol Lett 89:267–270PubMedCrossRef
Metadata
Title
Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines
Authors
Tobias Birnbaum
Julia Roider
Christoph J. Schankin
Claudio S. Padovan
Christian Schichor
Roland Goldbrunner
Andreas Straube
Publication date
01-07-2007
Published in
Journal of Neuro-Oncology / Issue 3/2007
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-007-9332-4

Other articles of this Issue 3/2007

Journal of Neuro-Oncology 3/2007 Go to the issue

Imagers in neuron-oncology clinical-patient studies

Malignant astroblastoma with rhabdoid morphology

Clinical Study–Patient Studies

Atypical papillary glioneuronal tumor