Skip to main content
Top
Published in: Metabolic Brain Disease 4/2015

01-08-2015 | Research Article

Comparative behavioral and neurochemical analysis of phenytoin and valproate treatment on epilepsy induced learning and memory deficit: Search for add on therapy

Authors: Awanish Mishra, Rajesh Kumar Goel

Published in: Metabolic Brain Disease | Issue 4/2015

Login to get access

Abstract

Our previous work demonstrated, chronic epilepsy affects learning and memory of rodents along with peculiar neurochemical changes in discrete brain parts. Most commonly used antiepileptic drugs (phenytoin and sodium valproate) also worsen learning and memory in the patients with epilepsy. Therefore this study was designed to carry out comparison of behavioral and neurochemical changes with phenytoin and sodium valproate treatment in pentylenetetrazole-kindling induced learning and memory deficit to devise add on therapy for this menace. For the experimental epilepsy, animals were kindled using PTZ (35 mg/kg; i.p., at 48 ± 2 h intervals) and successful kindled animals were involved in the study. These kindled animals were treated with saline, phenytoin (30 mg/kg/day, i.p.) and sodium valproate (300 mg/kg/day, i.p.) for 20 days. These animals were challenged with PTZ challenging dose (35 mg/kg) on day 5, 10, 15 and 20 to evaluate the effect on seizure severity score on different days. Effect on learning and memory was evaluated using elevated plus maze and passive shock avoidance paradigm. On day 20, after behavioral evaluations, animals were sacrificed to analyze glutamate, GABA, norepinephrine, dopamine, serotonin, total nitrite level and acetylcholinesterase level in cortex and hippocampus. Behavioral evaluations suggested that phenytoin and sodium valproate treatment significantly reduced seizure severity in the kindled animals, while sodium valproate treatment controls seizures with least memory deficit in comparison to phenytoin. Neurochemical findings revealed that elevated cortical acetylcholinesterase level could be one of the responsible factors leading to memory deficit in phenytoin treated animals. However sodium valproate treatment reduced cortical acetylcholinesterase level and had least debilitating consequences on memory deficit. Therefore, attenuation of elevated AChE activity can be one of add-on approach for management of memory deficit associated with conventional AEDs.
Literature
go back to reference Alam AM, Starr MS (1993) Dopaminergic modulation of pilocarpine-induced motor seizures in the rat: the role of hippocampal D2 receptors. Neuroscience 53:425–431PubMedCrossRef Alam AM, Starr MS (1993) Dopaminergic modulation of pilocarpine-induced motor seizures in the rat: the role of hippocampal D2 receptors. Neuroscience 53:425–431PubMedCrossRef
go back to reference Aldenkamp AP, Alpherts WC, Diepman L, van’t Slot B, Overweg J, Vermeulen J (1994) Cognitive side-effects of phenytoin compared with carbamazepine in patients with localization-related epilepsy. Epilepsy Res 19:37–43PubMedCrossRef Aldenkamp AP, Alpherts WC, Diepman L, van’t Slot B, Overweg J, Vermeulen J (1994) Cognitive side-effects of phenytoin compared with carbamazepine in patients with localization-related epilepsy. Epilepsy Res 19:37–43PubMedCrossRef
go back to reference Alexander GE (2004) Biology of Parkinson’s disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin Neurosci 6:259–280PubMedCentralPubMed Alexander GE (2004) Biology of Parkinson’s disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin Neurosci 6:259–280PubMedCentralPubMed
go back to reference Baf MH, Subhash MN, Lakshmana KM, Rao BS (1994) Sodium valproate induced alterations in monoamine levels in different regions of the rat brain. Neurochem Int 24:67–72PubMedCrossRef Baf MH, Subhash MN, Lakshmana KM, Rao BS (1994) Sodium valproate induced alterations in monoamine levels in different regions of the rat brain. Neurochem Int 24:67–72PubMedCrossRef
go back to reference Balding F Jr, Geller HM (1981) Sodium valproate enhancement of gamma-aminobutyric acid (GABA) inhibition: electrophysiological evidence for anticonvulsant activity. J Pharmacol Exp Ther 217:445–450 Balding F Jr, Geller HM (1981) Sodium valproate enhancement of gamma-aminobutyric acid (GABA) inhibition: electrophysiological evidence for anticonvulsant activity. J Pharmacol Exp Ther 217:445–450
go back to reference Beeri R, Le Novere N, Mervis R, Huberman T, Grauer E, Changeux JP, Soreq H (1997) Enhanced hemicholinium binding and attenuated dendrite branching in cognitively impaired acetylcholinesterase-transgenic mice. J Neurochem 69:2441–2451PubMedCrossRef Beeri R, Le Novere N, Mervis R, Huberman T, Grauer E, Changeux JP, Soreq H (1997) Enhanced hemicholinium binding and attenuated dendrite branching in cognitively impaired acetylcholinesterase-transgenic mice. J Neurochem 69:2441–2451PubMedCrossRef
go back to reference Blake KV, Massey KL, Hendeles L, Nickerson D, Neims A (1988) Relative efficacy of phenytoin and phenobarbital for the prevention of theophylline-induced seizures in mice. Ann Emerg Med 17:1024–1028PubMedCrossRef Blake KV, Massey KL, Hendeles L, Nickerson D, Neims A (1988) Relative efficacy of phenytoin and phenobarbital for the prevention of theophylline-induced seizures in mice. Ann Emerg Med 17:1024–1028PubMedCrossRef
go back to reference Bohnen NI, Kaufer DI, Hendrickson R, Ivanco LS, Lopresti BJ, Koeppe RA, Meltzer CC, Constantine G, Davis JG, Mathis CA, Dekosky ST, Moore RY (2005) Degree of inhibition of cortical acetylcholinesterase activity and cognitive effects by donepezil treatment in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 76:315–319PubMedCentralPubMedCrossRef Bohnen NI, Kaufer DI, Hendrickson R, Ivanco LS, Lopresti BJ, Koeppe RA, Meltzer CC, Constantine G, Davis JG, Mathis CA, Dekosky ST, Moore RY (2005) Degree of inhibition of cortical acetylcholinesterase activity and cognitive effects by donepezil treatment in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 76:315–319PubMedCentralPubMedCrossRef
go back to reference Choudhary KM, Mishra A, Goel RK (2013) Ameliorative effect of curcumin on seizure severity, depression like behavior, learning and memory deficit in post pentylenetetrazole-kindled mice. Eur J Pharmacol 704:33–40PubMedCrossRef Choudhary KM, Mishra A, Goel RK (2013) Ameliorative effect of curcumin on seizure severity, depression like behavior, learning and memory deficit in post pentylenetetrazole-kindled mice. Eur J Pharmacol 704:33–40PubMedCrossRef
go back to reference Friedman A, Behrens CJ, Heinemann U (2007) Cholinergic dysfunction in temporal lobe epilepsy. Epilepsia 48:126–130PubMedCrossRef Friedman A, Behrens CJ, Heinemann U (2007) Cholinergic dysfunction in temporal lobe epilepsy. Epilepsia 48:126–130PubMedCrossRef
go back to reference Gaitatzis A, Carroll K, Majeed A, Sander W (2004) The epidemiology of the comorbidity of epilepsy in the general population. Epilepsia 45:1613–1622PubMedCrossRef Gaitatzis A, Carroll K, Majeed A, Sander W (2004) The epidemiology of the comorbidity of epilepsy in the general population. Epilepsia 45:1613–1622PubMedCrossRef
go back to reference Grecksch G, Becker A, Rauca C (1997) Effect of age on pentylenetetrazol-kindling and kindling-induced impairments of learning performance. Pharmacol Biochem Behav 56:595–601PubMedCrossRef Grecksch G, Becker A, Rauca C (1997) Effect of age on pentylenetetrazol-kindling and kindling-induced impairments of learning performance. Pharmacol Biochem Behav 56:595–601PubMedCrossRef
go back to reference Griffith HR, Martin R, Andrews S, LeBron PA, Ware J, Faught E, Welty T (2008) The safety and tolerability of galantamine in patients with epilepsy and memory difficulties. Epilepsy Behav 13:376–380PubMedCrossRef Griffith HR, Martin R, Andrews S, LeBron PA, Ware J, Faught E, Welty T (2008) The safety and tolerability of galantamine in patients with epilepsy and memory difficulties. Epilepsy Behav 13:376–380PubMedCrossRef
go back to reference Gupta YK, Veerendra Kumar MH, Srivastava AK (2003) Effect of Centella asiatica on pentylenetetrazole-induced kindling, cognition and oxidative stress in rats. Pharmacol Biochem Behav 74:579–585PubMedCrossRef Gupta YK, Veerendra Kumar MH, Srivastava AK (2003) Effect of Centella asiatica on pentylenetetrazole-induced kindling, cognition and oxidative stress in rats. Pharmacol Biochem Behav 74:579–585PubMedCrossRef
go back to reference Hardingham NR, Bannister NJ, Read JC, Fox KD, Hardingham GE, Jack JJ (2006) Extracellular calcium regulates postsynaptic efficacy through group 1 metabotropic glutamate receptors. J Neurosci 26:6337–6345PubMedCrossRef Hardingham NR, Bannister NJ, Read JC, Fox KD, Hardingham GE, Jack JJ (2006) Extracellular calcium regulates postsynaptic efficacy through group 1 metabotropic glutamate receptors. J Neurosci 26:6337–6345PubMedCrossRef
go back to reference Izumi Y, Tokuda K, Zorumski CF (2008) Long-term potentiation inhibition by low-level N-methyl-D-aspartate receptor activation involves calcineurin, nitric oxide, and p38 mitogen-activated protein kinase. Hippocampus 18:258–265PubMedCrossRef Izumi Y, Tokuda K, Zorumski CF (2008) Long-term potentiation inhibition by low-level N-methyl-D-aspartate receptor activation involves calcineurin, nitric oxide, and p38 mitogen-activated protein kinase. Hippocampus 18:258–265PubMedCrossRef
go back to reference Ji WQ, Zhang CC, Zhang GH (1995) Effect of somatostatin and GABA on long-term potentiation in hippocampal CA1 are in rats. Zhongguo Yao Li XueBao 16:380–382 Ji WQ, Zhang CC, Zhang GH (1995) Effect of somatostatin and GABA on long-term potentiation in hippocampal CA1 are in rats. Zhongguo Yao Li XueBao 16:380–382
go back to reference Karabiber H, Yakinci C, Durmaz Y, Temel I, Mehmet N (2004) Serum nitrite and nitrate levels in epileptic children using valproic acid or carbamazepine. Brain Dev 26:15–18PubMedCrossRef Karabiber H, Yakinci C, Durmaz Y, Temel I, Mehmet N (2004) Serum nitrite and nitrate levels in epileptic children using valproic acid or carbamazepine. Brain Dev 26:15–18PubMedCrossRef
go back to reference Komatsu Y, Yoshimura Y (2000) Activity-dependent maintenance of long-term potentiation at visual cortical inhibitory synapses. J Neurosci 20:7539–7546PubMed Komatsu Y, Yoshimura Y (2000) Activity-dependent maintenance of long-term potentiation at visual cortical inhibitory synapses. J Neurosci 20:7539–7546PubMed
go back to reference LaFrance WC Jr, Kanner AM, Hermann B (2008) Psychiatric comorbidities in epilepsy. Int Rev Neurobiol 83:347–383PubMedCrossRef LaFrance WC Jr, Kanner AM, Hermann B (2008) Psychiatric comorbidities in epilepsy. Int Rev Neurobiol 83:347–383PubMedCrossRef
go back to reference Lemon N, Manahan-Vaughan D (2006) Dopamine D1/D5 receptors gate the acquisition of novel information through hippocampal long-term potentiation and long-term depression. J Neurosci 26:7723–7729PubMedCrossRef Lemon N, Manahan-Vaughan D (2006) Dopamine D1/D5 receptors gate the acquisition of novel information through hippocampal long-term potentiation and long-term depression. J Neurosci 26:7723–7729PubMedCrossRef
go back to reference Marson AG, Appleton R, Baker GA, Chadwick DW, Doughty J, Eaton B, Gamble C, Jacoby A, Shackley P, Smith DF, Tudur-Smith C, Vanoli A, Williamson PR (2007) A randomised controlled trial examining the longer-term outcomes of standard versus new antiepileptic drugs. The SANAD trial. Health Technol Assess 11:1–134CrossRef Marson AG, Appleton R, Baker GA, Chadwick DW, Doughty J, Eaton B, Gamble C, Jacoby A, Shackley P, Smith DF, Tudur-Smith C, Vanoli A, Williamson PR (2007) A randomised controlled trial examining the longer-term outcomes of standard versus new antiepileptic drugs. The SANAD trial. Health Technol Assess 11:1–134CrossRef
go back to reference Meador KJ, Loring DW, Moore EE, Thompson WO, Nichols ME, Oberzan RE, Durkin MW, Gallagher BB, King DW (1995) Comparative cognitive effects of phenobarbital, phenytoin, and valproate in healthy adults. Neurology 45:1494–1499PubMedCrossRef Meador KJ, Loring DW, Moore EE, Thompson WO, Nichols ME, Oberzan RE, Durkin MW, Gallagher BB, King DW (1995) Comparative cognitive effects of phenobarbital, phenytoin, and valproate in healthy adults. Neurology 45:1494–1499PubMedCrossRef
go back to reference Meshkibaf MH, Subhash MN, Lakshmana KM, Rao BS (1995) Effect of chronic administration of phenytoin on regional monoamine levels in rat brain. Neurochem Res 20:773–778PubMedCrossRef Meshkibaf MH, Subhash MN, Lakshmana KM, Rao BS (1995) Effect of chronic administration of phenytoin on regional monoamine levels in rat brain. Neurochem Res 20:773–778PubMedCrossRef
go back to reference Mishra A, Goel RK (2012) Age dependent learning and memory deficit in pentylenetetrazol kindled mice. Eur J Pharmacol 674:315–320PubMedCrossRef Mishra A, Goel RK (2012) Age dependent learning and memory deficit in pentylenetetrazol kindled mice. Eur J Pharmacol 674:315–320PubMedCrossRef
go back to reference Mishra A, Goel RK (2013) Psychoneurochemical investigations to reveal neurobiology of memory deficit in epilepsy. Neurochem Res 38:2503–2515PubMedCrossRef Mishra A, Goel RK (2013) Psychoneurochemical investigations to reveal neurobiology of memory deficit in epilepsy. Neurochem Res 38:2503–2515PubMedCrossRef
go back to reference Mishra A, Goel RK (2014) Adjuvant anticholinesterase therapy for the management of epilepsy-induced memory deficit: a critical pre-clinical study. Basic Clin Pharmacol Toxicol 115:512–517PubMedCrossRef Mishra A, Goel RK (2014) Adjuvant anticholinesterase therapy for the management of epilepsy-induced memory deficit: a critical pre-clinical study. Basic Clin Pharmacol Toxicol 115:512–517PubMedCrossRef
go back to reference Mori A, Hiramatsu M, Namba S, Nishimoto A, Ohmoto T, Mayanagi Y, Asakura T (1987) Decreased dopamine level in the epileptic focus. Res Commun Chem Pathol Pharmacol 56:157–164PubMed Mori A, Hiramatsu M, Namba S, Nishimoto A, Ohmoto T, Mayanagi Y, Asakura T (1987) Decreased dopamine level in the epileptic focus. Res Commun Chem Pathol Pharmacol 56:157–164PubMed
go back to reference Owens MJ, Nemeroff CB (2003) Pharmacology of valproate. Psychopharmacol Bull 37:17–24PubMed Owens MJ, Nemeroff CB (2003) Pharmacology of valproate. Psychopharmacol Bull 37:17–24PubMed
go back to reference Pincus JH, Lee S (1973) Diphenylhydantoin and calcium. Arch Neurol 26:239–244CrossRef Pincus JH, Lee S (1973) Diphenylhydantoin and calcium. Arch Neurol 26:239–244CrossRef
go back to reference Pourmotabbed A, Nedaei SE, Cheraghi M, Moradian S, Touhidi A, Aeinfar M, Seyfi Z, Pourmotabbed T (2011) Effect of prenatal pentylenetetrazol-induced kindling on learning and memory of male offspring. Neuroscience 172:205–211PubMedCrossRef Pourmotabbed A, Nedaei SE, Cheraghi M, Moradian S, Touhidi A, Aeinfar M, Seyfi Z, Pourmotabbed T (2011) Effect of prenatal pentylenetetrazol-induced kindling on learning and memory of male offspring. Neuroscience 172:205–211PubMedCrossRef
go back to reference Raju SS, Gopalakrishna HN, Venkatadri N (1998) Effect of propranolol and nifedipine on maximal electroshock-induced seizures in mice: individually and in combination. Pharmacol Res 38:449–452PubMedCrossRef Raju SS, Gopalakrishna HN, Venkatadri N (1998) Effect of propranolol and nifedipine on maximal electroshock-induced seizures in mice: individually and in combination. Pharmacol Res 38:449–452PubMedCrossRef
go back to reference Ristić AJ, Vojvodić N, Janković S, Sindelić A, Sokić D (2006) The frequency of reversible parkinsonism and cognitive decline associated with valproate treatment: a study of 364 patients with different types of epilepsy. Epilepsia 47:2183–2185PubMedCrossRef Ristić AJ, Vojvodić N, Janković S, Sindelić A, Sokić D (2006) The frequency of reversible parkinsonism and cognitive decline associated with valproate treatment: a study of 364 patients with different types of epilepsy. Epilepsia 47:2183–2185PubMedCrossRef
go back to reference Ruiz A, Campanac E, Scott RS, Rusakov DA, Kullmann DM (2010) Presynaptic GABAA receptors enhance transmission and LTP induction at hippocampal mossy fiber synapses. Nat Neurosci 13:431–438PubMedCentralPubMedCrossRef Ruiz A, Campanac E, Scott RS, Rusakov DA, Kullmann DM (2010) Presynaptic GABAA receptors enhance transmission and LTP induction at hippocampal mossy fiber synapses. Nat Neurosci 13:431–438PubMedCentralPubMedCrossRef
go back to reference Singh D, Mishra A, Goel RK (2013) Effect of saponin fraction from ficusreligiosa on memory deficit, behavioral and biochemical impairments in pentylenetetrazol kindled mice. Epilepsy Behav 27:206–211PubMedCrossRef Singh D, Mishra A, Goel RK (2013) Effect of saponin fraction from ficusreligiosa on memory deficit, behavioral and biochemical impairments in pentylenetetrazol kindled mice. Epilepsy Behav 27:206–211PubMedCrossRef
go back to reference Stringer JL, Lothman EW (1989) Model of spontaneous hippocampal epilepsy in the anaesthetized rat: [K+]o, and [Ca2+]o response patterns. Epilepsy Res 4:177–186PubMedCrossRef Stringer JL, Lothman EW (1989) Model of spontaneous hippocampal epilepsy in the anaesthetized rat: [K+]o, and [Ca2+]o response patterns. Epilepsy Res 4:177–186PubMedCrossRef
go back to reference Sudha S, Lakshmana MK, Pradhan N (1995) Chronic phenytoin induced impairment of learning and memory with associated changes in brain acetylcholine esterase activity and monoamine levels. Pharmacol Biochem Behav 52:119–124PubMedCrossRef Sudha S, Lakshmana MK, Pradhan N (1995) Chronic phenytoin induced impairment of learning and memory with associated changes in brain acetylcholine esterase activity and monoamine levels. Pharmacol Biochem Behav 52:119–124PubMedCrossRef
go back to reference Sun W, Wang Y, Wang W, Wu X (2008) Attention changes in epilepsy patients following 3-month topiramate or valproate treatment revealed by event-related potential. Int J Psychophysiol 68:235–241PubMedCrossRef Sun W, Wang Y, Wang W, Wu X (2008) Attention changes in epilepsy patients following 3-month topiramate or valproate treatment revealed by event-related potential. Int J Psychophysiol 68:235–241PubMedCrossRef
go back to reference Suppes T, Kriegstein AR, Prince DA (1985) The influence of dopamine on epileptiform burst activity in hippocampal pyramidal neurons. Brain Res 326:273–280PubMedCrossRef Suppes T, Kriegstein AR, Prince DA (1985) The influence of dopamine on epileptiform burst activity in hippocampal pyramidal neurons. Brain Res 326:273–280PubMedCrossRef
go back to reference Takechi K, Suemaru K, Kawasaki H, Araki H (2012) Impaired memory following repeated pentylenetetrazol treatments in kindled mice. Yakugaku Zasshi 132:179–182PubMedCrossRef Takechi K, Suemaru K, Kawasaki H, Araki H (2012) Impaired memory following repeated pentylenetetrazol treatments in kindled mice. Yakugaku Zasshi 132:179–182PubMedCrossRef
go back to reference Thompson P, Huppert FA, Trimble M (1981) Phenytoin and cognitive function: effects on normal volunteers and implications for epilepsy. Br J Clin Psychol 20:155–162PubMedCrossRef Thompson P, Huppert FA, Trimble M (1981) Phenytoin and cognitive function: effects on normal volunteers and implications for epilepsy. Br J Clin Psychol 20:155–162PubMedCrossRef
go back to reference Yaari Y, Selzer ME, Pincus JH (1986) Phenytoin: mechanisms of its anticonvulsant action. Ann Neurol 20:171–184PubMedCrossRef Yaari Y, Selzer ME, Pincus JH (1986) Phenytoin: mechanisms of its anticonvulsant action. Ann Neurol 20:171–184PubMedCrossRef
Metadata
Title
Comparative behavioral and neurochemical analysis of phenytoin and valproate treatment on epilepsy induced learning and memory deficit: Search for add on therapy
Authors
Awanish Mishra
Rajesh Kumar Goel
Publication date
01-08-2015
Publisher
Springer US
Published in
Metabolic Brain Disease / Issue 4/2015
Print ISSN: 0885-7490
Electronic ISSN: 1573-7365
DOI
https://doi.org/10.1007/s11011-015-9650-8

Other articles of this Issue 4/2015

Metabolic Brain Disease 4/2015 Go to the issue