Skip to main content
Top
Published in: Metabolic Brain Disease 3/2014

01-09-2014 | Research Article

Astrocytic and microglial response in experimentally induced diabetic rat brain

Authors: Aarti Nagayach, Nisha Patro, Ishan Patro

Published in: Metabolic Brain Disease | Issue 3/2014

Login to get access

Abstract

Diabetes Mellitus is associated with increased risk of cognitive and behavioural disorders with hitherto undeciphered role of glia. Glia as majority population in brain serve several vital functions, thus require pertinent revelation to further explicate the mechanisms affecting the brain function following diabetes. In this study we have evaluated glial changes in terms of phenotypic switching, proliferation and expression of activation cell surface markers and associated cellular degeneration in hippocampus following STZ-induced diabetes and caused cognitive impairments. Experimental diabetes was induced in Wistar rats by a single dose of STZ (45 mg/kg body weight; intraperitoneally) and changes were studied in 2nd, 4th and 6th week post diabetes confirmation using Barnes maze and T-maze test, immunohistochemistry and image analysis. An increase in GFAP expression sequentially from 2nd to 6th weeks of diabetes was analogous with the phenotypic changes and increased astrocyte number. Elevated level of S100β with defined stellate morphology further confirmed the astrocytosis following diabetes. Enhanced level of Iba-1 and MHC-II revealed the corroborated microglial activation and proliferation following diabetes, which was unresolved till date. Increased caspase-3 activity induced profound cell death upto 6th weeks post diabetes confirmation. Such caspase 3 mediated cellular damage with a concomitant activation of the astrocytes and microglia suggests that diabetes linked cell death activates the astrocytes and microglia in hippocampus which further underpin the progression and severity of brain disorders resulting in cognitive and behavioural impairments.
Literature
go back to reference Alvarez EO, Beauquis J, Revsin Y, Banzan AM, Roig P, De Nicola AF, Saravia F (2009) Cognitive dysfunction and hippocampal changes in experimental type 1 diabetes. Behav Brain Res 198(1):224–230PubMedCrossRef Alvarez EO, Beauquis J, Revsin Y, Banzan AM, Roig P, De Nicola AF, Saravia F (2009) Cognitive dysfunction and hippocampal changes in experimental type 1 diabetes. Behav Brain Res 198(1):224–230PubMedCrossRef
go back to reference Barnes CA (1979) Memory deficits associated with senescence: A neurophysiological and behavioral study in the rat. J Comp Physiol Psychol 93:74–104PubMedCrossRef Barnes CA (1979) Memory deficits associated with senescence: A neurophysiological and behavioral study in the rat. J Comp Physiol Psychol 93:74–104PubMedCrossRef
go back to reference Bast T (2007) Toward an integrative perspective on hippocampal function: from the rapid encoding of experience to adaptive behaviour. Rev Neurosci 18(3–4):253–281PubMed Bast T (2007) Toward an integrative perspective on hippocampal function: from the rapid encoding of experience to adaptive behaviour. Rev Neurosci 18(3–4):253–281PubMed
go back to reference Baydas G, Nedzverskii VS, Nerush PA, Kirichenko SV, Yoldas T (2003a) Altered expression of NCAM in hippocampus and cortex may underlie memory and learning deficits in rats with streptozotocin-induced diabetes mellitus. Life Sci 73(15):1907–1916PubMedCrossRef Baydas G, Nedzverskii VS, Nerush PA, Kirichenko SV, Yoldas T (2003a) Altered expression of NCAM in hippocampus and cortex may underlie memory and learning deficits in rats with streptozotocin-induced diabetes mellitus. Life Sci 73(15):1907–1916PubMedCrossRef
go back to reference Baydas G, Nedzvetskii VS, Tuzcu M, Yasar A, Kirichenko SV (2003b) Increase of glial fibrillary acidic protein and S-100B in the hippocampus and cortex of diabetic rats: effects of vitamin E. Eur J Pharmacol 462(1–3):67–71PubMedCrossRef Baydas G, Nedzvetskii VS, Tuzcu M, Yasar A, Kirichenko SV (2003b) Increase of glial fibrillary acidic protein and S-100B in the hippocampus and cortex of diabetic rats: effects of vitamin E. Eur J Pharmacol 462(1–3):67–71PubMedCrossRef
go back to reference Biessels GJ, Deary IJ, Ryan CM (2008) Cognition and diabetes: a lifespan perspective. Lancet Neurol 7(2):184–190PubMedCrossRef Biessels GJ, Deary IJ, Ryan CM (2008) Cognition and diabetes: a lifespan perspective. Lancet Neurol 7(2):184–190PubMedCrossRef
go back to reference Biessels GJ, Kappelle AC, Braveenboer B, Erkelens DW, Gispen WH (1994) Cerebral function in diabetes mellitus. Diabetologia 37(7):643–650PubMedCrossRef Biessels GJ, Kappelle AC, Braveenboer B, Erkelens DW, Gispen WH (1994) Cerebral function in diabetes mellitus. Diabetologia 37(7):643–650PubMedCrossRef
go back to reference Choi JH, Hwang IK, Yi SS, Yoo KY, Lee CH, Shin HC, Yoon YS, Won MH (2009) Effects of Streptozotocin-induced Type 1 diabetes on cell proliferation and neuronal differentiation in the dentate gyrus: Correlation with memory impairment. Korean J Anat 42(1):42–48 Choi JH, Hwang IK, Yi SS, Yoo KY, Lee CH, Shin HC, Yoon YS, Won MH (2009) Effects of Streptozotocin-induced Type 1 diabetes on cell proliferation and neuronal differentiation in the dentate gyrus: Correlation with memory impairment. Korean J Anat 42(1):42–48
go back to reference Colburn RW, DeLeo JA, Rickman AJ, Yeager MP, Kwon P, Hickey WF (1997) Dissociation of microglial activation and neuropathic pain behavior following peripheral nerve injury in the rat. J Neuroimmunol 79(2):163–175PubMedCrossRef Colburn RW, DeLeo JA, Rickman AJ, Yeager MP, Kwon P, Hickey WF (1997) Dissociation of microglial activation and neuropathic pain behavior following peripheral nerve injury in the rat. J Neuroimmunol 79(2):163–175PubMedCrossRef
go back to reference Coleman E, Judd R, Hoe L, Dennis J, Posner P (2004) Effect of diabetes mellitus on astrocyte GFAP and glutamate transporters in the CNS. Glia 48(2):166–178PubMedCrossRef Coleman E, Judd R, Hoe L, Dennis J, Posner P (2004) Effect of diabetes mellitus on astrocyte GFAP and glutamate transporters in the CNS. Glia 48(2):166–178PubMedCrossRef
go back to reference Criego AB, Tkac I, Kumar A, Thomas W, Gruetter R, Seaquist ER (2005) Brain glucose concentrations in patients with type 1 diabetes and hypoglycemia unawareness. J Neurosci Res 79:42–47 Criego AB, Tkac I, Kumar A, Thomas W, Gruetter R, Seaquist ER (2005) Brain glucose concentrations in patients with type 1 diabetes and hypoglycemia unawareness. J Neurosci Res 79:42–47
go back to reference Daulhac L, Mallet C, Courteix C, Etienne M, Duroux E, Privat AM, Eschalier A, Fialip J (2006) Diabetes-induced mechanical hyperalgesia involves spinal mitogen-activated protein kinase activation in neurons and microglia via N-methyl-d-aspartate-dependent mechanisms. Mol Pharmacol 70(4):1246–1254PubMedCrossRef Daulhac L, Mallet C, Courteix C, Etienne M, Duroux E, Privat AM, Eschalier A, Fialip J (2006) Diabetes-induced mechanical hyperalgesia involves spinal mitogen-activated protein kinase activation in neurons and microglia via N-methyl-d-aspartate-dependent mechanisms. Mol Pharmacol 70(4):1246–1254PubMedCrossRef
go back to reference David S, Kroner A (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12(7):388–399PubMedCrossRef David S, Kroner A (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12(7):388–399PubMedCrossRef
go back to reference Davis EJ, Foster TD, Thomas WE (1994) Cellular forms and functions of brain microglia. Brain Res Bull 34(1):73–78PubMedCrossRef Davis EJ, Foster TD, Thomas WE (1994) Cellular forms and functions of brain microglia. Brain Res Bull 34(1):73–78PubMedCrossRef
go back to reference Bandeira M, Fonseca LJS, da SG G, Rabelo LA, Goulart MOF, Vasconcelos SML (2013) Oxidative Stress as an Underlying Contributor in the Development of Chronic Complications in Diabetes Mellitus. Int J Mol Sci 14(2):3265–3284PubMedCentralCrossRef Bandeira M, Fonseca LJS, da SG G, Rabelo LA, Goulart MOF, Vasconcelos SML (2013) Oxidative Stress as an Underlying Contributor in the Development of Chronic Complications in Diabetes Mellitus. Int J Mol Sci 14(2):3265–3284PubMedCentralCrossRef
go back to reference Duelli R, Maurer MH, Staudt R, Heiland S, Duembgen L, Kuschinsky W (2000) Increased cerebral glucose utilization and decreased glucose transporter GLUT1 during chronic hyperglycemia in rat brain. Brain Res 858(2):338–347PubMedCrossRef Duelli R, Maurer MH, Staudt R, Heiland S, Duembgen L, Kuschinsky W (2000) Increased cerebral glucose utilization and decreased glucose transporter GLUT1 during chronic hyperglycemia in rat brain. Brain Res 858(2):338–347PubMedCrossRef
go back to reference Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 25(9–10):1439–1451PubMedCrossRef Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 25(9–10):1439–1451PubMedCrossRef
go back to reference Folbergrová J, Memezawa H, Smith ML, Siesjӧ BK (1992) Focal and perifocal changes in tissue energy state during middle cerebral artery occlusion in normo- and hyperglycemic rats. J Cereb Blood Flow Metab 12(1):25–33PubMedCrossRef Folbergrová J, Memezawa H, Smith ML, Siesjӧ BK (1992) Focal and perifocal changes in tissue energy state during middle cerebral artery occlusion in normo- and hyperglycemic rats. J Cereb Blood Flow Metab 12(1):25–33PubMedCrossRef
go back to reference Geyter DD, Stoop W, Zgavc T, Sarre S, Michotte Y, Keyser JD, Kooijman R (2012) Spontaneously hypertensive rats display reduced microglial activation in response to ischemic stroke and lipopolysaccharide. J Neuroinflammation 9:114PubMedCentralPubMedCrossRef Geyter DD, Stoop W, Zgavc T, Sarre S, Michotte Y, Keyser JD, Kooijman R (2012) Spontaneously hypertensive rats display reduced microglial activation in response to ischemic stroke and lipopolysaccharide. J Neuroinflammation 9:114PubMedCentralPubMedCrossRef
go back to reference Giaume C, Kirchhoff F, Matute C, Reichenbach A, Verkhratsky A (2007) Glia: the fulcrum of brain diseases. Cell Death Differ 14(7):1324–1335PubMedCrossRef Giaume C, Kirchhoff F, Matute C, Reichenbach A, Verkhratsky A (2007) Glia: the fulcrum of brain diseases. Cell Death Differ 14(7):1324–1335PubMedCrossRef
go back to reference Gonçalves CA, Leite MC, Nardin P (2008) Biological and methodological features of the measurement of S100β, a putative marker of brain injury. Clin Biochem 41(10–11):755–763PubMedCrossRef Gonçalves CA, Leite MC, Nardin P (2008) Biological and methodological features of the measurement of S100β, a putative marker of brain injury. Clin Biochem 41(10–11):755–763PubMedCrossRef
go back to reference Guven A, Yavuz O, Cam M, Comunoglu C, Sevnc O (2009) Central nervous system complications of diabetes in streptozotocin-induced diabetic rats: A histopathological and immunohistochemical examination. Int J Neurosci 119(8):1155–1169PubMed Guven A, Yavuz O, Cam M, Comunoglu C, Sevnc O (2009) Central nervous system complications of diabetes in streptozotocin-induced diabetic rats: A histopathological and immunohistochemical examination. Int J Neurosci 119(8):1155–1169PubMed
go back to reference Heikkilä O, Lundbom N, Timonen M, Groop P-H, Heikkinen S, Mäkimattila S (2009) Hyperglycaemia is associated with changes in the regional concentrations of glucose and myo-inositol within the brain. Diabetologia 52(3):534–540PubMedCrossRef Heikkilä O, Lundbom N, Timonen M, Groop P-H, Heikkinen S, Mäkimattila S (2009) Hyperglycaemia is associated with changes in the regional concentrations of glucose and myo-inositol within the brain. Diabetologia 52(3):534–540PubMedCrossRef
go back to reference Heneka MT, Rodríguez JJ, Verkhratsky A (2010) Neuroglia in neurodegeneration. Brain Res Rev 63(1–2):189–211PubMedCrossRef Heneka MT, Rodríguez JJ, Verkhratsky A (2010) Neuroglia in neurodegeneration. Brain Res Rev 63(1–2):189–211PubMedCrossRef
go back to reference Hu J, Ferreira A, Van Eldik LJ (1997) S100beta induces neuronal cell death through nitric oxide release from astrocytes. J Neurochem 69(6):2294–2301PubMedCrossRef Hu J, Ferreira A, Van Eldik LJ (1997) S100beta induces neuronal cell death through nitric oxide release from astrocytes. J Neurochem 69(6):2294–2301PubMedCrossRef
go back to reference Huber JD, Van Gilder RL, Houser KA (2006) Streptozotocin-induced diabetes progressively increases blood–brain barrier permeability in specific brain regions in rats. Am J Physiol Heart Circ Physiol 291(6):H2660–H2668PubMed Huber JD, Van Gilder RL, Houser KA (2006) Streptozotocin-induced diabetes progressively increases blood–brain barrier permeability in specific brain regions in rats. Am J Physiol Heart Circ Physiol 291(6):H2660–H2668PubMed
go back to reference Imai Y, Ibata I, Ito D, Ohsawa K, Kohsaka S (1996) A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem Biophys Res Commun 224(3):855–862PubMedCrossRef Imai Y, Ibata I, Ito D, Ohsawa K, Kohsaka S (1996) A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem Biophys Res Commun 224(3):855–862PubMedCrossRef
go back to reference Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y (2001) Enhanced Expression of Iba1, Ionized Calcium-Binding Adapter Molecule 1, After Transient Focal Cerebral Ischemia In Rat Brain. Stroke 32(5):1208–1215PubMedCrossRef Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y (2001) Enhanced Expression of Iba1, Ionized Calcium-Binding Adapter Molecule 1, After Transient Focal Cerebral Ischemia In Rat Brain. Stroke 32(5):1208–1215PubMedCrossRef
go back to reference Junod A, Lambert AE, Stauffacher W, Renold AE (1969) Diabetogenic Action of Streptozotocin: Relationship of Dose to Metabolic Response. J Clin Invest 48(11):2129–2139PubMedCentralPubMedCrossRef Junod A, Lambert AE, Stauffacher W, Renold AE (1969) Diabetogenic Action of Streptozotocin: Relationship of Dose to Metabolic Response. J Clin Invest 48(11):2129–2139PubMedCentralPubMedCrossRef
go back to reference Kitka T, Adori C, Katai Z, Vas S, Molnar E, Papp RS, Toth ZE, Bagdy G (2011) Association between the activation of MCH and orexin immunorective neurons and REM sleep architecture during REM rebound after a three day long REM deprivation. Neurochem Int 59(5):686--94 Kitka T, Adori C, Katai Z, Vas S, Molnar E, Papp RS, Toth ZE, Bagdy G (2011) Association between the activation of MCH and orexin immunorective neurons and REM sleep architecture during REM rebound after a three day long REM deprivation. Neurochem Int 59(5):686--94
go back to reference Koppal T, Lam AG, Guo L, Van Eldik LJ (2001) S100B proteins that lack one or both cysteine residues can induce inflammatory responses in astrocytes and microglia. Neurochem Int 39(5–6):401–407PubMedCrossRef Koppal T, Lam AG, Guo L, Van Eldik LJ (2001) S100B proteins that lack one or both cysteine residues can induce inflammatory responses in astrocytes and microglia. Neurochem Int 39(5–6):401–407PubMedCrossRef
go back to reference Krady JK, Basu A, Allen CM, Xu Y, LaNoue KF, Gardner TW, Levison SW (2005) Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 54(5):1559–1565PubMedCrossRef Krady JK, Basu A, Allen CM, Xu Y, LaNoue KF, Gardner TW, Levison SW (2005) Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 54(5):1559–1565PubMedCrossRef
go back to reference Kumar K, Patro N, Patro I (2013) Impaired Structural and Functional Development of Cerebellum Following Gestational Exposure of Deltamethrin in Rats: Role of Reelin. Cell Mol Neurobiol 33(5):731–746PubMedCrossRef Kumar K, Patro N, Patro I (2013) Impaired Structural and Functional Development of Cerebellum Following Gestational Exposure of Deltamethrin in Rats: Role of Reelin. Cell Mol Neurobiol 33(5):731–746PubMedCrossRef
go back to reference Lebed YV, Orlovsky MA, Nikonenko AG, Ushakova GA, Skibo GG (2008) Early reaction of astroglial cells in rat hippocampus to streptozotocin-induced Diabetes. Neurosci Lett 444(2):181–185PubMedCrossRef Lebed YV, Orlovsky MA, Nikonenko AG, Ushakova GA, Skibo GG (2008) Early reaction of astroglial cells in rat hippocampus to streptozotocin-induced Diabetes. Neurosci Lett 444(2):181–185PubMedCrossRef
go back to reference Li G, Xu X, Wang D, Wang J, Wang Y, Yu J (2011) Microglial activation during acute cerebral infarction in the presence of diabetes mellitus. Neurol Sci 32(6):1075–1079PubMedCrossRef Li G, Xu X, Wang D, Wang J, Wang Y, Yu J (2011) Microglial activation during acute cerebral infarction in the presence of diabetes mellitus. Neurol Sci 32(6):1075–1079PubMedCrossRef
go back to reference Mäkimattila S, Malmberg-Ceder K, Häkkinen AM et al (2004) Brain metabolic alterations in patients with type 1 diabetes hyperglycemia- induced injury. J Cereb Blood Flow Metab 24:1393–1399 Mäkimattila S, Malmberg-Ceder K, Häkkinen AM et al (2004) Brain metabolic alterations in patients with type 1 diabetes hyperglycemia- induced injury. J Cereb Blood Flow Metab 24:1393–1399
go back to reference Mc Nay EC, Fries TM, Gold PE (2000) Decreases in rat extracellular hippocampal glucose concentration associated with cognitive demand during a spatial task. Proc Natl Acad Sci USA 97:2881–2885CrossRef Mc Nay EC, Fries TM, Gold PE (2000) Decreases in rat extracellular hippocampal glucose concentration associated with cognitive demand during a spatial task. Proc Natl Acad Sci USA 97:2881–2885CrossRef
go back to reference McNeill JH (1999) Experimental models of diabetes. CRC Press LLC, Boca Raton, pp 3–17 McNeill JH (1999) Experimental models of diabetes. CRC Press LLC, Boca Raton, pp 3–17
go back to reference Muranyi M, Fujioka M, He QP, Han A, Yong G, Csiszar K, Li P-A (2003) Diabetes Activates Cell Death Pathway after Transient Focal Cerebral Ischemia. Diabetes 52(2):481–486PubMedCrossRef Muranyi M, Fujioka M, He QP, Han A, Yong G, Csiszar K, Li P-A (2003) Diabetes Activates Cell Death Pathway after Transient Focal Cerebral Ischemia. Diabetes 52(2):481–486PubMedCrossRef
go back to reference Nasuti C, Manuel C, Donatella F, Rosita G, Antonio DS, Cerasa LS et al (2013) Effects of early life permethrin exposure on spatial working memory and on monoamine levels in different brain areas of pre-senescent rats. Toxicology 303:62–168 Nasuti C, Manuel C, Donatella F, Rosita G, Antonio DS, Cerasa LS et al (2013) Effects of early life permethrin exposure on spatial working memory and on monoamine levels in different brain areas of pre-senescent rats. Toxicology 303:62–168
go back to reference Netto CB, Conte S, Leite MC, Pires C, Martins TL, Vidal P (2006) Serum S100B protein is increased in fasting rats. Arch Med Res 37(5):683–686PubMedCrossRef Netto CB, Conte S, Leite MC, Pires C, Martins TL, Vidal P (2006) Serum S100B protein is increased in fasting rats. Arch Med Res 37(5):683–686PubMedCrossRef
go back to reference Northam E, Rankins D, Cameron F (2006) Therapy insight: the impact of type 1 diabetes on brain development and function. Nat Clin Pract Neurol 2:78–86PubMedCrossRef Northam E, Rankins D, Cameron F (2006) Therapy insight: the impact of type 1 diabetes on brain development and function. Nat Clin Pract Neurol 2:78–86PubMedCrossRef
go back to reference O'Keefe GM, Nguyen VT, Benveniste EN (1999) Class II transactivator and class II MHC gene expression in microglia: modulation by the cytokines TGF-beta, IL-4, IL-13 and IL-10. Eur J Immunol 29(4):1275–1285PubMedCrossRef O'Keefe GM, Nguyen VT, Benveniste EN (1999) Class II transactivator and class II MHC gene expression in microglia: modulation by the cytokines TGF-beta, IL-4, IL-13 and IL-10. Eur J Immunol 29(4):1275–1285PubMedCrossRef
go back to reference Ott A, Stolk RP, van Harskamp F, Pols HAP, Hofman A, Breteler MMB (1999) Diabetes mellitus and the risk of dementia: the Rotterdam study. Neurology 53(9):1937–1942PubMedCrossRef Ott A, Stolk RP, van Harskamp F, Pols HAP, Hofman A, Breteler MMB (1999) Diabetes mellitus and the risk of dementia: the Rotterdam study. Neurology 53(9):1937–1942PubMedCrossRef
go back to reference Patro IK, Pathak S, Patro N (2005) Central responses to peripheral nerve injury: Role of non-neuronal cells. In: Thakur MK, Prasad S (eds) Molecular and cellular Neurobiology. Narosa, Delhi, p 217 Patro IK, Pathak S, Patro N (2005) Central responses to peripheral nerve injury: Role of non-neuronal cells. In: Thakur MK, Prasad S (eds) Molecular and cellular Neurobiology. Narosa, Delhi, p 217
go back to reference Patro IK, Amit SM, Bhumika S, Patro N (2010a) Poly I:C induced microglial activation impairs motor activity in adult rats. Indian J Exptl Biol 48(2):104–109 Patro IK, Amit SM, Bhumika S, Patro N (2010a) Poly I:C induced microglial activation impairs motor activity in adult rats. Indian J Exptl Biol 48(2):104–109
go back to reference Patro N, Nagayach A, Patro IK (2010b) Iba1 expressing microglia in the dorsal root ganglia become activated following peripheral nerve injury in rats. Indian J Exptl Biol 48(2):110–116 Patro N, Nagayach A, Patro IK (2010b) Iba1 expressing microglia in the dorsal root ganglia become activated following peripheral nerve injury in rats. Indian J Exptl Biol 48(2):110–116
go back to reference Patro N, Shrivastava M, Surya T, Patro IK (2009) S100β upregulation: A possible mechanism of deltamethrin toxicity and motor coordination deficits. Neurotoxicol Teratol 31(3):169–176PubMedCrossRef Patro N, Shrivastava M, Surya T, Patro IK (2009) S100β upregulation: A possible mechanism of deltamethrin toxicity and motor coordination deficits. Neurotoxicol Teratol 31(3):169–176PubMedCrossRef
go back to reference Patro N, Singh K, Patro IK (2013) Differential microglial and astrocytic response to bacterial and viral infections in the developing hippocampus of neonatal rat. Indian J Exptl Biol 51:606–614 Patro N, Singh K, Patro IK (2013) Differential microglial and astrocytic response to bacterial and viral infections in the developing hippocampus of neonatal rat. Indian J Exptl Biol 51:606–614
go back to reference Paxinos G, Watson C (1982) The Rat Brain in Stereotaxic Coordinates. Academic Press San, Diego Paxinos G, Watson C (1982) The Rat Brain in Stereotaxic Coordinates. Academic Press San, Diego
go back to reference Popovic M, Biessels GJ, Isaacson RL, Gispen WH (2001) Learning and memory in streptozotocin-induced diabetic rats in a novel spatial/object discrimination task. Behav Brain Res 122(2):201–207PubMedCrossRef Popovic M, Biessels GJ, Isaacson RL, Gispen WH (2001) Learning and memory in streptozotocin-induced diabetic rats in a novel spatial/object discrimination task. Behav Brain Res 122(2):201–207PubMedCrossRef
go back to reference Renno WM, Alkhalaf M, Afsari Z, Abd-El-Basset E, Mousa A (2008) Consumption of green tea alters glial fibriliary acidic protein immunoreactivity in the spinal cord astrocytes of STZ-diabetic rats. Nutr Neurosci 11(1):32--40 Renno WM, Alkhalaf M, Afsari Z, Abd-El-Basset E, Mousa A (2008) Consumption of green tea alters glial fibriliary acidic protein immunoreactivity in the spinal cord astrocytes of STZ-diabetic rats. Nutr Neurosci 11(1):32--40
go back to reference Ristow M (2004) Neurodegenerative disorders associated with diabetes mellitus. J Mol Med (Berl) 82(8):510–529CrossRef Ristow M (2004) Neurodegenerative disorders associated with diabetes mellitus. J Mol Med (Berl) 82(8):510–529CrossRef
go back to reference Rothermundt M, Peters M, Prehn JH, Arolt V (2003) S100B in brain damage and neurodegeneration. Microsc Res Tech 60(6):614–632PubMedCrossRef Rothermundt M, Peters M, Prehn JH, Arolt V (2003) S100B in brain damage and neurodegeneration. Microsc Res Tech 60(6):614–632PubMedCrossRef
go back to reference Saravia FE, Revsin Y, Gonzalez Deniselle MC, Gonzalez SL, Roig P, Lima A, Homo-Delarche F, De Nicola AF (2002) Increased astrocyte reactivity in the hippocampus of murine models of type 1 diabetes: the non-obese diabetic (NOD) and streptozotocin-treated mice. Brain Res 957(2):345–353PubMedCrossRef Saravia FE, Revsin Y, Gonzalez Deniselle MC, Gonzalez SL, Roig P, Lima A, Homo-Delarche F, De Nicola AF (2002) Increased astrocyte reactivity in the hippocampus of murine models of type 1 diabetes: the non-obese diabetic (NOD) and streptozotocin-treated mice. Brain Res 957(2):345–353PubMedCrossRef
go back to reference Saxena K, Patro N, Patro IK (2007) FK506 protects neurons following peripheral nerve injury via immunosuppression. Cell Mol Neurobiol 27:1049–1057PubMedCrossRef Saxena K, Patro N, Patro IK (2007) FK506 protects neurons following peripheral nerve injury via immunosuppression. Cell Mol Neurobiol 27:1049–1057PubMedCrossRef
go back to reference Sedaghat F, Notopoulos A (2008) S100 protein family and its application in clinical practice. Hippokratia 12(4):198–204PubMedCentralPubMed Sedaghat F, Notopoulos A (2008) S100 protein family and its application in clinical practice. Hippokratia 12(4):198–204PubMedCentralPubMed
go back to reference Selinfreund RH, Barger SW, Pledger WJ, Van Eldik LJ (1991) Neurotrophic protein S100β stimulates glial cell proliferation. Proc Natl Acad Sci USA 88:3554–3558PubMedCentralPubMedCrossRef Selinfreund RH, Barger SW, Pledger WJ, Van Eldik LJ (1991) Neurotrophic protein S100β stimulates glial cell proliferation. Proc Natl Acad Sci USA 88:3554–3558PubMedCentralPubMedCrossRef
go back to reference Sheng JG, Mrak RE, Griffin WST (1997) Glial-neuronal interactions in Alzheimer’s disease: progressive association of IL-1A + microglial and S100β + astrocytes with neurofibrillary tangle stage. J Neuropath Exp Neurol 56(3):285–290PubMed Sheng JG, Mrak RE, Griffin WST (1997) Glial-neuronal interactions in Alzheimer’s disease: progressive association of IL-1A + microglial and S100β + astrocytes with neurofibrillary tangle stage. J Neuropath Exp Neurol 56(3):285–290PubMed
go back to reference Shram NF, Netchiporouk LI, Martelet C, Jaffrezic-Renault N, Cespuglio R (1997) Brain glucose: voltammetric determination in normal and hyperglycaemic rats using a glucose microsensor. Neuroreport 8(5):1109–1112PubMedCrossRef Shram NF, Netchiporouk LI, Martelet C, Jaffrezic-Renault N, Cespuglio R (1997) Brain glucose: voltammetric determination in normal and hyperglycaemic rats using a glucose microsensor. Neuroreport 8(5):1109–1112PubMedCrossRef
go back to reference Sharma R, Buras E, Terashima T, Serrano F, Massaad CA, Hu L, Bitner B, Inoue T, Chan L, Pautler RG (2010) Hyperglycemia induces oxidative stress and impairs axonal transport rates in mice. PLoS One 5(10):e13463 Sharma R, Buras E, Terashima T, Serrano F, Massaad CA, Hu L, Bitner B, Inoue T, Chan L, Pautler RG (2010) Hyperglycemia induces oxidative stress and impairs axonal transport rates in mice. PLoS One 5(10):e13463
go back to reference Singh P, Jain A, Kaur G (2004) Impact of hypoglycemia and diabetes on CNS: Correlation of mitochondrial oxidative stress with DNA damage. Mol Cell Biochem 260(1–2):153–159PubMedCrossRef Singh P, Jain A, Kaur G (2004) Impact of hypoglycemia and diabetes on CNS: Correlation of mitochondrial oxidative stress with DNA damage. Mol Cell Biochem 260(1–2):153–159PubMedCrossRef
go back to reference Stevens MJ, Li F, Drel VR, Abatan OI, Kim H, Burnett D, Larkin D, Obrosova IG (2007) Nicotinamide Reverses Neurological and Neurovascular Deficits in Streptozotocin Diabetic Rats. J Pharmacol Exp Therapeu 320(1):458–464CrossRef Stevens MJ, Li F, Drel VR, Abatan OI, Kim H, Burnett D, Larkin D, Obrosova IG (2007) Nicotinamide Reverses Neurological and Neurovascular Deficits in Streptozotocin Diabetic Rats. J Pharmacol Exp Therapeu 320(1):458–464CrossRef
go back to reference Streit WJ (2000) Microglial Response to Brain Injury: A Brief Synopsis. Toxicol Pathol 28(1):28--30 Streit WJ (2000) Microglial Response to Brain Injury: A Brief Synopsis. Toxicol Pathol 28(1):28--30
go back to reference Suh SW, Gum ET, Hamby AM, Chan PH, Swanson RA (2007) Hypoglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase. J Clin Invest 117:910–918PubMedCentralPubMedCrossRef Suh SW, Gum ET, Hamby AM, Chan PH, Swanson RA (2007) Hypoglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase. J Clin Invest 117:910–918PubMedCentralPubMedCrossRef
go back to reference Verkhratsky A, Sofroniew MV, Messing A, deLanerolle NC, Rempe D, Rodríguez JJ, Nedergaard M (2012) Neurological diseases as primary gliopathies: a reassessment of neurocentrism. ASN Neuro 4 (3):art:e00082.doi:10.1042/AN20120010. Verkhratsky A, Sofroniew MV, Messing A, deLanerolle NC, Rempe D, Rodríguez JJ, Nedergaard M (2012) Neurological diseases as primary gliopathies: a reassessment of neurocentrism. ASN Neuro 4 (3):art:e00082.doi:10.​1042/​AN20120010.
go back to reference Wang S-H, Sun Z-L, Guo Y-J, Yuan Y, Yang B-Q (2009) Diabetes Impairs Hippocampal Function via Advanced Glycation End Product Mediated New Neuron Generation in Animals with Diabetes-Related Depression. Toxicol Sci 111(1):72–79PubMedCrossRef Wang S-H, Sun Z-L, Guo Y-J, Yuan Y, Yang B-Q (2009) Diabetes Impairs Hippocampal Function via Advanced Glycation End Product Mediated New Neuron Generation in Animals with Diabetes-Related Depression. Toxicol Sci 111(1):72–79PubMedCrossRef
go back to reference Zeng XX, Ng YK, Ling EA (2000) Neuronal and microglial response in the retina of streptozotocin-induced diabetic rats. Vis Neurosci 17(3):463–471PubMedCrossRef Zeng XX, Ng YK, Ling EA (2000) Neuronal and microglial response in the retina of streptozotocin-induced diabetic rats. Vis Neurosci 17(3):463–471PubMedCrossRef
go back to reference Zimmer DB, Chessher J, Wilson GL, Zimmer WE (1997) S100A1 and S100B expression and target proteins in type I diabetes. Endocrinology 138(12):5176–5183PubMed Zimmer DB, Chessher J, Wilson GL, Zimmer WE (1997) S100A1 and S100B expression and target proteins in type I diabetes. Endocrinology 138(12):5176–5183PubMed
Metadata
Title
Astrocytic and microglial response in experimentally induced diabetic rat brain
Authors
Aarti Nagayach
Nisha Patro
Ishan Patro
Publication date
01-09-2014
Publisher
Springer US
Published in
Metabolic Brain Disease / Issue 3/2014
Print ISSN: 0885-7490
Electronic ISSN: 1573-7365
DOI
https://doi.org/10.1007/s11011-014-9562-z

Other articles of this Issue 3/2014

Metabolic Brain Disease 3/2014 Go to the issue