Skip to main content
Top
Published in: Journal of Mammary Gland Biology and Neoplasia 3/2010

Open Access 01-09-2010

Diverse and Active Roles for Adipocytes During Mammary Gland Growth and Function

Authors: Russell C. Hovey, Lucila Aimo

Published in: Journal of Mammary Gland Biology and Neoplasia | Issue 3/2010

Login to get access

Abstract

The mammary gland is unique in its requirement to develop in close association with a depot of adipose tissue that is commonly referred to as the mammary fat pad. As discussed throughout this issue, the mammary fat pad represents a complex stromal microenvironment that includes a variety of cell types. In this article we focus on adipocytes as local regulators of epithelial cell growth and their function during lactation. Several important considerations arise from such a discussion. There is a clear and close interrelationship between different stromal tissue types within the mammary fat pad and its adipocytes. Furthermore, these relationships are both stage- and species-dependent, although many questions remain unanswered regarding their roles in these different states. Several lines of evidence also suggest that adipocytes within the mammary fat pad may function differently from those in other fat depots. Finally, past and future technologies present a variety of opportunities to model these complexities in order to more precisely delineate the many potential functions of adipocytes within the mammary glands. A thorough understanding of the role for this cell type in the mammary glands could present numerous opportunities to modify both breast cancer risk and lactation performance.
Literature
1.
go back to reference Hovey RC, Trott JF, Vonderhaar BK. Establishing a framework for the functional mammary gland: from endocrinology to morphology. J Mammary Gland Biol Neoplasia. 2002;7(1):17–38.PubMedCrossRef Hovey RC, Trott JF, Vonderhaar BK. Establishing a framework for the functional mammary gland: from endocrinology to morphology. J Mammary Gland Biol Neoplasia. 2002;7(1):17–38.PubMedCrossRef
2.
go back to reference Watson CJ. Involution: apoptosis and tissue remodelling that convert the mammary gland from milk factory to a quiescent organ. Breast Cancer Res. 2006;8(2):203.PubMedCrossRef Watson CJ. Involution: apoptosis and tissue remodelling that convert the mammary gland from milk factory to a quiescent organ. Breast Cancer Res. 2006;8(2):203.PubMedCrossRef
3.
go back to reference Brisken C, Rajaram RD. Alveolar and lactogenic differentiation. J Mammary Gland Biol Neoplasia. 2006;11(3–4):239–48.PubMedCrossRef Brisken C, Rajaram RD. Alveolar and lactogenic differentiation. J Mammary Gland Biol Neoplasia. 2006;11(3–4):239–48.PubMedCrossRef
4.
go back to reference Neville MC, Medina D, Monks J, Hovey RC. The mammary fat pad. J Mammary Gland Biol Neoplasia. 1998;3(2):109–16.PubMedCrossRef Neville MC, Medina D, Monks J, Hovey RC. The mammary fat pad. J Mammary Gland Biol Neoplasia. 1998;3(2):109–16.PubMedCrossRef
5.
go back to reference Hovey RC, McFadden TB, Akers RM. Regulation of mammary gland growth and morphogenesis by the mammary fat pad: a species comparison. J Mammary Gland Biol Neoplasia. 1999;4(1):53–68.PubMedCrossRef Hovey RC, McFadden TB, Akers RM. Regulation of mammary gland growth and morphogenesis by the mammary fat pad: a species comparison. J Mammary Gland Biol Neoplasia. 1999;4(1):53–68.PubMedCrossRef
6.
go back to reference Hoshino K. Mammary transplantation and its histogenesis in mice. In: Yokoyama A, Mizuno H, Nagasawa H, editors. Physiology of mammary glands. Tokyo: Japan Scientific Press; 1978. p. 163–228. Hoshino K. Mammary transplantation and its histogenesis in mice. In: Yokoyama A, Mizuno H, Nagasawa H, editors. Physiology of mammary glands. Tokyo: Japan Scientific Press; 1978. p. 163–228.
7.
go back to reference Tucker HA. Quantitative estimates of mammary growth during various physiological states: a review. J Dairy Sci. 1987;70(9):1958–66.PubMedCrossRef Tucker HA. Quantitative estimates of mammary growth during various physiological states: a review. J Dairy Sci. 1987;70(9):1958–66.PubMedCrossRef
9.
go back to reference Hansen JB, Kristiansen K. Regulatory circuits controlling white versus brown adipocyte differentiation. Biochem J. 2006;398(2):153–68.PubMedCrossRef Hansen JB, Kristiansen K. Regulatory circuits controlling white versus brown adipocyte differentiation. Biochem J. 2006;398(2):153–68.PubMedCrossRef
10.
go back to reference Cinti S. Reversible physiological transdifferentiation in the adipose organ. Proc Nutr Soc. 2009;68(4):340–9.PubMedCrossRef Cinti S. Reversible physiological transdifferentiation in the adipose organ. Proc Nutr Soc. 2009;68(4):340–9.PubMedCrossRef
11.
go back to reference Cousin B, Cinti S, Morroni M, Raimbault S, Ricquier D, Penicaud L, et al. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J Cell Sci. 1992;103(Pt 4):931–42.PubMed Cousin B, Cinti S, Morroni M, Raimbault S, Ricquier D, Penicaud L, et al. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J Cell Sci. 1992;103(Pt 4):931–42.PubMed
12.
go back to reference Hens JR, Wysolmerski JJ. Key stages of mammary gland development: molecular mechanisms involved in the formation of the embryonic mammary gland. Breast Cancer Res. 2005;7(5):220–4.PubMedCrossRef Hens JR, Wysolmerski JJ. Key stages of mammary gland development: molecular mechanisms involved in the formation of the embryonic mammary gland. Breast Cancer Res. 2005;7(5):220–4.PubMedCrossRef
13.
go back to reference Sakakura T. Mammary embryogenesis. In: Neville MC, Daniel CW, editors. The mammary gland: development, regulation, and function. New York: Plenum Press; 1987. p. 37–66. Sakakura T. Mammary embryogenesis. In: Neville MC, Daniel CW, editors. The mammary gland: development, regulation, and function. New York: Plenum Press; 1987. p. 37–66.
14.
go back to reference Anbazhagan R, Bartek J, Monaghan P, Gusterson BA. Growth and development of the human infant breast. Am J Anat. 1991;192(4):407–17.PubMedCrossRef Anbazhagan R, Bartek J, Monaghan P, Gusterson BA. Growth and development of the human infant breast. Am J Anat. 1991;192(4):407–17.PubMedCrossRef
15.
go back to reference Anbazhagan R, Gusterson BA. Ultrastructure and immunohistochemistry of the embryonic type of fat identified in the human infant breast. Anat Rec. 1995;241(1):129–35.PubMedCrossRef Anbazhagan R, Gusterson BA. Ultrastructure and immunohistochemistry of the embryonic type of fat identified in the human infant breast. Anat Rec. 1995;241(1):129–35.PubMedCrossRef
16.
go back to reference Sheffield LG. Organization and growth of mammary epithelia in the mammary gland fat pad. J Dairy Sci. 1988;71(10):2855–74.PubMedCrossRef Sheffield LG. Organization and growth of mammary epithelia in the mammary gland fat pad. J Dairy Sci. 1988;71(10):2855–74.PubMedCrossRef
17.
go back to reference Mayer G, Klein M. HIstology and cytology of the mammary gland. In: Kon SK, Cowie AT, editors. Milk: the mammary gland and its secretion. New York: Academic; 1961. p. 47–116. Mayer G, Klein M. HIstology and cytology of the mammary gland. In: Kon SK, Cowie AT, editors. Milk: the mammary gland and its secretion. New York: Academic; 1961. p. 47–116.
18.
go back to reference Hovey RC, Auldist DE, Mackenzie DD, McFadden TB. Preparation of an epithelium-free mammary fat pad and subsequent mammogenesis in ewes. J Anim Sci. 2000;78(8):2177–85.PubMed Hovey RC, Auldist DE, Mackenzie DD, McFadden TB. Preparation of an epithelium-free mammary fat pad and subsequent mammogenesis in ewes. J Anim Sci. 2000;78(8):2177–85.PubMed
19.
go back to reference Ellis S, McFadden TB, Akers RM. Prepuberal ovine mammary development is unaffected by ovariectomy. Domest Anim Endocrinol. 1998;15(4):217–25.PubMedCrossRef Ellis S, McFadden TB, Akers RM. Prepuberal ovine mammary development is unaffected by ovariectomy. Domest Anim Endocrinol. 1998;15(4):217–25.PubMedCrossRef
20.
go back to reference Nelson LW, Kelly WA. Changes in canine mammary gland histology during the estrous cycle. Toxicol Appl Pharmacol. 1974;27(1):113–22.PubMedCrossRef Nelson LW, Kelly WA. Changes in canine mammary gland histology during the estrous cycle. Toxicol Appl Pharmacol. 1974;27(1):113–22.PubMedCrossRef
21.
go back to reference Schedin P, Hovey RC. Editorial: The mammary stroma in normal development and function. J. Mammary Gland Biol. Neoplasia. 2010. Schedin P, Hovey RC. Editorial: The mammary stroma in normal development and function. J. Mammary Gland Biol. Neoplasia. 2010.
22.
go back to reference Bani-Sacchi T, Bianchi S, Bani G, Bigazzi M. Ultrastructural studies on white adipocyte differentiation in the mouse mammary gland following estrogen and relaxin. Acta Anat (Basel). 1987;129(1):1–9.CrossRef Bani-Sacchi T, Bianchi S, Bani G, Bigazzi M. Ultrastructural studies on white adipocyte differentiation in the mouse mammary gland following estrogen and relaxin. Acta Anat (Basel). 1987;129(1):1–9.CrossRef
23.
go back to reference Matsumoto M, Nishinakagawa H, Kurohmaru M, Hayashi Y. Effects of estrogen and progesterone on the parenchyma and blood vessels of the mammary gland in ovariectomized adult mice. J Vet Med Sci. 1995;57(1):39–44.PubMed Matsumoto M, Nishinakagawa H, Kurohmaru M, Hayashi Y. Effects of estrogen and progesterone on the parenchyma and blood vessels of the mammary gland in ovariectomized adult mice. J Vet Med Sci. 1995;57(1):39–44.PubMed
24.
go back to reference Matsumoto M, Nishinakagawa H, Kurohmaru M, Hayashi Y, Otsuka J. Effects of estrogen and progesterone on the development of the mammary gland and the associated blood vessels in ovariectomized mice. J Vet Med Sci. 1992;54(6):1117–24.PubMed Matsumoto M, Nishinakagawa H, Kurohmaru M, Hayashi Y, Otsuka J. Effects of estrogen and progesterone on the development of the mammary gland and the associated blood vessels in ovariectomized mice. J Vet Med Sci. 1992;54(6):1117–24.PubMed
25.
go back to reference Matsumoto M, Nishinakagawa H, Kurohmaru M, Hayashi Y, Awal MA. Ultrastructural changes in fat cells and blood capillaries of the mammary gland in starved mice. J Vet Med Sci. 1995;57(4):733–6.PubMed Matsumoto M, Nishinakagawa H, Kurohmaru M, Hayashi Y, Awal MA. Ultrastructural changes in fat cells and blood capillaries of the mammary gland in starved mice. J Vet Med Sci. 1995;57(4):733–6.PubMed
26.
go back to reference Gouon-Evans V, Pollard JW. Unexpected deposition of brown fat in mammary gland during postnatal development. Mol Endocrinol. 2002;16(11):2618–27.PubMedCrossRef Gouon-Evans V, Pollard JW. Unexpected deposition of brown fat in mammary gland during postnatal development. Mol Endocrinol. 2002;16(11):2618–27.PubMedCrossRef
27.
go back to reference Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, et al. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab. 298(6):E1244-253. Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, et al. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab. 298(6):E1244-253.
28.
go back to reference Master SR, Hartman JL, D’Cruz CM, Moody SE, Keiper EA, Ha SI, et al. Functional microarray analysis of mammary organogenesis reveals a developmental role in adaptive thermogenesis. Mol Endocrinol. 2002;16(6):1185–203.PubMedCrossRef Master SR, Hartman JL, D’Cruz CM, Moody SE, Keiper EA, Ha SI, et al. Functional microarray analysis of mammary organogenesis reveals a developmental role in adaptive thermogenesis. Mol Endocrinol. 2002;16(6):1185–203.PubMedCrossRef
29.
go back to reference Andres A-C, Djonov V. The mammary gland vasculature revisited. J. Mammary Gland Biol. Neoplasia 2010. Andres A-C, Djonov V. The mammary gland vasculature revisited. J. Mammary Gland Biol. Neoplasia 2010.
30.
go back to reference Soemarwoto IN, Bern HA. The effect of hormones on the vascular pattern of the mouse mammary gland. Am J Anat. 1958;103(3):403–35.PubMedCrossRef Soemarwoto IN, Bern HA. The effect of hormones on the vascular pattern of the mouse mammary gland. Am J Anat. 1958;103(3):403–35.PubMedCrossRef
31.
go back to reference Hovey RC, Goldhar AS, Baffi J, Vonderhaar BK. Transcriptional regulation of vascular endothelial growth factor expression in epithelial and stromal cells during mouse mammary gland development. Mol Endocrinol. 2001;15(5):819–31.PubMedCrossRef Hovey RC, Goldhar AS, Baffi J, Vonderhaar BK. Transcriptional regulation of vascular endothelial growth factor expression in epithelial and stromal cells during mouse mammary gland development. Mol Endocrinol. 2001;15(5):819–31.PubMedCrossRef
32.
go back to reference Bianchi S, Bani G, Bigazzi M. Effects of relaxin on the mouse mammary gland. III. The fat pad. J Endocrinol Invest. 1986;9(2):153–60.PubMed Bianchi S, Bani G, Bigazzi M. Effects of relaxin on the mouse mammary gland. III. The fat pad. J Endocrinol Invest. 1986;9(2):153–60.PubMed
33.
go back to reference Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE, et al. White fat progenitor cells reside in the adipose vasculature. Science. 2008;322(5901):583–6.PubMedCrossRef Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE, et al. White fat progenitor cells reside in the adipose vasculature. Science. 2008;322(5901):583–6.PubMedCrossRef
34.
go back to reference Pujol E, Proenza AM, Roca P, Llado I. Changes in mammary fat pad composition and lipolytic capacity throughout pregnancy. Cell Tissue Res. 2006;323(3):505–11.PubMedCrossRef Pujol E, Proenza AM, Roca P, Llado I. Changes in mammary fat pad composition and lipolytic capacity throughout pregnancy. Cell Tissue Res. 2006;323(3):505–11.PubMedCrossRef
35.
go back to reference Elias JJ, Pitelka DR, Armstrong RC. Changes in fat cell morphology during lactation in the mouse. Anat Rec. 1973;177(4):533–47.PubMedCrossRef Elias JJ, Pitelka DR, Armstrong RC. Changes in fat cell morphology during lactation in the mouse. Anat Rec. 1973;177(4):533–47.PubMedCrossRef
36.
go back to reference Bartley JC, Emerman JT, Bissell MJ. Metabolic cooperativity between epithelial cells and adipocytes of mice. Am J Physiol. 1981;241(5):C204–8.PubMed Bartley JC, Emerman JT, Bissell MJ. Metabolic cooperativity between epithelial cells and adipocytes of mice. Am J Physiol. 1981;241(5):C204–8.PubMed
37.
go back to reference Bandyopadhyay GK, Lee LY, Guzman RC, Nandi S. Effect of reproductive states on lipid mobilization and linoleic acid metabolism in mammary glands. Lipids. 1995;30(2):155–62.PubMedCrossRef Bandyopadhyay GK, Lee LY, Guzman RC, Nandi S. Effect of reproductive states on lipid mobilization and linoleic acid metabolism in mammary glands. Lipids. 1995;30(2):155–62.PubMedCrossRef
38.
go back to reference Rebuffe-Scrive M, Eldh J, Hafstrom LO, Bjorntorp P. Metabolism of mammary, abdominal, and femoral adipocytes in women before and after menopause. Metabolism. 1986;35(9):792–7.PubMedCrossRef Rebuffe-Scrive M, Eldh J, Hafstrom LO, Bjorntorp P. Metabolism of mammary, abdominal, and femoral adipocytes in women before and after menopause. Metabolism. 1986;35(9):792–7.PubMedCrossRef
39.
go back to reference Rink JD, Simpson ER, Barnard JJ, Bulun SE. Cellular characterization of adipose tissue from various body sites of women. J Clin Endocrinol Metab. 1996;81(7):2443–7.PubMedCrossRef Rink JD, Simpson ER, Barnard JJ, Bulun SE. Cellular characterization of adipose tissue from various body sites of women. J Clin Endocrinol Metab. 1996;81(7):2443–7.PubMedCrossRef
40.
go back to reference Anzai T, Muto K, Komine S. Changes in fat content and some characteristics of lipolytic activity during pregnancy and lactation in mouse mammary gland. Endocrinol Jpn. 1979;26(3):371–7.PubMed Anzai T, Muto K, Komine S. Changes in fat content and some characteristics of lipolytic activity during pregnancy and lactation in mouse mammary gland. Endocrinol Jpn. 1979;26(3):371–7.PubMed
41.
go back to reference Scow RO, Chernick SS, Fleck TR. Lipoprotein lipase and uptake of triacylglycerol, cholesterol and phosphatidylcholine from chylomicrons by mammary and adipose tissue of lactating rats in vivo. Biochim Biophys Acta. 1977;487(2):297–306.PubMed Scow RO, Chernick SS, Fleck TR. Lipoprotein lipase and uptake of triacylglycerol, cholesterol and phosphatidylcholine from chylomicrons by mammary and adipose tissue of lactating rats in vivo. Biochim Biophys Acta. 1977;487(2):297–306.PubMed
42.
go back to reference Russell TD, Palmer CA, Orlicky DJ, Fischer A, Rudolph MC, Neville MC, et al. Cytoplasmic lipid droplet accumulation in developing mammary epithelial cells: roles of adipophilin and lipid metabolism. J Lipid Res. 2007;48(7):1463–75.PubMedCrossRef Russell TD, Palmer CA, Orlicky DJ, Fischer A, Rudolph MC, Neville MC, et al. Cytoplasmic lipid droplet accumulation in developing mammary epithelial cells: roles of adipophilin and lipid metabolism. J Lipid Res. 2007;48(7):1463–75.PubMedCrossRef
43.
go back to reference Lejour M. Evaluation of fat in breast tissue removed by vertical mammaplasty. Plast Reconstr Surg. 1997;99(2):386–93.PubMedCrossRef Lejour M. Evaluation of fat in breast tissue removed by vertical mammaplasty. Plast Reconstr Surg. 1997;99(2):386–93.PubMedCrossRef
44.
go back to reference Ramsay DT, Kent JC, Hartmann RA, Hartmann PE. Anatomy of the lactating human breast redefined with ultrasound imaging. J Anat. 2005;206(6):525–34.PubMedCrossRef Ramsay DT, Kent JC, Hartmann RA, Hartmann PE. Anatomy of the lactating human breast redefined with ultrasound imaging. J Anat. 2005;206(6):525–34.PubMedCrossRef
45.
go back to reference Vandeweyer E, Hertens D. Quantification of glands and fat in breast tissue: an experimental determination. Ann Anat. 2002;184(2):181–4.PubMedCrossRef Vandeweyer E, Hertens D. Quantification of glands and fat in breast tissue: an experimental determination. Ann Anat. 2002;184(2):181–4.PubMedCrossRef
46.
go back to reference Anastassiades OT, Spiliades C, Tsakraklides E, Gogas J. Amount and distribution of solid and fatty tissues in the female breast and their relationship to carcinoma. Pathol Res Pract. 1983;176(2–4):200–15.PubMed Anastassiades OT, Spiliades C, Tsakraklides E, Gogas J. Amount and distribution of solid and fatty tissues in the female breast and their relationship to carcinoma. Pathol Res Pract. 1983;176(2–4):200–15.PubMed
47.
go back to reference Lilla JN, Joshi RV, Craik CS, Werb Z. Active plasma kallikrein localizes to mast cells and regulates epithelial cell apoptosis, adipocyte differentiation, and stromal remodeling during mammary gland involution. J Biol Chem. 2009;284(20):13792–803.PubMedCrossRef Lilla JN, Joshi RV, Craik CS, Werb Z. Active plasma kallikrein localizes to mast cells and regulates epithelial cell apoptosis, adipocyte differentiation, and stromal remodeling during mammary gland involution. J Biol Chem. 2009;284(20):13792–803.PubMedCrossRef
48.
go back to reference Alexander CM, Selvarajan S, Mudgett J, Werb Z. Stromelysin-1 regulates adipogenesis during mammary gland involution. J Cell Biol. 2001;152(4):693–703.PubMedCrossRef Alexander CM, Selvarajan S, Mudgett J, Werb Z. Stromelysin-1 regulates adipogenesis during mammary gland involution. J Cell Biol. 2001;152(4):693–703.PubMedCrossRef
49.
go back to reference Howard BA, Gusterson BA. Human breast development. J Mammary Gland Biol Neoplasia. 2000;5(2):119–37.PubMedCrossRef Howard BA, Gusterson BA. Human breast development. J Mammary Gland Biol Neoplasia. 2000;5(2):119–37.PubMedCrossRef
50.
go back to reference Oliver SP, Sordillo LM. Udder health in the periparturient period. J Dairy Sci. 1988;71(9):2584–606.PubMedCrossRef Oliver SP, Sordillo LM. Udder health in the periparturient period. J Dairy Sci. 1988;71(9):2584–606.PubMedCrossRef
51.
go back to reference Capuco AV, Akers RM, Smith JJ. Mammary growth in Holstein cows during the dry period: quantification of nucleic acids and histology. J Dairy Sci. 1997;80(3):477–87.PubMedCrossRef Capuco AV, Akers RM, Smith JJ. Mammary growth in Holstein cows during the dry period: quantification of nucleic acids and histology. J Dairy Sci. 1997;80(3):477–87.PubMedCrossRef
52.
go back to reference De Vries LD, Dover H, Casey T, VandeHaar MJ, Plaut K. Characterization of mammary stromal remodeling during the dry period. J Dairy Sci. 93(6):2433–43. De Vries LD, Dover H, Casey T, VandeHaar MJ, Plaut K. Characterization of mammary stromal remodeling during the dry period. J Dairy Sci. 93(6):2433–43.
53.
go back to reference Wang P, Mariman E, Renes J, Keijer J. The secretory function of adipocytes in the physiology of white adipose tissue. J Cell Physiol. 2008;216(1):3–13.PubMedCrossRef Wang P, Mariman E, Renes J, Keijer J. The secretory function of adipocytes in the physiology of white adipose tissue. J Cell Physiol. 2008;216(1):3–13.PubMedCrossRef
54.
go back to reference Celis JE, Moreira JM, Cabezon T, Gromov P, Friis E, Rank F, et al. Identification of extracellular and intracellular signaling components of the mammary adipose tissue and its interstitial fluid in high risk breast cancer patients: toward dissecting the molecular circuitry of epithelial-adipocyte stromal cell interactions. Mol Cell Proteomics. 2005;4(4):492–522.PubMedCrossRef Celis JE, Moreira JM, Cabezon T, Gromov P, Friis E, Rank F, et al. Identification of extracellular and intracellular signaling components of the mammary adipose tissue and its interstitial fluid in high risk breast cancer patients: toward dissecting the molecular circuitry of epithelial-adipocyte stromal cell interactions. Mol Cell Proteomics. 2005;4(4):492–522.PubMedCrossRef
55.
go back to reference Trott JF, Vonderhaar BK, Hovey RC. Historical perspectives of prolactin and growth hormone as mammogens, lactogens and galactagogues—agog for the future! J Mammary Gland Biol Neoplasia. 2008;13(1):3–11.PubMedCrossRef Trott JF, Vonderhaar BK, Hovey RC. Historical perspectives of prolactin and growth hormone as mammogens, lactogens and galactagogues—agog for the future! J Mammary Gland Biol Neoplasia. 2008;13(1):3–11.PubMedCrossRef
56.
go back to reference Zinger M, McFarland M, Ben-Jonathan N. Prolactin expression and secretion by human breast glandular and adipose tissue explants. J Clin Endocrinol Metab. 2003;88(2):689–96.PubMedCrossRef Zinger M, McFarland M, Ben-Jonathan N. Prolactin expression and secretion by human breast glandular and adipose tissue explants. J Clin Endocrinol Metab. 2003;88(2):689–96.PubMedCrossRef
57.
go back to reference Hugo ER, Borcherding DC, Gersin KS, Loftus J, Ben-Jonathan N. Prolactin release by adipose explants, primary adipocytes, and LS14 adipocytes. J Clin Endocrinol Metab. 2008;93(10):4006–12.PubMedCrossRef Hugo ER, Borcherding DC, Gersin KS, Loftus J, Ben-Jonathan N. Prolactin release by adipose explants, primary adipocytes, and LS14 adipocytes. J Clin Endocrinol Metab. 2008;93(10):4006–12.PubMedCrossRef
58.
go back to reference Hovey RC, Trott JF, Ginsburg E, Goldhar A, Sasaki MM, Fountain SJ, et al. Transcriptional and spatiotemporal regulation of prolactin receptor mRNA and cooperativity with progesterone receptor function during ductal branch growth in the mammary gland. Dev Dyn. 2001;222(2):192–205.PubMedCrossRef Hovey RC, Trott JF, Ginsburg E, Goldhar A, Sasaki MM, Fountain SJ, et al. Transcriptional and spatiotemporal regulation of prolactin receptor mRNA and cooperativity with progesterone receptor function during ductal branch growth in the mammary gland. Dev Dyn. 2001;222(2):192–205.PubMedCrossRef
59.
go back to reference Nakatani H, Aoki N, Okajima T, Nadano D, Flint D, Matsuda T. Establishment of a mammary stromal fibroblastic cell line for in vitro studies in mice of mammary adipocyte differentiation. Biol Reprod. 82(1):44–53. Nakatani H, Aoki N, Okajima T, Nadano D, Flint D, Matsuda T. Establishment of a mammary stromal fibroblastic cell line for in vitro studies in mice of mammary adipocyte differentiation. Biol Reprod. 82(1):44–53.
60.
go back to reference Viengchareun S, Servel N, Feve B, Freemark M, Lombes M, Binart N. Prolactin receptor signaling is essential for perinatal brown adipocyte function: a role for insulin-like growth factor-2. PLoS ONE. 2008;3(2):e1535.PubMedCrossRef Viengchareun S, Servel N, Feve B, Freemark M, Lombes M, Binart N. Prolactin receptor signaling is essential for perinatal brown adipocyte function: a role for insulin-like growth factor-2. PLoS ONE. 2008;3(2):e1535.PubMedCrossRef
61.
go back to reference Freemark M, Fleenor D, Driscoll P, Binart N, Kelly P. Body weight and fat deposition in prolactin receptor-deficient mice. Endocrinology. 2001;142(2):532–7.PubMedCrossRef Freemark M, Fleenor D, Driscoll P, Binart N, Kelly P. Body weight and fat deposition in prolactin receptor-deficient mice. Endocrinology. 2001;142(2):532–7.PubMedCrossRef
62.
go back to reference Ling C, Svensson L, Oden B, Weijdegard B, Eden B, Eden S, et al. Identification of functional prolactin (PRL) receptor gene expression: PRL inhibits lipoprotein lipase activity in human white adipose tissue. J Clin Endocrinol Metab. 2003;88(4):1804–8.PubMedCrossRef Ling C, Svensson L, Oden B, Weijdegard B, Eden B, Eden S, et al. Identification of functional prolactin (PRL) receptor gene expression: PRL inhibits lipoprotein lipase activity in human white adipose tissue. J Clin Endocrinol Metab. 2003;88(4):1804–8.PubMedCrossRef
63.
go back to reference Santen RJ, Brodie H, Simpson ER, Siiteri PK, Brodie A. History of aromatase: saga of an important biological mediator and therapeutic target. Endocr Rev. 2009;30(4):343–75.PubMedCrossRef Santen RJ, Brodie H, Simpson ER, Siiteri PK, Brodie A. History of aromatase: saga of an important biological mediator and therapeutic target. Endocr Rev. 2009;30(4):343–75.PubMedCrossRef
64.
go back to reference Chow JD, Simpson ER, Boon WC. Alternative 5′-untranslated first exons of the mouse Cyp19A1 (aromatase) gene. J Steroid Biochem Mol Biol. 2009;115(3–5):115–25.PubMedCrossRef Chow JD, Simpson ER, Boon WC. Alternative 5′-untranslated first exons of the mouse Cyp19A1 (aromatase) gene. J Steroid Biochem Mol Biol. 2009;115(3–5):115–25.PubMedCrossRef
65.
go back to reference Feuermann Y, Mabjeesh SJ, Shamay A. Mammary fat can adjust prolactin effect on mammary epithelial cells via leptin and estrogen. Int J Endocrinol. 2009;2009:427260.PubMed Feuermann Y, Mabjeesh SJ, Shamay A. Mammary fat can adjust prolactin effect on mammary epithelial cells via leptin and estrogen. Int J Endocrinol. 2009;2009:427260.PubMed
66.
go back to reference Peaker M, Taylor E. Oestrogen production by the goat mammary gland: transient aromatase activity during late pregnancy. J Endocrinol. 1990;125(1):R1–3.PubMedCrossRef Peaker M, Taylor E. Oestrogen production by the goat mammary gland: transient aromatase activity during late pregnancy. J Endocrinol. 1990;125(1):R1–3.PubMedCrossRef
67.
go back to reference Mueller SO, Clark JA, Myers PH, Korach KS. Mammary gland development in adult mice requires epithelial and stromal estrogen receptor alpha. Endocrinology. 2002;143(6):2357–65.PubMedCrossRef Mueller SO, Clark JA, Myers PH, Korach KS. Mammary gland development in adult mice requires epithelial and stromal estrogen receptor alpha. Endocrinology. 2002;143(6):2357–65.PubMedCrossRef
68.
go back to reference Meyer MJ, Capuco AV, Boisclair YR, Van Amburgh ME. Estrogen-dependent responses of the mammary fat pad in prepubertal dairy heifers. J Endocrinol. 2006;190(3):819–27.PubMedCrossRef Meyer MJ, Capuco AV, Boisclair YR, Van Amburgh ME. Estrogen-dependent responses of the mammary fat pad in prepubertal dairy heifers. J Endocrinol. 2006;190(3):819–27.PubMedCrossRef
69.
go back to reference Dieudonne MN, Leneveu MC, Giudicelli Y, Pecquery R. Evidence for functional estrogen receptors alpha and beta in human adipose cells: regional specificities and regulation by estrogens. Am J Physiol Cell Physiol. 2004;286(3):C655–61.PubMedCrossRef Dieudonne MN, Leneveu MC, Giudicelli Y, Pecquery R. Evidence for functional estrogen receptors alpha and beta in human adipose cells: regional specificities and regulation by estrogens. Am J Physiol Cell Physiol. 2004;286(3):C655–61.PubMedCrossRef
70.
go back to reference Cunha GR, Young P, Hom YK, Cooke PS, Taylor JA, Lubahn DB. Elucidation of a role for stromal steroid hormone receptors in mammary gland growth and development using tissue recombinants. J Mammary Gland Biol Neoplasia. 1997;2(4):393–402.PubMedCrossRef Cunha GR, Young P, Hom YK, Cooke PS, Taylor JA, Lubahn DB. Elucidation of a role for stromal steroid hormone receptors in mammary gland growth and development using tissue recombinants. J Mammary Gland Biol Neoplasia. 1997;2(4):393–402.PubMedCrossRef
71.
go back to reference Cheng G, Weihua Z, Warner M, Gustafsson JA. Estrogen receptors ER alpha and ER beta in proliferation in the rodent mammary gland. Proc Natl Acad Sci USA. 2004;101(11):3739–46.PubMedCrossRef Cheng G, Weihua Z, Warner M, Gustafsson JA. Estrogen receptors ER alpha and ER beta in proliferation in the rodent mammary gland. Proc Natl Acad Sci USA. 2004;101(11):3739–46.PubMedCrossRef
72.
go back to reference Li S, Han B, Liu G, Ouellet J, Labrie F, Pelletier G. Immunocytochemical localization of sex steroid hormone receptors in normal human mammary gland. J Histochem Cytochem. 58(6):509–15. Li S, Han B, Liu G, Ouellet J, Labrie F, Pelletier G. Immunocytochemical localization of sex steroid hormone receptors in normal human mammary gland. J Histochem Cytochem. 58(6):509–15.
73.
go back to reference Meyer MJ, Rhoads RP, Capuco AV, Connor EE, Hummel A, Boisclair YR, et al. Ontogenic and nutritional regulation of steroid receptor and IGF-I transcript abundance in the prepubertal heifer mammary gland. J Endocrinol. 2007;195(1):59–66.PubMedCrossRef Meyer MJ, Rhoads RP, Capuco AV, Connor EE, Hummel A, Boisclair YR, et al. Ontogenic and nutritional regulation of steroid receptor and IGF-I transcript abundance in the prepubertal heifer mammary gland. J Endocrinol. 2007;195(1):59–66.PubMedCrossRef
74.
go back to reference Rowzee AM, Lazzarino DA, Rota L, Sun Z, Wood TL. IGF ligand and receptor regulation of mammary development. J Mammary Gland Biol Neoplasia. 2008;13(4):361–70.PubMedCrossRef Rowzee AM, Lazzarino DA, Rota L, Sun Z, Wood TL. IGF ligand and receptor regulation of mammary development. J Mammary Gland Biol Neoplasia. 2008;13(4):361–70.PubMedCrossRef
75.
go back to reference Kleinberg DL, Ruan W. IGF-I, GH, and sex steroid effects in normal mammary gland development. J Mammary Gland Biol Neoplasia. 2008;13(4):353–60.PubMedCrossRef Kleinberg DL, Ruan W. IGF-I, GH, and sex steroid effects in normal mammary gland development. J Mammary Gland Biol Neoplasia. 2008;13(4):353–60.PubMedCrossRef
76.
go back to reference Richert MM, Wood TL. The insulin-like growth factors (IGF) and IGF type I receptor during postnatal growth of the murine mammary gland: sites of messenger ribonucleic acid expression and potential functions. Endocrinology. 1999;140(1):454–61.PubMedCrossRef Richert MM, Wood TL. The insulin-like growth factors (IGF) and IGF type I receptor during postnatal growth of the murine mammary gland: sites of messenger ribonucleic acid expression and potential functions. Endocrinology. 1999;140(1):454–61.PubMedCrossRef
77.
go back to reference Walden PD, Ruan W, Feldman M, Kleinberg DL. Evidence that the mammary fat pad mediates the action of growth hormone in mammary gland development. Endocrinology. 1998;139(2):659–62.PubMedCrossRef Walden PD, Ruan W, Feldman M, Kleinberg DL. Evidence that the mammary fat pad mediates the action of growth hormone in mammary gland development. Endocrinology. 1998;139(2):659–62.PubMedCrossRef
78.
go back to reference Hovey RC, Davey HW, Mackenzie DD, McFadden TB. Ontogeny and epithelial-stromal interactions regulate IGF expression in the ovine mammary gland. Mol Cell Endocrinol. 1998;136(2):139–44.PubMedCrossRef Hovey RC, Davey HW, Mackenzie DD, McFadden TB. Ontogeny and epithelial-stromal interactions regulate IGF expression in the ovine mammary gland. Mol Cell Endocrinol. 1998;136(2):139–44.PubMedCrossRef
79.
go back to reference Rahimi N, Saulnier R, Nakamura T, Park M, Elliott B. Role of hepatocyte growth factor in breast cancer: a novel mitogenic factor secreted by adipocytes. DNA Cell Biol. 1994;13(12):1189–97.PubMedCrossRef Rahimi N, Saulnier R, Nakamura T, Park M, Elliott B. Role of hepatocyte growth factor in breast cancer: a novel mitogenic factor secreted by adipocytes. DNA Cell Biol. 1994;13(12):1189–97.PubMedCrossRef
80.
go back to reference Kilroy GE, Foster SJ, Wu X, Ruiz J, Sherwood S, Heifetz A, et al. Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. J Cell Physiol. 2007;212(3):702–9.PubMedCrossRef Kilroy GE, Foster SJ, Wu X, Ruiz J, Sherwood S, Heifetz A, et al. Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. J Cell Physiol. 2007;212(3):702–9.PubMedCrossRef
81.
go back to reference Zhang HZ, Bennett JM, Smith KT, Sunil N, Haslam SZ. Estrogen mediates mammary epithelial cell proliferation in serum-free culture indirectly via mammary stroma-derived hepatocyte growth factor. Endocrinology. 2002;143(9):3427–34.PubMedCrossRef Zhang HZ, Bennett JM, Smith KT, Sunil N, Haslam SZ. Estrogen mediates mammary epithelial cell proliferation in serum-free culture indirectly via mammary stroma-derived hepatocyte growth factor. Endocrinology. 2002;143(9):3427–34.PubMedCrossRef
82.
go back to reference Ehrhart EJ, Segarini P, Tsang ML, Carroll AG, Barcellos-Hoff MH. Latent transforming growth factor beta1 activation in situ: quantitative and functional evidence after low-dose gamma-irradiation. FASEB J. 1997;11(12):991–1002.PubMed Ehrhart EJ, Segarini P, Tsang ML, Carroll AG, Barcellos-Hoff MH. Latent transforming growth factor beta1 activation in situ: quantitative and functional evidence after low-dose gamma-irradiation. FASEB J. 1997;11(12):991–1002.PubMed
83.
go back to reference Soriano JV, Pepper MS, Orci L, Montesano R. Roles of hepatocyte growth factor/scatter factor and transforming growth factor-beta1 in mammary gland ductal morphogenesis. J Mammary Gland Biol Neoplasia. 1998;3(2):133–50.PubMedCrossRef Soriano JV, Pepper MS, Orci L, Montesano R. Roles of hepatocyte growth factor/scatter factor and transforming growth factor-beta1 in mammary gland ductal morphogenesis. J Mammary Gland Biol Neoplasia. 1998;3(2):133–50.PubMedCrossRef
84.
go back to reference Maccio A, Madeddu C, Mantovani G. Adipose tissue as target organ in the treatment of hormone-dependent breast cancer: new therapeutic perspectives. Obes Rev. 2009;10(6):660–70.PubMedCrossRef Maccio A, Madeddu C, Mantovani G. Adipose tissue as target organ in the treatment of hormone-dependent breast cancer: new therapeutic perspectives. Obes Rev. 2009;10(6):660–70.PubMedCrossRef
85.
go back to reference Lin Y, Li Q. Expression and function of leptin and its receptor in mouse mammary gland. Sci China C Life Sci. 2007;50(5):669–75.PubMedCrossRef Lin Y, Li Q. Expression and function of leptin and its receptor in mouse mammary gland. Sci China C Life Sci. 2007;50(5):669–75.PubMedCrossRef
86.
go back to reference Kamikawa A, Ichii O, Yamaji D, Imao T, Suzuki C, Okamatsu-Ogura Y, et al. Diet-induced obesity disrupts ductal development in the mammary glands of nonpregnant mice. Dev Dyn. 2009;238(5):1092–9.PubMedCrossRef Kamikawa A, Ichii O, Yamaji D, Imao T, Suzuki C, Okamatsu-Ogura Y, et al. Diet-induced obesity disrupts ductal development in the mammary glands of nonpregnant mice. Dev Dyn. 2009;238(5):1092–9.PubMedCrossRef
87.
go back to reference Thorn SR, Giesy SL, Myers MG, Jr., Boisclair YR. Mammary ductal growth is impaired in mice lacking leptin-dependent signal transducer and activator of Transcription 3 signaling. Endocrinology. Thorn SR, Giesy SL, Myers MG, Jr., Boisclair YR. Mammary ductal growth is impaired in mice lacking leptin-dependent signal transducer and activator of Transcription 3 signaling. Endocrinology.
88.
go back to reference Thorn SR, Meyer MJ, Van Amburgh ME, Boisclair YR. Effect of estrogen on leptin and expression of leptin receptor transcripts in prepubertal dairy heifers. J Dairy Sci. 2007;90(8):3742–50.PubMedCrossRef Thorn SR, Meyer MJ, Van Amburgh ME, Boisclair YR. Effect of estrogen on leptin and expression of leptin receptor transcripts in prepubertal dairy heifers. J Dairy Sci. 2007;90(8):3742–50.PubMedCrossRef
89.
go back to reference Landskroner-Eiger S, Qian B, Muise ES, Nawrocki AR, Berger JP, Fine EJ, et al. Proangiogenic contribution of adiponectin toward mammary tumor growth in vivo. Clin Cancer Res. 2009;15(10):3265–76.PubMedCrossRef Landskroner-Eiger S, Qian B, Muise ES, Nawrocki AR, Berger JP, Fine EJ, et al. Proangiogenic contribution of adiponectin toward mammary tumor growth in vivo. Clin Cancer Res. 2009;15(10):3265–76.PubMedCrossRef
90.
go back to reference Perrier S, Caldefie-Chezet F, Vasson MP. IL-1 family in breast cancer: potential interplay with leptin and other adipocytokines. FEBS Lett. 2009;583(2):259–65.PubMedCrossRef Perrier S, Caldefie-Chezet F, Vasson MP. IL-1 family in breast cancer: potential interplay with leptin and other adipocytokines. FEBS Lett. 2009;583(2):259–65.PubMedCrossRef
91.
go back to reference Russell JS, McGee SO, Ip MM, Kuhlmann D, Masso-Welch PA. Conjugated linoleic acid induces mast cell recruitment during mouse mammary gland stromal remodeling. J Nutr. 2007;137(5):1200–7.PubMed Russell JS, McGee SO, Ip MM, Kuhlmann D, Masso-Welch PA. Conjugated linoleic acid induces mast cell recruitment during mouse mammary gland stromal remodeling. J Nutr. 2007;137(5):1200–7.PubMed
92.
go back to reference Bell LN, Cai L, Johnstone BH, Traktuev DO, March KL, Considine RV. A central role for hepatocyte growth factor in adipose tissue angiogenesis. Am J Physiol Endocrinol Metab. 2008;294(2):E336–44.PubMedCrossRef Bell LN, Cai L, Johnstone BH, Traktuev DO, March KL, Considine RV. A central role for hepatocyte growth factor in adipose tissue angiogenesis. Am J Physiol Endocrinol Metab. 2008;294(2):E336–44.PubMedCrossRef
93.
go back to reference Knazek RA, Liu SC, Bodwin JS, Vonderhaar BK. Requirement of essential fatty acids in the diet for development of the mouse mammary gland. J Natl Cancer Inst. 1980;64(2):377–82.PubMed Knazek RA, Liu SC, Bodwin JS, Vonderhaar BK. Requirement of essential fatty acids in the diet for development of the mouse mammary gland. J Natl Cancer Inst. 1980;64(2):377–82.PubMed
94.
go back to reference Miyamoto-Tiaven MJ, Hillyard LA, Abraham S. Influence of dietary fat on the growth of mammary ducts in BALB/c mice. J Natl Cancer Inst. 1981;67(1):179–88.PubMed Miyamoto-Tiaven MJ, Hillyard LA, Abraham S. Influence of dietary fat on the growth of mammary ducts in BALB/c mice. J Natl Cancer Inst. 1981;67(1):179–88.PubMed
95.
go back to reference Welsch CW, DeHoog JV, O’Connor DH, Sheffield LG. Influence of dietary fat levels on development and hormone responsiveness of the mouse mammary gland. Cancer Res. 1985;45(12 Pt 1):6147–54.PubMed Welsch CW, DeHoog JV, O’Connor DH, Sheffield LG. Influence of dietary fat levels on development and hormone responsiveness of the mouse mammary gland. Cancer Res. 1985;45(12 Pt 1):6147–54.PubMed
96.
go back to reference Sejrsen K, Purup S, Vestergaard M, Foldager J. High body weight gain and reduced bovine mammary growth: physiological basis and implications for milk yield potential. Domest Anim Endocrinol. 2000;19(2):93–104.PubMedCrossRef Sejrsen K, Purup S, Vestergaard M, Foldager J. High body weight gain and reduced bovine mammary growth: physiological basis and implications for milk yield potential. Domest Anim Endocrinol. 2000;19(2):93–104.PubMedCrossRef
97.
go back to reference Meyer MJ, Capuco AV, Ross DA, Lintault LM, Van Amburgh ME. Developmental and nutritional regulation of the prepubertal bovine mammary gland: II. Epithelial cell proliferation, parenchymal accretion rate, and allometric growth. J Dairy Sci. 2006;89(11):4298–304.PubMedCrossRef Meyer MJ, Capuco AV, Ross DA, Lintault LM, Van Amburgh ME. Developmental and nutritional regulation of the prepubertal bovine mammary gland: II. Epithelial cell proliferation, parenchymal accretion rate, and allometric growth. J Dairy Sci. 2006;89(11):4298–304.PubMedCrossRef
98.
go back to reference Beck JC, Hosick HL. Growth of mouse mammary epithelium in response to serum-free media conditioned by mammary adipose tissue. Cell Biol Int Rep. 1988;12(2):85–97.PubMedCrossRef Beck JC, Hosick HL. Growth of mouse mammary epithelium in response to serum-free media conditioned by mammary adipose tissue. Cell Biol Int Rep. 1988;12(2):85–97.PubMedCrossRef
99.
go back to reference Bandyopadhyay GK, Hwang S, Imagawa W, Nandi S. Role of polyunsaturated fatty acids as signal transducers: amplification of signals from growth factor receptors by fatty acids in mammary epithelial cells. Prostaglandins Leukot Essent Fatty Acids. 1993;48(1):71–8.PubMedCrossRef Bandyopadhyay GK, Hwang S, Imagawa W, Nandi S. Role of polyunsaturated fatty acids as signal transducers: amplification of signals from growth factor receptors by fatty acids in mammary epithelial cells. Prostaglandins Leukot Essent Fatty Acids. 1993;48(1):71–8.PubMedCrossRef
100.
go back to reference Pohlmeier WE, Hovey RC, Van Eenennaam AL. Reproductive abnormalities in mice expressing omega-3 fatty acid desaturase in their mammary glands. Transgenic Res. Pohlmeier WE, Hovey RC, Van Eenennaam AL. Reproductive abnormalities in mice expressing omega-3 fatty acid desaturase in their mammary glands. Transgenic Res.
101.
102.
go back to reference Clegg RA. Lipoprotein lipase. Localization on plasma membrane fragments from lactating rat mammary tissue. Biochim Biophys Acta. 1981;664(2):397–408.PubMed Clegg RA. Lipoprotein lipase. Localization on plasma membrane fragments from lactating rat mammary tissue. Biochim Biophys Acta. 1981;664(2):397–408.PubMed
103.
go back to reference Levay-Young BK, Bandyopadhyay GK, Nandi S. Linoleic acid, but not cortisol, stimulates accumulation of casein by mouse mammary epithelial cells in serum-free collagen gel culture. Proc Natl Acad Sci USA. 1987;84(23):8448–52.PubMedCrossRef Levay-Young BK, Bandyopadhyay GK, Nandi S. Linoleic acid, but not cortisol, stimulates accumulation of casein by mouse mammary epithelial cells in serum-free collagen gel culture. Proc Natl Acad Sci USA. 1987;84(23):8448–52.PubMedCrossRef
104.
go back to reference Pauloin A, Chat S, Pechoux C, Hue-Beauvais C, Droineau S, Galio L, et al. Oleate and linoleate stimulate degradation of beta-casein in prolactin-treated HC11 mouse mammary epithelial cells. Cell Tissue Res. 340(1):91–102. Pauloin A, Chat S, Pechoux C, Hue-Beauvais C, Droineau S, Galio L, et al. Oleate and linoleate stimulate degradation of beta-casein in prolactin-treated HC11 mouse mammary epithelial cells. Cell Tissue Res. 340(1):91–102.
105.
go back to reference Sigurdson SL, Ip MM. Casein accumulation by rat mammary epithelial cells grown within a reconstituted basement membrane is modulated by fatty acids in a hormone- and time-dependent manner. Exp Cell Res. 1993;208(2):333–43.PubMedCrossRef Sigurdson SL, Ip MM. Casein accumulation by rat mammary epithelial cells grown within a reconstituted basement membrane is modulated by fatty acids in a hormone- and time-dependent manner. Exp Cell Res. 1993;208(2):333–43.PubMedCrossRef
106.
go back to reference Levine JF, Stockdale FE. 3T3-L1 adipocytes promote the growth of mammary epithelium. Exp Cell Res. 1984;151(1):112–22.PubMedCrossRef Levine JF, Stockdale FE. 3T3-L1 adipocytes promote the growth of mammary epithelium. Exp Cell Res. 1984;151(1):112–22.PubMedCrossRef
107.
go back to reference Hovey RC, MacKenzie DD, McFadden TB. The proliferation of mouse mammary epithelial cells in response to specific mitogens is modulated by the mammary fat pad in vitro. In Vitro Cell Dev Biol Anim. 1998;34(5):385–92.PubMedCrossRef Hovey RC, MacKenzie DD, McFadden TB. The proliferation of mouse mammary epithelial cells in response to specific mitogens is modulated by the mammary fat pad in vitro. In Vitro Cell Dev Biol Anim. 1998;34(5):385–92.PubMedCrossRef
108.
go back to reference Carrington CA, Hosick HL. Effects of dietary fat on the growth of normal, preneoplastic and neoplastic mammary epithelial cells in vivo and in vitro. J Cell Sci. 1985;75:269–78.PubMed Carrington CA, Hosick HL. Effects of dietary fat on the growth of normal, preneoplastic and neoplastic mammary epithelial cells in vivo and in vitro. J Cell Sci. 1985;75:269–78.PubMed
109.
go back to reference Davidenko N, Campbell JJ, Thian ES, Watson CJ, Cameron RE. Collagen-hyaluronic acid scaffolds for adipose tissue engineering. Acta Biomater. Davidenko N, Campbell JJ, Thian ES, Watson CJ, Cameron RE. Collagen-hyaluronic acid scaffolds for adipose tissue engineering. Acta Biomater.
110.
go back to reference Faulkin Jr LJ, Deome KB. Regulation of growth and spacing of gland elements in the mammary fat pad of the C3H mouse. J Natl Cancer Inst. 1960;24:953–69.PubMed Faulkin Jr LJ, Deome KB. Regulation of growth and spacing of gland elements in the mammary fat pad of the C3H mouse. J Natl Cancer Inst. 1960;24:953–69.PubMed
111.
go back to reference Berry SD, Howard RD, Jobst PM, Jiang H, Akers RM. Interactions between the ovary and the local IGF-I axis modulate mammary development in prepubertal heifers. J Endocrinol. 2003;177(2):295–304.PubMedCrossRef Berry SD, Howard RD, Jobst PM, Jiang H, Akers RM. Interactions between the ovary and the local IGF-I axis modulate mammary development in prepubertal heifers. J Endocrinol. 2003;177(2):295–304.PubMedCrossRef
112.
go back to reference Hoshino K. Transplantability of mammary gland in brown fat pads of mice. Nature. 1967;213(5072):194–5.PubMedCrossRef Hoshino K. Transplantability of mammary gland in brown fat pads of mice. Nature. 1967;213(5072):194–5.PubMedCrossRef
113.
go back to reference Blair PB, Moretti RL. The mammary fat pad as a privileged transplantation site. Transplantation. 1967;5(3):542–4.PubMedCrossRef Blair PB, Moretti RL. The mammary fat pad as a privileged transplantation site. Transplantation. 1967;5(3):542–4.PubMedCrossRef
114.
go back to reference Miller FR, Medina D, Heppner GH. Preferential growth of mammary tumors in intact mammary fatpads. Cancer Res. 1981;41(10):3863–7.PubMed Miller FR, Medina D, Heppner GH. Preferential growth of mammary tumors in intact mammary fatpads. Cancer Res. 1981;41(10):3863–7.PubMed
115.
go back to reference Elliott BE, Tam SP, Dexter D, Chen ZQ. Capacity of adipose tissue to promote growth and metastasis of a murine mammary carcinoma: effect of estrogen and progesterone. Int J Cancer. 1992;51(3):416–24.PubMedCrossRef Elliott BE, Tam SP, Dexter D, Chen ZQ. Capacity of adipose tissue to promote growth and metastasis of a murine mammary carcinoma: effect of estrogen and progesterone. Int J Cancer. 1992;51(3):416–24.PubMedCrossRef
116.
go back to reference Welsch CW, O’Connor DH, Aylsworth CF, Sheffield LG. Normal but not carcinomatous primary rat mammary epithelium: readily transplanted to and maintained in the athymic nude mouse. J Natl Cancer Inst. 1987;78(3):557–65.PubMed Welsch CW, O’Connor DH, Aylsworth CF, Sheffield LG. Normal but not carcinomatous primary rat mammary epithelium: readily transplanted to and maintained in the athymic nude mouse. J Natl Cancer Inst. 1987;78(3):557–65.PubMed
117.
go back to reference Proia DA, Kuperwasser C. Reconstruction of human mammary tissues in a mouse model. Nat Protoc. 2006;1(1):206–14.PubMedCrossRef Proia DA, Kuperwasser C. Reconstruction of human mammary tissues in a mouse model. Nat Protoc. 2006;1(1):206–14.PubMedCrossRef
118.
go back to reference Couldrey C, Moitra J, Vinson C, Anver M, Nagashima K, Green J. Adipose tissue: a vital in vivo role in mammary gland development but not differentiation. Dev Dyn. 2002;223(4):459–68.PubMedCrossRef Couldrey C, Moitra J, Vinson C, Anver M, Nagashima K, Green J. Adipose tissue: a vital in vivo role in mammary gland development but not differentiation. Dev Dyn. 2002;223(4):459–68.PubMedCrossRef
119.
go back to reference Landskroner-Eiger S, Park J, Israel D, Pollard JW, Scherer PE. Morphogenesis of the developing mammary gland: Stage-dependent impact of adipocytes. Dev Biol. Landskroner-Eiger S, Park J, Israel D, Pollard JW, Scherer PE. Morphogenesis of the developing mammary gland: Stage-dependent impact of adipocytes. Dev Biol.
120.
go back to reference Booth BW, Boulanger CA, Smith GH. Stem cells and the mammary microenvironment. Breast Dis. 2008;29:57–67.PubMed Booth BW, Boulanger CA, Smith GH. Stem cells and the mammary microenvironment. Breast Dis. 2008;29:57–67.PubMed
121.
go back to reference Illouz YG, Sterodimas A. Autologous fat transplantation to the breast: a personal technique with 25 years of experience. Aesthet Plast Surg. 2009;33(5):706–15.CrossRef Illouz YG, Sterodimas A. Autologous fat transplantation to the breast: a personal technique with 25 years of experience. Aesthet Plast Surg. 2009;33(5):706–15.CrossRef
122.
go back to reference Mizuno H, Hyakusoku H. Fat grafting to the breast and adipose-derived stem cells: recent scientific consensus and controversy. Aesthet Surg J. 30(3):381–7. Mizuno H, Hyakusoku H. Fat grafting to the breast and adipose-derived stem cells: recent scientific consensus and controversy. Aesthet Surg J. 30(3):381–7.
Metadata
Title
Diverse and Active Roles for Adipocytes During Mammary Gland Growth and Function
Authors
Russell C. Hovey
Lucila Aimo
Publication date
01-09-2010
Publisher
Springer US
Published in
Journal of Mammary Gland Biology and Neoplasia / Issue 3/2010
Print ISSN: 1083-3021
Electronic ISSN: 1573-7039
DOI
https://doi.org/10.1007/s10911-010-9187-8

Other articles of this Issue 3/2010

Journal of Mammary Gland Biology and Neoplasia 3/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine