Skip to main content
Top
Published in: Journal of Clinical Monitoring and Computing 3/2016

Open Access 01-06-2016 | Original Research

Autoregulation monitoring and outcome prediction in neurocritical care patients: Does one index fit all?

Authors: Bernhard Schmidt, Matthias Reinhard, Vesna Lezaic, Damian D. McLeod, Marco Weinhold, Heinz Mattes, Jürgen Klingelhöfer

Published in: Journal of Clinical Monitoring and Computing | Issue 3/2016

Login to get access

Abstract

Indexes PRx and Mx have been formerly introduced to assess cerebral autoregulation and have been shown to be associated with 3-month clinical outcome. In a mixed cohort of neurocritical care patients, we retrospectively investigated the impact of selected clinical characteristics on this association. Forty-one patients (18–77 years) with severe traumatic (TBI, N = 20) and non-traumatic (N = 21) brain injuries were studied. Cerebral blood flow velocity, arterial blood pressure and intracranial pressure were repeatedly recorded during 1-h periods. Calculated PRx and Mx were correlated with 3-month clinical outcome score of modified Rankin Scale (mRS) in different subgroups with specific clinical characteristics. Both PRx and Mx correlated significantly with outcome (PRx: r = 0.38, p < 0.05; AUC = 0.64, n.s./Mx: r = 0.48, p < 0.005; AUC = 0.80, p < 0.005) in the overall group, and in patients with hemicraniectomy (N = 17; PRx: r = 0.73, p < 0.001; AUC = 0.89, p < 0.01/Mx: r = 0.69, p < 0.005; AUC = 0.87, p < 0.05). Mx, not PRx, correlated significantly with mRS in patients with heart failure (N = 17; r = 0.69, p < 0.005; AUC = 0.92, p < 0.005), and in non-traumatic patients (r = 0.49, p < 0.05; AUC = 0.79, p < 0.05). PRx, not Mx, correlated significantly with mRS in TBI patients (r = 0.63, p < 0.01; AUC = 0.89, p < 0.01). Both indexes did not correlate with mRS in diabetes patients (N = 15), PRx failed in hypocapnic patients (N = 26). Both PRx and Mx were significantly associated with 3-month clinical outcome, even in patients with hemicraniectomy. PRx was more appropriate for TBI patients, while Mx was better suited for non-traumatic patients and patients with heart failure. Prognostic values of indexes were affected by diabetes (both Mx and PRx) and hypocapnia (PRx only).
Literature
1.
go back to reference Enevoldsen EM, Jensen FT. Autoregulation and CO2 responses of cerebral blood flow in patients with severe head injury. J Neurosurg. 1978;48:689–703.CrossRefPubMed Enevoldsen EM, Jensen FT. Autoregulation and CO2 responses of cerebral blood flow in patients with severe head injury. J Neurosurg. 1978;48:689–703.CrossRefPubMed
2.
3.
go back to reference Aaslid R, Lindegaard KF, Sorteberg W, Nornes H. Cerebral autoregulation dynamics in humans. Stroke. 1989;20:45–52.CrossRefPubMed Aaslid R, Lindegaard KF, Sorteberg W, Nornes H. Cerebral autoregulation dynamics in humans. Stroke. 1989;20:45–52.CrossRefPubMed
4.
go back to reference Czosnyka M, Smielewski P, Kirkpatrick P, Menon DK, Pickard JD. Monitoring of cerebral autoregulation in head-injured patients. Stroke. 1996;27:1829–34.CrossRefPubMed Czosnyka M, Smielewski P, Kirkpatrick P, Menon DK, Pickard JD. Monitoring of cerebral autoregulation in head-injured patients. Stroke. 1996;27:1829–34.CrossRefPubMed
5.
go back to reference Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41:11–9.CrossRefPubMed Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41:11–9.CrossRefPubMed
6.
go back to reference Newell DW, Aaslid R, Lam A, Mayberg TS, Winn HR. Comparison of flow and velocity during dynamic autoregulation testing in humans. Stroke. 1994;25:793–7.CrossRefPubMed Newell DW, Aaslid R, Lam A, Mayberg TS, Winn HR. Comparison of flow and velocity during dynamic autoregulation testing in humans. Stroke. 1994;25:793–7.CrossRefPubMed
7.
go back to reference Brady KM, Easley RB, Kibler K, Kaczka DW, Andropoulos D, Fraser CD 3rd, Smielewski P, Czosnyka M, Adams GJ, Rhee CJ, Rusin CG. Positive end-expiratory pressure oscillation facilitates brain vascular reactivity monitoring. J Appl Physiol. 2012;113:1362–8.CrossRefPubMed Brady KM, Easley RB, Kibler K, Kaczka DW, Andropoulos D, Fraser CD 3rd, Smielewski P, Czosnyka M, Adams GJ, Rhee CJ, Rusin CG. Positive end-expiratory pressure oscillation facilitates brain vascular reactivity monitoring. J Appl Physiol. 2012;113:1362–8.CrossRefPubMed
8.
go back to reference Budohoski KP, Reinhard M, Aries MJ, Czosnyka Z, Smielewski P, Pickard JD, Kirkpatrick PJ, Czosnyka M. Monitoring cerebral autoregulation after head injury. Which component of transcranial Doppler flow velocity is optimal? Neurocrit Care. 2012;17:211–8.CrossRefPubMed Budohoski KP, Reinhard M, Aries MJ, Czosnyka Z, Smielewski P, Pickard JD, Kirkpatrick PJ, Czosnyka M. Monitoring cerebral autoregulation after head injury. Which component of transcranial Doppler flow velocity is optimal? Neurocrit Care. 2012;17:211–8.CrossRefPubMed
9.
go back to reference Sánchez-Porras R, Santos E, Czosnyka M, Zheng Z, Unterberg AW, Sakowitz OW. ‘Long’ pressure reactivity index (L-PRx) as a measure of autoregulation correlates with outcome in traumatic brain injury patients. Acta Neurochir (Wien). 2012;154:1575–81.CrossRef Sánchez-Porras R, Santos E, Czosnyka M, Zheng Z, Unterberg AW, Sakowitz OW. ‘Long’ pressure reactivity index (L-PRx) as a measure of autoregulation correlates with outcome in traumatic brain injury patients. Acta Neurochir (Wien). 2012;154:1575–81.CrossRef
10.
go back to reference Sorrentino E, Budohoski KP, Kasprowicz M, Smielewski P, Matta B, Pickard JD, Czosnyka M. Critical thresholds for transcranial Doppler indices of cerebral autoregulation in traumatic brain injury. Neurocrit Care. 2011;14:188–93.CrossRefPubMed Sorrentino E, Budohoski KP, Kasprowicz M, Smielewski P, Matta B, Pickard JD, Czosnyka M. Critical thresholds for transcranial Doppler indices of cerebral autoregulation in traumatic brain injury. Neurocrit Care. 2011;14:188–93.CrossRefPubMed
11.
go back to reference Sorrentino E, Diedler J, Kasprowicz M, Budohoski KP, Haubrich C, Smielewski P, Outtrim JG, Manktelow A, Hutchinson PJ, Pickard JD, Menon DK, Czosnyka M. Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit Care. 2012;16:258–66.CrossRefPubMed Sorrentino E, Diedler J, Kasprowicz M, Budohoski KP, Haubrich C, Smielewski P, Outtrim JG, Manktelow A, Hutchinson PJ, Pickard JD, Menon DK, Czosnyka M. Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit Care. 2012;16:258–66.CrossRefPubMed
12.
go back to reference Diedler J, Sykora M, Rupp A, Poli S, Karpel-Massler G, Sakowitz O, Steiner T. Impaired cerebral vasomotor activity in spontaneous intracerebral hemorrhage. Stroke. 2009;40:815–9.CrossRefPubMed Diedler J, Sykora M, Rupp A, Poli S, Karpel-Massler G, Sakowitz O, Steiner T. Impaired cerebral vasomotor activity in spontaneous intracerebral hemorrhage. Stroke. 2009;40:815–9.CrossRefPubMed
13.
go back to reference Reinhard M, Neunhoeffer F, Gerds TA, Niesen WD, Buttler KJ, Timmer J, Schmidt B, Czosnyka M, Weiller C, Hetzel A. Secondary decline of cerebral autoregulation is associated with worse outcome after intracerebral hemorrhage. Intensive Care Med. 2010;36:264–71.CrossRefPubMed Reinhard M, Neunhoeffer F, Gerds TA, Niesen WD, Buttler KJ, Timmer J, Schmidt B, Czosnyka M, Weiller C, Hetzel A. Secondary decline of cerebral autoregulation is associated with worse outcome after intracerebral hemorrhage. Intensive Care Med. 2010;36:264–71.CrossRefPubMed
14.
go back to reference Barth M, Woitzik J, Weiss C, Muench E, Diepers M, Schmiedek P, Kasuya H, Vajkoczy P. Correlation of clinical outcome with pressure-, oxygen-, and flow-related indices of cerebrovascular reactivity in patients following aneurysmal SAH. Neurocrit Care. 2010;12:234–43.CrossRefPubMed Barth M, Woitzik J, Weiss C, Muench E, Diepers M, Schmiedek P, Kasuya H, Vajkoczy P. Correlation of clinical outcome with pressure-, oxygen-, and flow-related indices of cerebrovascular reactivity in patients following aneurysmal SAH. Neurocrit Care. 2010;12:234–43.CrossRefPubMed
15.
go back to reference Aries MJ, Czosnyka M, Budohoski KP, Steiner LA, Lavinio A, Kolias AG, Hutchinson PJ, Brady KM, Menon DK, Pickard JD, Smielewski P. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med. 2012;40:2456–63.CrossRefPubMed Aries MJ, Czosnyka M, Budohoski KP, Steiner LA, Lavinio A, Kolias AG, Hutchinson PJ, Brady KM, Menon DK, Pickard JD, Smielewski P. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med. 2012;40:2456–63.CrossRefPubMed
16.
go back to reference Diedler J, Santos E, Poli S, Sykora M. Optimal cerebral perfusion pressure in patients with intracerebral hemorrhage: an observational case series. Crit Care. 2014; 18(2):R51.CrossRefPubMedPubMedCentral Diedler J, Santos E, Poli S, Sykora M. Optimal cerebral perfusion pressure in patients with intracerebral hemorrhage: an observational case series. Crit Care. 2014; 18(2):R51.CrossRefPubMedPubMedCentral
17.
go back to reference Lazaridis C, Smielewski P, Steiner LA, Brady KM, Hutchinson P, Pickard JD, Czosnyka M. Optimal cerebral perfusion pressure: are we ready for it? Neurol Res. 2013;35:138–48.CrossRefPubMed Lazaridis C, Smielewski P, Steiner LA, Brady KM, Hutchinson P, Pickard JD, Czosnyka M. Optimal cerebral perfusion pressure: are we ready for it? Neurol Res. 2013;35:138–48.CrossRefPubMed
18.
go back to reference Steiner LA, Czosnyka M, Piechnik SK, Smielewski P, Chatfield D, Menon DK, Pickard JD. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002;30:733–8.CrossRefPubMed Steiner LA, Czosnyka M, Piechnik SK, Smielewski P, Chatfield D, Menon DK, Pickard JD. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002;30:733–8.CrossRefPubMed
19.
go back to reference Schmidt B, Schwarze JJ, Weinhold M, Lezaic V, Czosnyka M, Klingelhöfer J. Impaired autoregulation is associated with mortality in severe cerebral diseases. IJCNMH. 2014;1(Suppl 1):S18.CrossRef Schmidt B, Schwarze JJ, Weinhold M, Lezaic V, Czosnyka M, Klingelhöfer J. Impaired autoregulation is associated with mortality in severe cerebral diseases. IJCNMH. 2014;1(Suppl 1):S18.CrossRef
20.
go back to reference Schmidt B, Czosnyka M, Raabe A, Yahya H, Schwarze JJ, Sackerer D, Sander D, Klingelhöfer J. Adaptive noninvasive assessment of intracranial pressure and cerebral autoregulation. Stroke. 2003;34(1):84–9.CrossRefPubMed Schmidt B, Czosnyka M, Raabe A, Yahya H, Schwarze JJ, Sackerer D, Sander D, Klingelhöfer J. Adaptive noninvasive assessment of intracranial pressure and cerebral autoregulation. Stroke. 2003;34(1):84–9.CrossRefPubMed
21.
go back to reference Mudholkar GS, McDermott M, Srivastava DK. A test of p-variate normality. Biometrika. 1992;79(4):850–4.CrossRef Mudholkar GS, McDermott M, Srivastava DK. A test of p-variate normality. Biometrika. 1992;79(4):850–4.CrossRef
22.
go back to reference DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45.CrossRefPubMed DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45.CrossRefPubMed
23.
go back to reference Wang EC, Ang BT, Wong J, Lim J, Ng I. Characterization of cerebrovascular reactivity after craniectomy for acute brain injury. Br J Neurosurg. 2006;20:24–30.CrossRefPubMed Wang EC, Ang BT, Wong J, Lim J, Ng I. Characterization of cerebrovascular reactivity after craniectomy for acute brain injury. Br J Neurosurg. 2006;20:24–30.CrossRefPubMed
24.
go back to reference Timofeev I, Czosnyka M, Nortje J, Smielewski P, Kirkpatrick P, Gupta A, Hutchinson P. Effect of decompressive craniectomy on intracranial pressure and cerebrospinal compensation following traumatic brain injury. J Neurosurg. 2008;108:66–73.CrossRefPubMed Timofeev I, Czosnyka M, Nortje J, Smielewski P, Kirkpatrick P, Gupta A, Hutchinson P. Effect of decompressive craniectomy on intracranial pressure and cerebrospinal compensation following traumatic brain injury. J Neurosurg. 2008;108:66–73.CrossRefPubMed
25.
go back to reference Maset AL, Marmarou A, Ward JD, Choi S, Lutz HA, Brooks D, Moulton RJ, DeSalles A, Muizelaar JP, Turner H, Young HF. Pressure–volume index in head injury. J Neurosurg. 1987;67:832–40.CrossRefPubMed Maset AL, Marmarou A, Ward JD, Choi S, Lutz HA, Brooks D, Moulton RJ, DeSalles A, Muizelaar JP, Turner H, Young HF. Pressure–volume index in head injury. J Neurosurg. 1987;67:832–40.CrossRefPubMed
26.
go back to reference Gray WJ, Rosner MJ. Pressure–volume index as a function of cerebral perfusion pressure. Part 1: the effects of cerebral perfusion pressure changes and anesthesia. J Neurosurg. 1987;67:369–76.CrossRefPubMed Gray WJ, Rosner MJ. Pressure–volume index as a function of cerebral perfusion pressure. Part 1: the effects of cerebral perfusion pressure changes and anesthesia. J Neurosurg. 1987;67:369–76.CrossRefPubMed
27.
go back to reference Gray WJ, Rosner MJ. Pressure–volume index as a function of cerebral perfusion pressure. Part 2: the effects of low cerebral perfusion pressure and autoregulation. J Neurosurg. 1987;67:377–80.CrossRefPubMed Gray WJ, Rosner MJ. Pressure–volume index as a function of cerebral perfusion pressure. Part 2: the effects of low cerebral perfusion pressure and autoregulation. J Neurosurg. 1987;67:377–80.CrossRefPubMed
28.
go back to reference Budohoski KP, Czosnyka M, de Riva N, Smielewski P, Pickard JD, Menon DK, Kirkpatrick PJ, Lavinio A. The relationship between cerebral blood flow autoregulation and cerebrovascular pressure reactivity after traumatic brain injury. Neurosurgery. 2012;71:652–60.CrossRefPubMed Budohoski KP, Czosnyka M, de Riva N, Smielewski P, Pickard JD, Menon DK, Kirkpatrick PJ, Lavinio A. The relationship between cerebral blood flow autoregulation and cerebrovascular pressure reactivity after traumatic brain injury. Neurosurgery. 2012;71:652–60.CrossRefPubMed
29.
go back to reference Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and Cox regression. Am J Epidemiol. 2006;165:710–8.CrossRefPubMed Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and Cox regression. Am J Epidemiol. 2006;165:710–8.CrossRefPubMed
Metadata
Title
Autoregulation monitoring and outcome prediction in neurocritical care patients: Does one index fit all?
Authors
Bernhard Schmidt
Matthias Reinhard
Vesna Lezaic
Damian D. McLeod
Marco Weinhold
Heinz Mattes
Jürgen Klingelhöfer
Publication date
01-06-2016
Publisher
Springer Netherlands
Published in
Journal of Clinical Monitoring and Computing / Issue 3/2016
Print ISSN: 1387-1307
Electronic ISSN: 1573-2614
DOI
https://doi.org/10.1007/s10877-015-9726-3

Other articles of this Issue 3/2016

Journal of Clinical Monitoring and Computing 3/2016 Go to the issue

Letter to the Editor

Letter to the Editor