Skip to main content
Top
Published in: Journal of Clinical Immunology 5/2008

01-09-2008

15-Deoxy-Δ12,14-Prostaglandin J2 and Curcumin Modulate the Expression of Toll-like Receptors 4 and 9 in Autoimmune T Lymphocyte

Authors: Wanida Chearwae, John J. Bright

Published in: Journal of Clinical Immunology | Issue 5/2008

Login to get access

Abstract

Introduction

Experimental allergic encephalomyelitis (EAE) is a T cell-mediated autoimmune disease model for multiple sclerosis (MS). We have shown earlier that 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) and curcumin ameliorate EAE by modulating inflammatory signaling pathways in T lymphocytes. Toll-like receptors (TLRs), expressed primarily in innate immune cells, play critical roles in the pathogenesis of EAE. T lymphocytes also express TLRs and function as costimulatory receptors to upregulate proliferation and cytokine production in response to specific agonists.

Discussion

In this study, we show that naïve CD4+ and CD8+ T cells express detectable levels of TLR4 and TLR9 and that increase after the induction of EAE in SJL/J and C57BL/6 mice by immunization with PLPp139–151 and MOGp35–55 antigen, respectively. It is interesting to note that in vivo treatment with 15d-PGJ2 or curcumin results in a significant decrease in TLR4 and TLR9 expression in CD4+ and CD8+ T cells in association with the amelioration of EAE.

Conclusion

Although the exact mechanisms are not known, the modulation of TLR expression in T lymphocytes by 15d-PGJ2 and curcumin suggests new therapeutic targets in the treatment of T cell-mediated autoimmune diseases.
Literature
1.
go back to reference Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. N Engl J Med 2000;343:938–52.PubMedCrossRef Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. N Engl J Med 2000;343:938–52.PubMedCrossRef
2.
go back to reference Bitsch A, Bruck W. Differentiation of multiple sclerosis subtypes: implications for treatment. CNS Drugs 2002;6:405–18.CrossRef Bitsch A, Bruck W. Differentiation of multiple sclerosis subtypes: implications for treatment. CNS Drugs 2002;6:405–18.CrossRef
3.
go back to reference Wingerchuk DM, Lucchinetti CF, Noseworthy JH. Multiple sclerosis: current pathophysiological concepts. Lab Invest 2001;81:263–81.PubMed Wingerchuk DM, Lucchinetti CF, Noseworthy JH. Multiple sclerosis: current pathophysiological concepts. Lab Invest 2001;81:263–81.PubMed
4.
go back to reference Steinman L, Martin M, Bernard C, Conlon P, Oksenberg JR. Multiple sclerosis: deeper understanding of its pathogenesis reveals new targets for therapy. Annu Rev Neurosci 2002;25:491–505.PubMedCrossRef Steinman L, Martin M, Bernard C, Conlon P, Oksenberg JR. Multiple sclerosis: deeper understanding of its pathogenesis reveals new targets for therapy. Annu Rev Neurosci 2002;25:491–505.PubMedCrossRef
5.
6.
go back to reference Coleman MP, Perry VH. Axon pathology in neurological disease: a neglected therapeutic target. Trends Neurosci 2002;25:532–7.PubMedCrossRef Coleman MP, Perry VH. Axon pathology in neurological disease: a neglected therapeutic target. Trends Neurosci 2002;25:532–7.PubMedCrossRef
7.
go back to reference Gold R, Hartung HP, Toyka KV. Animals model for auto immune demyelinating disorders of the nervous system. Mol Med Today 2000;6:88–91.PubMedCrossRef Gold R, Hartung HP, Toyka KV. Animals model for auto immune demyelinating disorders of the nervous system. Mol Med Today 2000;6:88–91.PubMedCrossRef
8.
go back to reference Bright JJ, Sriram S. Immunotherapy of inflammatory demyelinating diseases of the central nervous system. Immunol Res 2001;23:245–52.PubMedCrossRef Bright JJ, Sriram S. Immunotherapy of inflammatory demyelinating diseases of the central nervous system. Immunol Res 2001;23:245–52.PubMedCrossRef
9.
go back to reference Muthian G, Bright JJ. Quercetin ameliorates experimental allergic encephalomyelitis by blocking IL-12 signaling through JAK–STAT pathway in T lymphocyte. J Clin Immunol 2003;24:541–51. Muthian G, Bright JJ. Quercetin ameliorates experimental allergic encephalomyelitis by blocking IL-12 signaling through JAK–STAT pathway in T lymphocyte. J Clin Immunol 2003;24:541–51.
10.
go back to reference Raikwar HP, Muthian G, Rajasingh J, Johnson C, Bright JJ. PPARg antagonists exacerbate neural antigen-specific Th1 response and experimental allergic encephalomyelitis. J Neuroimmunol 2005;167:99–107.PubMedCrossRef Raikwar HP, Muthian G, Rajasingh J, Johnson C, Bright JJ. PPARg antagonists exacerbate neural antigen-specific Th1 response and experimental allergic encephalomyelitis. J Neuroimmunol 2005;167:99–107.PubMedCrossRef
11.
go back to reference Muthian G, Raikwar HP, Johnson C, Rajasingh J, Kalgutkar AS, Marnett LJ, Bright JJ. COX-2 inhibitors modulate IL-12 signaling through JAK–STAT pathway leading to Th1 response in experimental allergic encephalomyelitis. J Clin Immunol 2006;26:73–85.PubMedCrossRef Muthian G, Raikwar HP, Johnson C, Rajasingh J, Kalgutkar AS, Marnett LJ, Bright JJ. COX-2 inhibitors modulate IL-12 signaling through JAK–STAT pathway leading to Th1 response in experimental allergic encephalomyelitis. J Clin Immunol 2006;26:73–85.PubMedCrossRef
12.
go back to reference Muthian G, Raikwar HP, Rajasingh J, Bright JJ. 1, 25 Dihydroxyvitamin-D3 modulates JAK–STAT pathway in IL-12/IFNg axis leading to Th1 response in experimental allergic encephalomyelitis. J Neurosci Res 2006;83:1299–309.PubMedCrossRef Muthian G, Raikwar HP, Rajasingh J, Bright JJ. 1, 25 Dihydroxyvitamin-D3 modulates JAK–STAT pathway in IL-12/IFNg axis leading to Th1 response in experimental allergic encephalomyelitis. J Neurosci Res 2006;83:1299–309.PubMedCrossRef
13.
go back to reference Evans RM. The steroid and thyroid hormone receptor superfamily. Science 1998;240:889–95.CrossRef Evans RM. The steroid and thyroid hormone receptor superfamily. Science 1998;240:889–95.CrossRef
14.
go back to reference Blumberg B, Evans RM. Orphan nuclear receptors: new ligands and new possibilities. Genes Dev 1998;12:3149–55.PubMedCrossRef Blumberg B, Evans RM. Orphan nuclear receptors: new ligands and new possibilities. Genes Dev 1998;12:3149–55.PubMedCrossRef
15.
go back to reference Mukherjee R, Jow L, Croston GE, Paterniti JR. Identification, characterization and tissue distribution of human peroxisome proliferator activated receptor isoforms 1 and 2 and activation with retinoid x receptor agonists and antagonists. J Biol Chem 1997;272:8071–6.PubMedCrossRef Mukherjee R, Jow L, Croston GE, Paterniti JR. Identification, characterization and tissue distribution of human peroxisome proliferator activated receptor isoforms 1 and 2 and activation with retinoid x receptor agonists and antagonists. J Biol Chem 1997;272:8071–6.PubMedCrossRef
16.
go back to reference Elbrecht A, Chen Y, Cullinan CA, Hayes N, Leibowitz M, Moller DE, Berger J. Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors gamma 1 and gamma 2. Biochem Biophys Res Commun 1996;224:431–7.PubMedCrossRef Elbrecht A, Chen Y, Cullinan CA, Hayes N, Leibowitz M, Moller DE, Berger J. Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors gamma 1 and gamma 2. Biochem Biophys Res Commun 1996;224:431–7.PubMedCrossRef
17.
go back to reference Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman B, Evans RM. 15-Deoxy-12, 14 prostaglandin J2 a ligand for the adipocyte determination factor PPAR gamma. Cell 1995;83:803–12.PubMedCrossRef Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman B, Evans RM. 15-Deoxy-12, 14 prostaglandin J2 a ligand for the adipocyte determination factor PPAR gamma. Cell 1995;83:803–12.PubMedCrossRef
18.
go back to reference Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPARg). J Biol Chem 1995;270:12953–6.PubMedCrossRef Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPARg). J Biol Chem 1995;270:12953–6.PubMedCrossRef
19.
go back to reference Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-g is a negative regulator of macrophage activation. Nature 1998;391:79–82.PubMedCrossRef Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-g is a negative regulator of macrophage activation. Nature 1998;391:79–82.PubMedCrossRef
20.
go back to reference Jiang C, Ting AT, Seed B. PPARg agonists inhibit production of monocyte inflammatory cytokine. Nature 1998;391:82–6.PubMedCrossRef Jiang C, Ting AT, Seed B. PPARg agonists inhibit production of monocyte inflammatory cytokine. Nature 1998;391:82–6.PubMedCrossRef
21.
go back to reference Kawahito Y, Kondo M, Tsubouchi Y, Hashiramoto A, Bishop-Bailey D, Inoue K, Kohno M, Yamada R, Hla T, Sano H. 15-deoxy D12,14 prostaglandin J2 induces synoviocyte apoptosis and suppresses adjuvant-induced arthritis in rats. J Clin Invest 2000;106:189–97.PubMedCrossRef Kawahito Y, Kondo M, Tsubouchi Y, Hashiramoto A, Bishop-Bailey D, Inoue K, Kohno M, Yamada R, Hla T, Sano H. 15-deoxy D12,14 prostaglandin J2 induces synoviocyte apoptosis and suppresses adjuvant-induced arthritis in rats. J Clin Invest 2000;106:189–97.PubMedCrossRef
22.
go back to reference Neve BP, Fruchart JC, Staels B. Role of the peroxisome proliferator-activated receptors (PPAR) in atherosclerosis. Biochem Pharmacol 2000;60:1245–50.PubMedCrossRef Neve BP, Fruchart JC, Staels B. Role of the peroxisome proliferator-activated receptors (PPAR) in atherosclerosis. Biochem Pharmacol 2000;60:1245–50.PubMedCrossRef
23.
go back to reference Niino M, Iwabuchi K, Kikuchi S, Ato M, Morohashi T, Ogata A, Tashiro K, Onoé K. Amelioration of experimental autoimmune encephalomyelitis in C57BL/6 mice by an agonist of PPARg. J. Neuroimmunol 2001;116:40–8.PubMedCrossRef Niino M, Iwabuchi K, Kikuchi S, Ato M, Morohashi T, Ogata A, Tashiro K, Onoé K. Amelioration of experimental autoimmune encephalomyelitis in C57BL/6 mice by an agonist of PPARg. J. Neuroimmunol 2001;116:40–8.PubMedCrossRef
24.
go back to reference Diab A, Deng C, Smith JD, Hussain RZ, Phanavanh B, Lovett-Racke AB, Drew PD, Racke MK. Peroxisome proliferator-activated receptor-gamma agonist 15-deoxy D12,14 prostaglandin J2 ameliorates experimental autoimmune encephalomyelitis. J Immunol 2002;168:2508–15.PubMed Diab A, Deng C, Smith JD, Hussain RZ, Phanavanh B, Lovett-Racke AB, Drew PD, Racke MK. Peroxisome proliferator-activated receptor-gamma agonist 15-deoxy D12,14 prostaglandin J2 ameliorates experimental autoimmune encephalomyelitis. J Immunol 2002;168:2508–15.PubMed
25.
go back to reference Natarajan C, Bright JJ. Peroxisome proliferator-activated receptor-gamma agonists inhibit experimental allergic encephalomyelitis by blocking IL-12 production, IL-12 signaling and Th1 differentiation. Genes Immun 2002;3:59–70.PubMedCrossRef Natarajan C, Bright JJ. Peroxisome proliferator-activated receptor-gamma agonists inhibit experimental allergic encephalomyelitis by blocking IL-12 production, IL-12 signaling and Th1 differentiation. Genes Immun 2002;3:59–70.PubMedCrossRef
26.
go back to reference Feinstein DL, Galea E, Gavrilyuk V, Brosnan CF, Whitacre CC, Dumitrescu-Ozimek L, Landreth GE, Pershadsingh HA, Weinberg G, Heneka MT. Peroxisome proliferator activated receptor-gamma agonists prevent experimental autoimmune encephalomyelitis. Ann Neurol 2002;51:694–702.PubMedCrossRef Feinstein DL, Galea E, Gavrilyuk V, Brosnan CF, Whitacre CC, Dumitrescu-Ozimek L, Landreth GE, Pershadsingh HA, Weinberg G, Heneka MT. Peroxisome proliferator activated receptor-gamma agonists prevent experimental autoimmune encephalomyelitis. Ann Neurol 2002;51:694–702.PubMedCrossRef
27.
go back to reference Schmidt S, Moric E, Schmidt M, Sastre M, Feinstein DL, Heneka MT. Anti-inflammatory and antiproliferative actions of PPAR-gamma agonists on T lymphocytes derived from MS patients. J Leukoc Biol 2004;75:478–85.PubMedCrossRef Schmidt S, Moric E, Schmidt M, Sastre M, Feinstein DL, Heneka MT. Anti-inflammatory and antiproliferative actions of PPAR-gamma agonists on T lymphocytes derived from MS patients. J Leukoc Biol 2004;75:478–85.PubMedCrossRef
28.
go back to reference Natarajan C, Muthian G, Barak Y, Evans RM, Bright JJ. Peroxisome proliferator-activated receptor-gamma deficient heterozygous mice develop an exacerbated neural antigen-induced Th1 response and experimental allergic encephalomyelitis. J Immunol 2003;171:5743–50.PubMed Natarajan C, Muthian G, Barak Y, Evans RM, Bright JJ. Peroxisome proliferator-activated receptor-gamma deficient heterozygous mice develop an exacerbated neural antigen-induced Th1 response and experimental allergic encephalomyelitis. J Immunol 2003;171:5743–50.PubMed
29.
go back to reference Surh Y. Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat Res 1999;428:305–27.PubMed Surh Y. Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat Res 1999;428:305–27.PubMed
30.
go back to reference Ammon HP, Safayhi H, Mack T, Sabieraj J. Mechanism of antiinflammatory actions of curcumine and boswellic acids. J Ethnopharmacol 1993;38:113–9.PubMedCrossRef Ammon HP, Safayhi H, Mack T, Sabieraj J. Mechanism of antiinflammatory actions of curcumine and boswellic acids. J Ethnopharmacol 1993;38:113–9.PubMedCrossRef
31.
go back to reference Arora RB, Kapoor V, Basu N, Jain AP. Anti-inflammatory studies on Curcuma longa (turmeric). Indian J Med Res 1971;59:1289–95.PubMed Arora RB, Kapoor V, Basu N, Jain AP. Anti-inflammatory studies on Curcuma longa (turmeric). Indian J Med Res 1971;59:1289–95.PubMed
32.
go back to reference Chandra D, Gupta SS. Anti-inflammatory and anti-arthritic activity of volatile oil of Curcuma longa. Indian J Med Res 1972;60:138–42.PubMed Chandra D, Gupta SS. Anti-inflammatory and anti-arthritic activity of volatile oil of Curcuma longa. Indian J Med Res 1972;60:138–42.PubMed
33.
go back to reference Ghatak N, Basu N. Sodium curcuminate as an effective anti-inflammatory agent. Indian J Exp Biol 1972;10:235–6.PubMed Ghatak N, Basu N. Sodium curcuminate as an effective anti-inflammatory agent. Indian J Exp Biol 1972;10:235–6.PubMed
34.
go back to reference Mukhopadhyay A, Basu N, Ghatak N, Gujral PK. Anti-inflammatory and irritant activities of curcumin analogues in rats. Agents Actions 1982;12:508–15.PubMedCrossRef Mukhopadhyay A, Basu N, Ghatak N, Gujral PK. Anti-inflammatory and irritant activities of curcumin analogues in rats. Agents Actions 1982;12:508–15.PubMedCrossRef
35.
go back to reference Srimal RC, Dhawan BN. Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. J Pharm Pharmacol 1973;25:447–52.PubMed Srimal RC, Dhawan BN. Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. J Pharm Pharmacol 1973;25:447–52.PubMed
36.
go back to reference Natarajan C, Bright JJ. Curcumin inhibits experimental allergic encephalomyelitis by blocking IL-12 signaling through Janus kinase-STAT pathway in T lymphocytes. J Immunol 2002;168:6506–13.PubMed Natarajan C, Bright JJ. Curcumin inhibits experimental allergic encephalomyelitis by blocking IL-12 signaling through Janus kinase-STAT pathway in T lymphocytes. J Immunol 2002;168:6506–13.PubMed
37.
go back to reference Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996;86:973–83.PubMedCrossRef Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996;86:973–83.PubMedCrossRef
38.
go back to reference Anderson KV. Toll signaling pathways in the innate immune response. Curr Opin Immunol 2000;12:13–9.PubMedCrossRef Anderson KV. Toll signaling pathways in the innate immune response. Curr Opin Immunol 2000;12:13–9.PubMedCrossRef
39.
go back to reference Schwandner RR, Dziarski H, Wesche M, Rothe CJ, Kirschning CJ. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by Toll-like receptor 2. J Biol Chem 1999;274:17406–9.PubMedCrossRef Schwandner RR, Dziarski H, Wesche M, Rothe CJ, Kirschning CJ. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by Toll-like receptor 2. J Biol Chem 1999;274:17406–9.PubMedCrossRef
40.
go back to reference Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf JD, Klimpel GR, Godowski P, Zychlinsky A. Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2. Science 1999;285:736–9.PubMedCrossRef Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf JD, Klimpel GR, Godowski P, Zychlinsky A. Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2. Science 1999;285:736–9.PubMedCrossRef
41.
go back to reference Alexopoulou L, Holt AC, Medzhitov R, Flavell A. Recognition of double-stranded RNA and activation of NF-kB by Toll-like receptor 3. Nature 2001;413:732–8.PubMedCrossRef Alexopoulou L, Holt AC, Medzhitov R, Flavell A. Recognition of double-stranded RNA and activation of NF-kB by Toll-like receptor 3. Nature 2001;413:732–8.PubMedCrossRef
42.
go back to reference Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998;282:2085–8.PubMedCrossRef Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998;282:2085–8.PubMedCrossRef
43.
go back to reference Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001;410:1099–103.PubMedCrossRef Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001;410:1099–103.PubMedCrossRef
44.
go back to reference Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K, Akira S. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 2002;3:196–200.PubMedCrossRef Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K, Akira S. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 2002;3:196–200.PubMedCrossRef
45.
go back to reference Jurk M, Heil F, Vollmer J, Schetter C, Krieg AM, Wagner H, Lipford G, Bauer S. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol 2002;3:196–200.CrossRef Jurk M, Heil F, Vollmer J, Schetter C, Krieg AM, Wagner H, Lipford G, Bauer S. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol 2002;3:196–200.CrossRef
46.
go back to reference Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 2004;303:1526–9.PubMedCrossRef Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 2004;303:1526–9.PubMedCrossRef
47.
go back to reference Diebold SS, Kaisho T, Hemmi H, Akira S, Sousa CR. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004;303:1529–31.PubMedCrossRef Diebold SS, Kaisho T, Hemmi H, Akira S, Sousa CR. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004;303:1529–31.PubMedCrossRef
48.
go back to reference Hemmi HO, Takeuchi T, Kawai T, Kaisho Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S. A Toll-like receptor recognizes bacterial DNA. Nature 2000;408:740–5.PubMedCrossRef Hemmi HO, Takeuchi T, Kawai T, Kaisho Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S. A Toll-like receptor recognizes bacterial DNA. Nature 2000;408:740–5.PubMedCrossRef
49.
50.
51.
go back to reference Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh S Jr, Janeway CA. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 1998;2:253–8.PubMedCrossRef Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh S Jr, Janeway CA. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 1998;2:253–8.PubMedCrossRef
52.
go back to reference Muzio M, Ni J, Feng P, Dixit VM. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 1997;278:1612–5.PubMedCrossRef Muzio M, Ni J, Feng P, Dixit VM. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 1997;278:1612–5.PubMedCrossRef
53.
go back to reference Kawai T, Adachi O, Ogawa T, Takeda K, Akira S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 1997;11:115–22.CrossRef Kawai T, Adachi O, Ogawa T, Takeda K, Akira S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 1997;11:115–22.CrossRef
54.
go back to reference Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M, Nakanishi K, Akira S. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 1998;9:143–50.PubMedCrossRef Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M, Nakanishi K, Akira S. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 1998;9:143–50.PubMedCrossRef
55.
go back to reference Takeuchi O, Takeda K, Hoshino K, Adachi O, Ogawa T, Akira S. Cellular responses to bacterial cell wall components are mediated through MyD88-dependent signaling cascades. Int Immunol 2000;2:113–7.CrossRef Takeuchi O, Takeda K, Hoshino K, Adachi O, Ogawa T, Akira S. Cellular responses to bacterial cell wall components are mediated through MyD88-dependent signaling cascades. Int Immunol 2000;2:113–7.CrossRef
56.
go back to reference Häcker H, Vabulas RM, Takeuchi O, Hoshino K, Akira S, Wagner H. Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF) 6. J Exp Med 2000;192:595–600.PubMedCrossRef Häcker H, Vabulas RM, Takeuchi O, Hoshino K, Akira S, Wagner H. Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF) 6. J Exp Med 2000;192:595–600.PubMedCrossRef
57.
go back to reference Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, Endres S, Hartmann G. Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 2002;168:4531–7.PubMed Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, Endres S, Hartmann G. Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 2002;168:4531–7.PubMed
58.
go back to reference Zarember KA, Godowski PJ. Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol 2002;168:554–61.PubMed Zarember KA, Godowski PJ. Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol 2002;168:554–61.PubMed
59.
go back to reference Kaisho T, Akira S. Dendritic cell function in Toll-like receptor and MyD88 knockout mice. Trends Immunol 2001;22:78–83.PubMedCrossRef Kaisho T, Akira S. Dendritic cell function in Toll-like receptor and MyD88 knockout mice. Trends Immunol 2001;22:78–83.PubMedCrossRef
60.
go back to reference Bsibsi M, Ravid R, Gveric D, van Noort JM. Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 2002;61:1013–21.PubMed Bsibsi M, Ravid R, Gveric D, van Noort JM. Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 2002;61:1013–21.PubMed
61.
go back to reference Zekki H, Feinstein DL, Rivest S. The clinical course of experimental autoimmune encephalomyelitis is associated with a profound and sustained transcriptional activation of the genes encoding toll-like receptor 2 and CD14 in the mouse CNS. Brain Pathol 2002;12:308–19.PubMed Zekki H, Feinstein DL, Rivest S. The clinical course of experimental autoimmune encephalomyelitis is associated with a profound and sustained transcriptional activation of the genes encoding toll-like receptor 2 and CD14 in the mouse CNS. Brain Pathol 2002;12:308–19.PubMed
62.
go back to reference Kerfoot SM, Long EM, Hickey MJ, Andonegui G, Lapointe GB, Zanardo RC, Bonder C, James WG, Robbins SM, Kubes P. TLR4 contributes to disease-inducing mechanisms resulting in central nervous system autoimmune disease. J Immunol 2004;173:7070–7.PubMed Kerfoot SM, Long EM, Hickey MJ, Andonegui G, Lapointe GB, Zanardo RC, Bonder C, James WG, Robbins SM, Kubes P. TLR4 contributes to disease-inducing mechanisms resulting in central nervous system autoimmune disease. J Immunol 2004;173:7070–7.PubMed
63.
go back to reference Racke MK, Hu W, Lovett-Racke AE. PTX cruiser: driving autoimmunity via TLR4. Trends Immunol 2005;26:289–91.PubMedCrossRef Racke MK, Hu W, Lovett-Racke AE. PTX cruiser: driving autoimmunity via TLR4. Trends Immunol 2005;26:289–91.PubMedCrossRef
64.
go back to reference Hansen BS, Hussain RZ, Lovett-Racke AE, Thomas JA, Racke MK. Multiple toll-like receptor agonists act as potent adjuvants in the induction of autoimmunity. J Neuroimmunol 2006;172:94–103.PubMedCrossRef Hansen BS, Hussain RZ, Lovett-Racke AE, Thomas JA, Racke MK. Multiple toll-like receptor agonists act as potent adjuvants in the induction of autoimmunity. J Neuroimmunol 2006;172:94–103.PubMedCrossRef
65.
go back to reference Prinz M, Garbe F, Schmidt H, Mildner A, Gutcher I, Wolter K, Piesche M, Schroers R, Weiss E, Kirschning CJ, Rochford CD, Bruck W, Becher B. Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis. J Clin Invest 2006;116:456–64.PubMedCrossRef Prinz M, Garbe F, Schmidt H, Mildner A, Gutcher I, Wolter K, Piesche M, Schroers R, Weiss E, Kirschning CJ, Rochford CD, Bruck W, Becher B. Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis. J Clin Invest 2006;116:456–64.PubMedCrossRef
66.
go back to reference Wolf NA, Amouzegar TK, Swanborg RH. Synergistic interaction between Toll-like receptor agonists is required for induction of experimental autoimmune encephalomyelitis in Lewis rats. J Neuroimmunol 2007;185:115–22.PubMedCrossRef Wolf NA, Amouzegar TK, Swanborg RH. Synergistic interaction between Toll-like receptor agonists is required for induction of experimental autoimmune encephalomyelitis in Lewis rats. J Neuroimmunol 2007;185:115–22.PubMedCrossRef
67.
go back to reference Komai-Koma M, Jones L, Ogg GS, Xu D, Liew FY. TLR2 is expressed on activated T cells as a costimulatory receptor. Proc Natl Acad Sci U S A 2004;101:3029–34.PubMedCrossRef Komai-Koma M, Jones L, Ogg GS, Xu D, Liew FY. TLR2 is expressed on activated T cells as a costimulatory receptor. Proc Natl Acad Sci U S A 2004;101:3029–34.PubMedCrossRef
68.
go back to reference Caron G, Duluc D, Fremaux I, Jeannin P, David C, Gascan H, Delneste Y. Direct stimulation of human T cells via TLR5 and TLR7/8: flagellin and R-848 up-regulate proliferation and IFN-g production by memory CD4+ T cells. J Immunol 2005;175:1551–7.PubMed Caron G, Duluc D, Fremaux I, Jeannin P, David C, Gascan H, Delneste Y. Direct stimulation of human T cells via TLR5 and TLR7/8: flagellin and R-848 up-regulate proliferation and IFN-g production by memory CD4+ T cells. J Immunol 2005;175:1551–7.PubMed
69.
go back to reference Touil T, Fitzgerald D, Zhang GX, Rostami A, Gran B. TLR3 stimulation suppresses experimental autoimmune encephalomyelitis by inducing endogenous IFN-beta. J Immunol 2006;177:7505–9.PubMed Touil T, Fitzgerald D, Zhang GX, Rostami A, Gran B. TLR3 stimulation suppresses experimental autoimmune encephalomyelitis by inducing endogenous IFN-beta. J Immunol 2006;177:7505–9.PubMed
70.
go back to reference Ogawa S, Lozach J, Benner C, Pascual G, Tangirala RK, Westin S, Hoffmann A, Subramaniam S, David M, Rosenfeld MG, Glass CK. Molecular determinants of cross-talk between nuclear receptors and toll-like receptors. Cell 2005;122:707–21.PubMedCrossRef Ogawa S, Lozach J, Benner C, Pascual G, Tangirala RK, Westin S, Hoffmann A, Subramaniam S, David M, Rosenfeld MG, Glass CK. Molecular determinants of cross-talk between nuclear receptors and toll-like receptors. Cell 2005;122:707–21.PubMedCrossRef
71.
go back to reference Appel S, Mirakaj V, Bringmann A, Weck MM, Grunebach F, Brossart P. PPAR-gamma agonists inhibit toll-like receptor-mediated activation of dendritic cells via the MAP kinase and NF-kappaB pathways. Blood 2005;106:3888–94.PubMedCrossRef Appel S, Mirakaj V, Bringmann A, Weck MM, Grunebach F, Brossart P. PPAR-gamma agonists inhibit toll-like receptor-mediated activation of dendritic cells via the MAP kinase and NF-kappaB pathways. Blood 2005;106:3888–94.PubMedCrossRef
72.
go back to reference Phulwani NK, Feinstein DL, Gavrilyuk V, Akar C, Kielian T. 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) and ciglitazone modulate Staphylococcus aureus-dependent astrocyte activation primarily through a PPAR-gamma-independent pathway. J Neurochem 2006;99:1389–402.PubMedCrossRef Phulwani NK, Feinstein DL, Gavrilyuk V, Akar C, Kielian T. 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) and ciglitazone modulate Staphylococcus aureus-dependent astrocyte activation primarily through a PPAR-gamma-independent pathway. J Neurochem 2006;99:1389–402.PubMedCrossRef
73.
go back to reference Chowdhury P, Sacks SH, Sheerin NS. Toll-like receptors TLR2 and TLR4 initiate the innate immune response of the renal tubular epithelium to bacterial products. Clin Exp Immunol 2006;145:346–56.PubMedCrossRef Chowdhury P, Sacks SH, Sheerin NS. Toll-like receptors TLR2 and TLR4 initiate the innate immune response of the renal tubular epithelium to bacterial products. Clin Exp Immunol 2006;145:346–56.PubMedCrossRef
74.
go back to reference Youn HS, Saitoh SI, Miyake K, Hwang DH. Inhibition of homodimerization of Toll-like receptor 4 by curcumin. Biochem Pharmacol 2006;72:62–9.PubMedCrossRef Youn HS, Saitoh SI, Miyake K, Hwang DH. Inhibition of homodimerization of Toll-like receptor 4 by curcumin. Biochem Pharmacol 2006;72:62–9.PubMedCrossRef
75.
go back to reference Kato S, Yuzawa Y, Tsuboi N, Maruyama S, Morita Y, Matsuguchi T, Matsuo S. Endotoxin-induced chemokine expression in murine peritoneal mesothelial cells: the role of toll-like receptor 4. J Am Soc Nephrol 2004;15:1289–99.PubMed Kato S, Yuzawa Y, Tsuboi N, Maruyama S, Morita Y, Matsuguchi T, Matsuo S. Endotoxin-induced chemokine expression in murine peritoneal mesothelial cells: the role of toll-like receptor 4. J Am Soc Nephrol 2004;15:1289–99.PubMed
76.
go back to reference Eun CS, Han DS, Lee SH, Paik CH, Chung YW, Lee J, Hahm JS. Attenuation of colonic inflammation by PPARg in intestinal epithelial cells: effect on Toll-like receptor pathway. Dig Dis Sci 2006;51:693–7.PubMedCrossRef Eun CS, Han DS, Lee SH, Paik CH, Chung YW, Lee J, Hahm JS. Attenuation of colonic inflammation by PPARg in intestinal epithelial cells: effect on Toll-like receptor pathway. Dig Dis Sci 2006;51:693–7.PubMedCrossRef
Metadata
Title
15-Deoxy-Δ12,14-Prostaglandin J2 and Curcumin Modulate the Expression of Toll-like Receptors 4 and 9 in Autoimmune T Lymphocyte
Authors
Wanida Chearwae
John J. Bright
Publication date
01-09-2008
Publisher
Springer US
Published in
Journal of Clinical Immunology / Issue 5/2008
Print ISSN: 0271-9142
Electronic ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-008-9202-7

Other articles of this Issue 5/2008

Journal of Clinical Immunology 5/2008 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine