Skip to main content
Top
Published in: Journal of Clinical Immunology 1/2008

01-05-2008

Understanding Systemic Lupus Erythematosus Physiopathology in the Light of Primary Immunodeficiencies

Authors: Magda Carneiro-Sampaio, Bernadete Lourdes Liphaus, Adriana Almeida Jesus, Clovis Artur A. Silva, João Bosco Oliveira, Maria Helena Kiss

Published in: Journal of Clinical Immunology | Special Issue 1/2008

Login to get access

Abstract

Introduction

Associations between systemic lupus erythematosus (SLE) and primary immunodeficiencies (PIDs) were analyzed to gain insight into the physiopathology of SLE. Some PIDs have been consistently associated with SLE or lupus-like manifestations: (a) homozygous deficiencies of the early components of the classical complement pathway in the following decreasing order: in C1q, 93% of affected patients developed SLE; in C4, 75%; in C1r/s, 57%; and in C2, up to 25%; (b) female carriers of X-linked chronic granulomatous disease allele; and (c) IgA deficiency, present in around 5% of juvenile SLE.

Discussion

In the first two groups, disturbances of cellular waste-disposal have been proposed as the main mechanisms of pathogenesis. On the other hand and very interestingly, there are PIDs systematically associated with several autoimmune manifestations in which SLE has not been described, such as autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), immunedysregulation polyendocrinopathy enteropathy X-linked (IPEX), and autoimmune lymphoproliferative syndrome (ALPS), suggesting that mechanisms considered as critical players for induction and maintenance of tolerance to autoantigens, such as (1) AIRE-mediated thymic negative selection of lymphocytes, (2) Foxp3+ regulatory T cell-mediated peripheral tolerance, and (3) deletion of auto-reactive lymphocytes by Fas-mediated apoptosis, could not be relevant in SLE physiopathology. The non-description of SLE and neither the most characteristic SLE clinical features among patients with agammaglobulinemia are also interesting observations, which reinforce the essential role of B lymphocytes and antibodies for SLE pathogenesis.

Conclusion

Therefore, monogenic PIDs represent unique and not fully explored human models for unraveling components of the conundrum represented by the physiopathology of SLE, a prototypical polygenic disease.
Literature
1.
go back to reference Geha RS, Notarangelo L, Casanova J-L, Chapel H, Conley ME, Fischer A, Hammarström L, Nonoyama S, Ochs HD, Puck JM, Roifman C, Seger R, Wedgwood J. Primary immunodeficiency diseases: an update from the International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee. J Allergy Clin Immunol 2007;120:776–94.PubMedCrossRef Geha RS, Notarangelo L, Casanova J-L, Chapel H, Conley ME, Fischer A, Hammarström L, Nonoyama S, Ochs HD, Puck JM, Roifman C, Seger R, Wedgwood J. Primary immunodeficiency diseases: an update from the International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee. J Allergy Clin Immunol 2007;120:776–94.PubMedCrossRef
2.
go back to reference Carneiro-Sampaio M, Coutinho A. Tolerance and autoimmunity: lessons at the bedside of primary immunodeficiencies. Adv Immunol 2007;95:51–82.PubMedCrossRef Carneiro-Sampaio M, Coutinho A. Tolerance and autoimmunity: lessons at the bedside of primary immunodeficiencies. Adv Immunol 2007;95:51–82.PubMedCrossRef
3.
go back to reference Navratil JS, Korb LC, Ahearn JM. Systemic lupus erythematosus and complement deficiency: clues to a novel role for the classical complement pathway in the maintenance of immune tolerance. Immunopharmacology 1999;42:47–52.PubMedCrossRef Navratil JS, Korb LC, Ahearn JM. Systemic lupus erythematosus and complement deficiency: clues to a novel role for the classical complement pathway in the maintenance of immune tolerance. Immunopharmacology 1999;42:47–52.PubMedCrossRef
4.
go back to reference Pickering MC, Botto M, Taylor PR, Walport MJ. Systemic lupus erythematosus, complement deficiency, and apoptosis. Adv Immunol 2000;76:227–34.PubMed Pickering MC, Botto M, Taylor PR, Walport MJ. Systemic lupus erythematosus, complement deficiency, and apoptosis. Adv Immunol 2000;76:227–34.PubMed
5.
go back to reference Manderson AP, Botto M, Walport MJ. The role of complement in the development of systemic lupus erythematosus. Annu Rev Immunol 2004;22:431–56.PubMedCrossRef Manderson AP, Botto M, Walport MJ. The role of complement in the development of systemic lupus erythematosus. Annu Rev Immunol 2004;22:431–56.PubMedCrossRef
6.
go back to reference Sjöholm AG, Jönsson G, Braconier JH, Sturfelt G, Truedsson L. Complement deficiency and disease: an update. Mol Immunol 2006;43:78–85.PubMedCrossRef Sjöholm AG, Jönsson G, Braconier JH, Sturfelt G, Truedsson L. Complement deficiency and disease: an update. Mol Immunol 2006;43:78–85.PubMedCrossRef
7.
go back to reference Koide M, Shirahama S, Tokura Y, Takigawa M, Hayakawa M, Furukawa F. Lupus erythematosus associated with C1 inhibitor deficiency. J Dermatol 2002;29:503–7.PubMed Koide M, Shirahama S, Tokura Y, Takigawa M, Hayakawa M, Furukawa F. Lupus erythematosus associated with C1 inhibitor deficiency. J Dermatol 2002;29:503–7.PubMed
8.
go back to reference Kemper C, Chan AC, Green J, Brett KA, Murphy KM, Atkinson P. Activation of human CD4+cells with CD3 and CD466 induces a T-regulatory cell 1 phenotype. Nature 2003;42:388–92.CrossRef Kemper C, Chan AC, Green J, Brett KA, Murphy KM, Atkinson P. Activation of human CD4+cells with CD3 and CD466 induces a T-regulatory cell 1 phenotype. Nature 2003;42:388–92.CrossRef
9.
go back to reference Winkelstein JA, Marino MC, Johnston RB Jr, Boyle J, Curnutte J, Gallin JI, et al. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore). 2000;79:155–69.CrossRefPubMed Winkelstein JA, Marino MC, Johnston RB Jr, Boyle J, Curnutte J, Gallin JI, et al. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore). 2000;79:155–69.CrossRefPubMed
10.
go back to reference Cale CM, Morton L, Goldblatt D. Cutaneous and other lupus-like symptoms in carriers of X-linked chronic granulomatous disease: incidence and autoimmune serology. Clin Exp Immunol 2007;148:79–84.PubMed Cale CM, Morton L, Goldblatt D. Cutaneous and other lupus-like symptoms in carriers of X-linked chronic granulomatous disease: incidence and autoimmune serology. Clin Exp Immunol 2007;148:79–84.PubMed
11.
go back to reference Brown JR, Goldblatt D, Buddle J, Morton L, Thrasher AJ. Diminished production of anti-inflammatory mediators during neutrophil apoptosis and macrophage phagocytosis in chronic granulomatous disease. J Leukoc Biol 2003;73:591–9.PubMedCrossRef Brown JR, Goldblatt D, Buddle J, Morton L, Thrasher AJ. Diminished production of anti-inflammatory mediators during neutrophil apoptosis and macrophage phagocytosis in chronic granulomatous disease. J Leukoc Biol 2003;73:591–9.PubMedCrossRef
12.
go back to reference Sanford AN, Suriano AR, Herche D, Dietzmann K, Sullivan KE. Abnormal apoptosis in chronic granulomatous disease and autoantibody production characteristic of lupus. Rheumatology 2006;45:178–81.PubMedCrossRef Sanford AN, Suriano AR, Herche D, Dietzmann K, Sullivan KE. Abnormal apoptosis in chronic granulomatous disease and autoantibody production characteristic of lupus. Rheumatology 2006;45:178–81.PubMedCrossRef
13.
go back to reference Liblau RS, Bach JF. Selective IgA deficiency and autoimmunity. Int Arch Allergy Immunol 1992;99:16–27.PubMedCrossRef Liblau RS, Bach JF. Selective IgA deficiency and autoimmunity. Int Arch Allergy Immunol 1992;99:16–27.PubMedCrossRef
14.
go back to reference Rankin EC, Isenberg DA. IgA deficiency and SLE: prevalence in a clinic population and a review of the literature. Lupus 1997;6:390–4.PubMedCrossRef Rankin EC, Isenberg DA. IgA deficiency and SLE: prevalence in a clinic population and a review of the literature. Lupus 1997;6:390–4.PubMedCrossRef
15.
go back to reference Cassidy JT, Kitson RK, Selby CL. Selective IgA deficiency in children and adults with systemic lupus erythematosus. Lupus 2007;16:647–50.PubMedCrossRef Cassidy JT, Kitson RK, Selby CL. Selective IgA deficiency in children and adults with systemic lupus erythematosus. Lupus 2007;16:647–50.PubMedCrossRef
16.
go back to reference Pasquier B, Launay P, Kanamaru Y, Moura IC, Pfirsch S, Ruffié C, Hénin D, Benhamou M, Pretolani M, Blank U, Monteiro RC. Identification of FcalphaRI as an inhibitory receptor that controls inflammation: dual role of FcRgamma ITAM. Immunity 2005;22:31–42.PubMed Pasquier B, Launay P, Kanamaru Y, Moura IC, Pfirsch S, Ruffié C, Hénin D, Benhamou M, Pretolani M, Blank U, Monteiro RC. Identification of FcalphaRI as an inhibitory receptor that controls inflammation: dual role of FcRgamma ITAM. Immunity 2005;22:31–42.PubMed
17.
go back to reference Ahonen P, Myllarniemi S, Sipila I, Perheentupa J. Clinical variation of autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy (APECED) in a series of 68 patients. N Engl J Med 1990;322:1829–36.PubMed Ahonen P, Myllarniemi S, Sipila I, Perheentupa J. Clinical variation of autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy (APECED) in a series of 68 patients. N Engl J Med 1990;322:1829–36.PubMed
18.
go back to reference Betterle C, Greggio NA, Volpato M. Autoimmune polyglandular syndrome type 1. J Clin Endocrinol Metab 1998;83:1049–55.PubMedCrossRef Betterle C, Greggio NA, Volpato M. Autoimmune polyglandular syndrome type 1. J Clin Endocrinol Metab 1998;83:1049–55.PubMedCrossRef
19.
go back to reference Perheentupä J. Extensive Clinical experience: autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy. J Clin Endocrinol Metab 2006;91:2843–50.PubMedCrossRef Perheentupä J. Extensive Clinical experience: autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy. J Clin Endocrinol Metab 2006;91:2843–50.PubMedCrossRef
20.
go back to reference Perniola R, Falorni A, Clemente MG, Forini F, Accogli E, Lobreglio G. Organ-specific and non-organ-specific autoantibodies in children and young adults with autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy (APECED). Eur J Endocrinol 2000;143:497–503.PubMedCrossRef Perniola R, Falorni A, Clemente MG, Forini F, Accogli E, Lobreglio G. Organ-specific and non-organ-specific autoantibodies in children and young adults with autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy (APECED). Eur J Endocrinol 2000;143:497–503.PubMedCrossRef
21.
go back to reference Wildin RS, Smyk-Pearson S, Filipovich AH. Clinical and molecular features of immune dysregulation, polyendocrinopathy, and X-linked inheritance (IPEX), a syndrome. J Med Genet 2002;39:537–45.PubMedCrossRef Wildin RS, Smyk-Pearson S, Filipovich AH. Clinical and molecular features of immune dysregulation, polyendocrinopathy, and X-linked inheritance (IPEX), a syndrome. J Med Genet 2002;39:537–45.PubMedCrossRef
22.
go back to reference Ochs HD, Ziegler SF, Torgerson TR. FOXP3 acts as a rheostat of the immune response. Immunol Rev 2005;203:156–64.PubMedCrossRef Ochs HD, Ziegler SF, Torgerson TR. FOXP3 acts as a rheostat of the immune response. Immunol Rev 2005;203:156–64.PubMedCrossRef
23.
go back to reference Torgerson T. Regulatory T cells in human autoimmune diseases. Springer Semin Immun 2006;28:63–76.CrossRef Torgerson T. Regulatory T cells in human autoimmune diseases. Springer Semin Immun 2006;28:63–76.CrossRef
24.
go back to reference Oliveira JB, Fleisher T. Autoimmune lymproliferative syndrome. Curr Opin Allergy Clin Immunol, 2004;4:497–503.CrossRef Oliveira JB, Fleisher T. Autoimmune lymproliferative syndrome. Curr Opin Allergy Clin Immunol, 2004;4:497–503.CrossRef
25.
go back to reference Oliveira JB, Bidère N, Niemela JE, Zheng L, Sakai K, Nix CP, Danner RL, Barb J, Munson PJ, Puck JM, Dale J, Straus SE, Fleisher TA, Lenardo MJ. NRAS mutation causes a human autoimmune lymphoproliferative syndrome. Proc Natl Acad Sci U S A 2007;104:8953–8.PubMedCrossRef Oliveira JB, Bidère N, Niemela JE, Zheng L, Sakai K, Nix CP, Danner RL, Barb J, Munson PJ, Puck JM, Dale J, Straus SE, Fleisher TA, Lenardo MJ. NRAS mutation causes a human autoimmune lymphoproliferative syndrome. Proc Natl Acad Sci U S A 2007;104:8953–8.PubMedCrossRef
26.
go back to reference Wu J, Wilson J, He J, Xiang L, Schur PH, Mountz JD. Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. J Clin Invest 1996;98:1107–13.PubMedCrossRef Wu J, Wilson J, He J, Xiang L, Schur PH, Mountz JD. Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. J Clin Invest 1996;98:1107–13.PubMedCrossRef
27.
go back to reference Liphaus BL, Kiss MH, Carrasco S, Goldenstein-Schainberg C. Increased Fas and Bcl-2 expression on peripheral cells from patients with active juvenile-onset systemic lupus erythematosus. J Rheum 2007;34:1580–4.PubMed Liphaus BL, Kiss MH, Carrasco S, Goldenstein-Schainberg C. Increased Fas and Bcl-2 expression on peripheral cells from patients with active juvenile-onset systemic lupus erythematosus. J Rheum 2007;34:1580–4.PubMed
28.
go back to reference Plebani A, Soresina A, Rondelli R, Amato GM, Azzari C, Cardinale F, et al. Italian Pediatric Group for XLA-AIEOP. Clinical, immunological, and molecular analysis in a large cohort of patients with X-linked agammaglobulinemia: an Italian multicenter study. Clin Immunol 2002;104:221–30.PubMedCrossRef Plebani A, Soresina A, Rondelli R, Amato GM, Azzari C, Cardinale F, et al. Italian Pediatric Group for XLA-AIEOP. Clinical, immunological, and molecular analysis in a large cohort of patients with X-linked agammaglobulinemia: an Italian multicenter study. Clin Immunol 2002;104:221–30.PubMedCrossRef
29.
go back to reference Winkelstein JA, Marino MC, Lederman HM, Jones SM, Sullivan K, Burks AW, et al. X-linked agammaglobulinemia: report on a United States registry of 201 patients. Medicine (Baltimore) 2006;85:193–202.CrossRef Winkelstein JA, Marino MC, Lederman HM, Jones SM, Sullivan K, Burks AW, et al. X-linked agammaglobulinemia: report on a United States registry of 201 patients. Medicine (Baltimore) 2006;85:193–202.CrossRef
30.
go back to reference Howard V, Greene JM, Pahwa S, Winkelstein JA, Boyle JM, Kocak M, et al. The health status and quality of life of adults with X-linked agammaglobulinemia. Clin Immunol 2006;118:201–8.PubMedCrossRef Howard V, Greene JM, Pahwa S, Winkelstein JA, Boyle JM, Kocak M, et al. The health status and quality of life of adults with X-linked agammaglobulinemia. Clin Immunol 2006;118:201–8.PubMedCrossRef
31.
go back to reference Fernandez-Castro M, Mellor-Pita S, Citores MJ, Muñoz P, Tutor-Ureta P, Silva L, Vargas JA, Yebra-Bango M, Andreu JL. Common variable immunodeficiency in systemic lupus erythematosus. Semin Arthritis Rheum 2007;36:238–45.PubMedCrossRef Fernandez-Castro M, Mellor-Pita S, Citores MJ, Muñoz P, Tutor-Ureta P, Silva L, Vargas JA, Yebra-Bango M, Andreu JL. Common variable immunodeficiency in systemic lupus erythematosus. Semin Arthritis Rheum 2007;36:238–45.PubMedCrossRef
32.
go back to reference Wang J, Cunningham-Rundles C. Treatment and outcome of autoimmune hematologic disease in common variable immunodeficiency (CVID). J Autoimmun 2005;25:57–62.PubMedCrossRef Wang J, Cunningham-Rundles C. Treatment and outcome of autoimmune hematologic disease in common variable immunodeficiency (CVID). J Autoimmun 2005;25:57–62.PubMedCrossRef
33.
go back to reference Glocker E, Ehl S, Grimbacher B. Common variable immunodeficiency in children. Curr Opin Pediatr 2007;19:685–92.PubMed Glocker E, Ehl S, Grimbacher B. Common variable immunodeficiency in children. Curr Opin Pediatr 2007;19:685–92.PubMed
34.
go back to reference Salzer U, Maul-Pavicic A, Cunningham-Rundles C, Urschel S, Belohradsky BH, Litzman J, Holm A, et al. ICOS deficiency in patients with common variable immunodeficiency. Clin Immunol 2004;113:234–40.PubMedCrossRef Salzer U, Maul-Pavicic A, Cunningham-Rundles C, Urschel S, Belohradsky BH, Litzman J, Holm A, et al. ICOS deficiency in patients with common variable immunodeficiency. Clin Immunol 2004;113:234–40.PubMedCrossRef
35.
go back to reference Salzer U, Chapel HM, Webster AD, Pan-Hammarström Q, Schmitt-Graeff A, Schlesier M, et al. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat Genet 2005;37:820–8.PubMedCrossRef Salzer U, Chapel HM, Webster AD, Pan-Hammarström Q, Schmitt-Graeff A, Schlesier M, et al. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat Genet 2005;37:820–8.PubMedCrossRef
36.
go back to reference Levy J, Espanol-Boren T, Thomas C, Fischer A, Tovo P, Bordigoni P, et al. Clinical spectrum of X-linked hyper-IgM syndrome. J Pediatr 1997;131:47–54.PubMedCrossRef Levy J, Espanol-Boren T, Thomas C, Fischer A, Tovo P, Bordigoni P, et al. Clinical spectrum of X-linked hyper-IgM syndrome. J Pediatr 1997;131:47–54.PubMedCrossRef
37.
go back to reference Winkelstein JA, Marino MC, Ochs H, Fuleihan R, Scholl PR, Geha R, et al. The X-linked hyper-IgM syndrome. Medicine 2003;82:373–84.PubMedCrossRef Winkelstein JA, Marino MC, Ochs H, Fuleihan R, Scholl PR, Geha R, et al. The X-linked hyper-IgM syndrome. Medicine 2003;82:373–84.PubMedCrossRef
38.
go back to reference Lougaris V, Badolato R, Ferrari S, Plebani A. Hyper immunoglobulin M syndrome due to CD40 deficiency: clinical, molecular, and immunological features. Immunol Rev 2005;203:48–66.PubMedCrossRef Lougaris V, Badolato R, Ferrari S, Plebani A. Hyper immunoglobulin M syndrome due to CD40 deficiency: clinical, molecular, and immunological features. Immunol Rev 2005;203:48–66.PubMedCrossRef
39.
go back to reference Desai-Mehta A, Lu L, Ramsey-Goldman R, Datta SK. Hyperexpression of CD40 ligand by B and T cells in human lupus and its role in pathogenic autoantibody production. J Clin Invest 1996;97:2063–73.PubMedCrossRef Desai-Mehta A, Lu L, Ramsey-Goldman R, Datta SK. Hyperexpression of CD40 ligand by B and T cells in human lupus and its role in pathogenic autoantibody production. J Clin Invest 1996;97:2063–73.PubMedCrossRef
40.
go back to reference Durandy A, Notarangelo L, Revy P, Imai K, Fischer A. Hyper-immunoglobulin M syndromes caused by intrinsic B-lymphocyte defects. Immunol Rev 2005;203:67–79.PubMedCrossRef Durandy A, Notarangelo L, Revy P, Imai K, Fischer A. Hyper-immunoglobulin M syndromes caused by intrinsic B-lymphocyte defects. Immunol Rev 2005;203:67–79.PubMedCrossRef
41.
go back to reference Melegari A, Mascia MT, Sandri G, Carbonieri A. Immunodeficiency and autoimmune phenomena in female hyper-IgM syndrome. Ann N Y Acad Sci 2007;1109:106–8.PubMedCrossRef Melegari A, Mascia MT, Sandri G, Carbonieri A. Immunodeficiency and autoimmune phenomena in female hyper-IgM syndrome. Ann N Y Acad Sci 2007;1109:106–8.PubMedCrossRef
42.
go back to reference Shrinath M, Walter JH, Haeney M, Couriel JM, Lewis MA, Herrick AL. Prolidase deficiency and systemic lupus erythematosus. Arch Dis Child 1997;76:441–4.PubMedCrossRef Shrinath M, Walter JH, Haeney M, Couriel JM, Lewis MA, Herrick AL. Prolidase deficiency and systemic lupus erythematosus. Arch Dis Child 1997;76:441–4.PubMedCrossRef
43.
go back to reference Dupuis-Girod S, Medioni J, Haddad E, Quartier P, Cavazzana-Calvo M, Le Deist F, et al. Autoimmunity in Wiskott–Aldrich syndrome: risk factors, clinical features, and outcome in a single-center cohort of 55 patients. Pediatrics 2003;111:e622–7.PubMedCrossRef Dupuis-Girod S, Medioni J, Haddad E, Quartier P, Cavazzana-Calvo M, Le Deist F, et al. Autoimmunity in Wiskott–Aldrich syndrome: risk factors, clinical features, and outcome in a single-center cohort of 55 patients. Pediatrics 2003;111:e622–7.PubMedCrossRef
44.
go back to reference Sullivan KE, Mullen CA, Blaese RM, Winkelstein JA. A multiinstitutional survey of the Wiskott–Aldrich syndrome. J Pediatr 1994;125:876–85.PubMedCrossRef Sullivan KE, Mullen CA, Blaese RM, Winkelstein JA. A multiinstitutional survey of the Wiskott–Aldrich syndrome. J Pediatr 1994;125:876–85.PubMedCrossRef
45.
go back to reference Rosenzweig SD, Holland SM. Defects in the interferon-γ and interleukin 12 pathways. Immunol Rev 2005;3:38–47.CrossRef Rosenzweig SD, Holland SM. Defects in the interferon-γ and interleukin 12 pathways. Immunol Rev 2005;3:38–47.CrossRef
46.
go back to reference Kobrynski LJ, Sullivan KE. Velocardiofacial syndrome, DiGeorge syndrome: the chromosome 22q11.2 deletion syndromes. Lancet. 2007;370:1443–52.PubMedCrossRef Kobrynski LJ, Sullivan KE. Velocardiofacial syndrome, DiGeorge syndrome: the chromosome 22q11.2 deletion syndromes. Lancet. 2007;370:1443–52.PubMedCrossRef
47.
go back to reference de Haas M, Kleijer M, van Zwieten R, Roos D, von dem Borne AEGK. Neutrophil FcγRIIIb deficiency, nature and clinical consequences: a study of 21 individuals from 14 families. Blood 1995;86:2403–13.PubMed de Haas M, Kleijer M, van Zwieten R, Roos D, von dem Borne AEGK. Neutrophil FcγRIIIb deficiency, nature and clinical consequences: a study of 21 individuals from 14 families. Blood 1995;86:2403–13.PubMed
Metadata
Title
Understanding Systemic Lupus Erythematosus Physiopathology in the Light of Primary Immunodeficiencies
Authors
Magda Carneiro-Sampaio
Bernadete Lourdes Liphaus
Adriana Almeida Jesus
Clovis Artur A. Silva
João Bosco Oliveira
Maria Helena Kiss
Publication date
01-05-2008
Publisher
Springer US
Published in
Journal of Clinical Immunology / Issue Special Issue 1/2008
Print ISSN: 0271-9142
Electronic ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-008-9187-2

Other articles of this Special Issue 1/2008

Journal of Clinical Immunology 1/2008 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine