Skip to main content
Top
Published in: Journal of Clinical Immunology 1/2008

01-01-2008

Biology of Dendritic Cells in Aging

Authors: Anshu Agrawal, Sudhanshu Agrawal, Jia Tay, Sudhir Gupta

Published in: Journal of Clinical Immunology | Issue 1/2008

Login to get access

Abstract

Dendritic cells are central to the generation of both immunity and tolerance. This review focuses on the alterations in the functions of dendritic cells in aged and its consequences on both tolerance and immunity. We have discussed certain mechanisms responsible for the defective dendritic cell function associated with aging.
Literature
1.
go back to reference Boren E, Gershwin ME. Inflamm-aging: autoimmunity, and the immune-risk phenotype. Autoimmun Rev 2004;3:401–6.PubMedCrossRef Boren E, Gershwin ME. Inflamm-aging: autoimmunity, and the immune-risk phenotype. Autoimmun Rev 2004;3:401–6.PubMedCrossRef
2.
go back to reference Weyand CM, Fulbright JW, Goronzy JJ. Immunosenescence, autoimmunity, and rheumatoid arthritis. Exp Gerontol 2003;38:833–41.PubMedCrossRef Weyand CM, Fulbright JW, Goronzy JJ. Immunosenescence, autoimmunity, and rheumatoid arthritis. Exp Gerontol 2003;38:833–41.PubMedCrossRef
3.
go back to reference Ramos-Casals M, Garcia-Carrasco M, Brito MP, Lopez-Soto A, Font J. Autoimmunity and geriatrics: clinical significance of autoimmune manifestations in the elderly. Lupus 2003;12:341–55.PubMedCrossRef Ramos-Casals M, Garcia-Carrasco M, Brito MP, Lopez-Soto A, Font J. Autoimmunity and geriatrics: clinical significance of autoimmune manifestations in the elderly. Lupus 2003;12:341–55.PubMedCrossRef
4.
go back to reference Bruunsgaad H, Pedersen BK. Age-related inflammatory cytokines and disease. Immunol Allergy Clin North Am 2003;23:15–39.CrossRef Bruunsgaad H, Pedersen BK. Age-related inflammatory cytokines and disease. Immunol Allergy Clin North Am 2003;23:15–39.CrossRef
5.
go back to reference Ginaldi L, De Martinis M, Monti D, Franceschi C. The immune system in the elderly: activation-induced and damage-induced apoptosis. Immunol Res 2004;30:81–94.PubMedCrossRef Ginaldi L, De Martinis M, Monti D, Franceschi C. The immune system in the elderly: activation-induced and damage-induced apoptosis. Immunol Res 2004;30:81–94.PubMedCrossRef
7.
go back to reference Linton PJ, Haynes L, Klinman NR, Swain SL. Antigen-independent changes in naive CD4 T cells with aging. J Exp Med 1996;184:1891–900.PubMedCrossRef Linton PJ, Haynes L, Klinman NR, Swain SL. Antigen-independent changes in naive CD4 T cells with aging. J Exp Med 1996;184:1891–900.PubMedCrossRef
8.
go back to reference Pawalec G, Remarque E, Barnett Y, Solana R. T cells and aging. Front Biosci 1998;3:d59–99. Pawalec G, Remarque E, Barnett Y, Solana R. T cells and aging. Front Biosci 1998;3:d59–99.
9.
go back to reference Linton PJ, Dorshkind K. Age-related changes in lymphocyte development and function. Nat Immunol 2004;5:133–9.PubMedCrossRef Linton PJ, Dorshkind K. Age-related changes in lymphocyte development and function. Nat Immunol 2004;5:133–9.PubMedCrossRef
10.
go back to reference Haynes L, Eaton SM, Burns EM, Randall TD, Swain SL. CD4 T cell memory derived from young naïve cells functions well into old age, while memory generated from aged naïve cells functions poorly. Proc Natl Acad Sci USA 2003;100:15053–8.PubMedCrossRef Haynes L, Eaton SM, Burns EM, Randall TD, Swain SL. CD4 T cell memory derived from young naïve cells functions well into old age, while memory generated from aged naïve cells functions poorly. Proc Natl Acad Sci USA 2003;100:15053–8.PubMedCrossRef
11.
go back to reference Gupta S, Bi R, Su K, Yel L, Chiplunkar S, Gollapudi S. Characterization of naive, memory and effector CD8+ T cells: effect of age. Exp Gerontol 2004;39:545–50.PubMedCrossRef Gupta S, Bi R, Su K, Yel L, Chiplunkar S, Gollapudi S. Characterization of naive, memory and effector CD8+ T cells: effect of age. Exp Gerontol 2004;39:545–50.PubMedCrossRef
12.
go back to reference Dunn-Walters DK, Banerjee M, Mehr R. Effects of age on antibody affinity maturation. Biochem Soc Trans 2003;31:447–8.PubMedCrossRef Dunn-Walters DK, Banerjee M, Mehr R. Effects of age on antibody affinity maturation. Biochem Soc Trans 2003;31:447–8.PubMedCrossRef
13.
go back to reference Wick G, Grubeck-Loebenstein B. The aging immune system: primary and secondary alterations of immune reactivity in the elderly. Exp Gerontol 1997;32:401–13.PubMedCrossRef Wick G, Grubeck-Loebenstein B. The aging immune system: primary and secondary alterations of immune reactivity in the elderly. Exp Gerontol 1997;32:401–13.PubMedCrossRef
14.
go back to reference McGlauchlen KS, Vogel LA. Ineffective humoral immunity in the elderly. Microbes Infect 2003;5:1279–84.PubMedCrossRef McGlauchlen KS, Vogel LA. Ineffective humoral immunity in the elderly. Microbes Infect 2003;5:1279–84.PubMedCrossRef
15.
go back to reference Ernst DN, Weigle WO, Noonan DJ, McQuitty DN, Hobbs MV. The age-associated increase in IFN-gamma synthesis by mouse CD8+ T cells correlates with shifts in the frequencies of cell subsets defined by membrane CD44, CD45RB, 3G11, and MEL-14 expression. J Immunol 1993;151:575–87.PubMed Ernst DN, Weigle WO, Noonan DJ, McQuitty DN, Hobbs MV. The age-associated increase in IFN-gamma synthesis by mouse CD8+ T cells correlates with shifts in the frequencies of cell subsets defined by membrane CD44, CD45RB, 3G11, and MEL-14 expression. J Immunol 1993;151:575–87.PubMed
16.
go back to reference Kubo M, Cinader B. Polymorphism of age-related changes in interleukin (IL) production. Differential changes of T helper subpopulations, synthesizing IL 2, IL 3 and IL 4. Eur J Immunol 1990;20:1289–96.PubMedCrossRef Kubo M, Cinader B. Polymorphism of age-related changes in interleukin (IL) production. Differential changes of T helper subpopulations, synthesizing IL 2, IL 3 and IL 4. Eur J Immunol 1990;20:1289–96.PubMedCrossRef
17.
go back to reference Thoman ML, Weigle WO. Cell-mediated immunity in aged mice: an underlying lesion in IL 2 synthesis. J Immunol 1982;128:2358–61.PubMed Thoman ML, Weigle WO. Cell-mediated immunity in aged mice: an underlying lesion in IL 2 synthesis. J Immunol 1982;128:2358–61.PubMed
18.
go back to reference Gupta S, Su H, Bi R, Gollapudi S. Differential sensitivity of naïve and memory subsets of human CD8+ T cells to TNF-alpha-induced apoptosis. J Clin Immunol 2006;26:193–203.PubMedCrossRef Gupta S, Su H, Bi R, Gollapudi S. Differential sensitivity of naïve and memory subsets of human CD8+ T cells to TNF-alpha-induced apoptosis. J Clin Immunol 2006;26:193–203.PubMedCrossRef
19.
go back to reference Gupta S, Gollapudi S. TNF-alpha-induced apoptosis in human naïve and memory CD8+ T cells in aged humans. Exp Gerontol 2006;41:69–77.PubMedCrossRef Gupta S, Gollapudi S. TNF-alpha-induced apoptosis in human naïve and memory CD8+ T cells in aged humans. Exp Gerontol 2006;41:69–77.PubMedCrossRef
20.
go back to reference Posnett DN, Yarilin D, Valiando JR, Li F, Liew FY, Weksler ME, et al. Oligoclonal expansions of antigen-specific CD8+ T cells in aged mice. Ann N Y Acad Sci 2003;987:274–9.PubMedCrossRef Posnett DN, Yarilin D, Valiando JR, Li F, Liew FY, Weksler ME, et al. Oligoclonal expansions of antigen-specific CD8+ T cells in aged mice. Ann N Y Acad Sci 2003;987:274–9.PubMedCrossRef
21.
go back to reference Banchereau J, Steinman RM. Dendritic cells and the control of immunity [review]. Nature 1998;392:245–52.PubMedCrossRef Banchereau J, Steinman RM. Dendritic cells and the control of immunity [review]. Nature 1998;392:245–52.PubMedCrossRef
22.
go back to reference Cella M, Sallusto F, Lanzavecchia A. Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol 1997;9:10–6.PubMedCrossRef Cella M, Sallusto F, Lanzavecchia A. Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol 1997;9:10–6.PubMedCrossRef
23.
go back to reference Inaba K, Metlay JP, Crowley MT, Steinman RM. Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ. J Exp Med 1990;172:631–40.PubMedCrossRef Inaba K, Metlay JP, Crowley MT, Steinman RM. Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ. J Exp Med 1990;172:631–40.PubMedCrossRef
24.
go back to reference Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000;18:767–811.PubMedCrossRef Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000;18:767–811.PubMedCrossRef
25.
go back to reference Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells [review]. Annu Rev Immunol 2003;21:685–711.PubMedCrossRef Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells [review]. Annu Rev Immunol 2003;21:685–711.PubMedCrossRef
27.
go back to reference Grolleau-Julius A, Garg MR, Mo R, Stoolman LL, Yung RL. Effect of aging on bone marrow-derived murine CD11c+CD4-CD8alpha-dendritic cell function. J Gerontol A Biol Sci Med Sci 2006;61:1039–47.PubMed Grolleau-Julius A, Garg MR, Mo R, Stoolman LL, Yung RL. Effect of aging on bone marrow-derived murine CD11c+CD4-CD8alpha-dendritic cell function. J Gerontol A Biol Sci Med Sci 2006;61:1039–47.PubMed
28.
go back to reference Tesar BM, Walker WE, Unternaehrer J, Joshi NS, Chandele A, Haynes L, et al. Murine [corrected] myeloid dendritic cell-dependent toll-like receptor immunity is preserved with aging. Aging Cell 2006;5:473–86. Erratum in: Aging Cell 2007;6:129.PubMedCrossRef Tesar BM, Walker WE, Unternaehrer J, Joshi NS, Chandele A, Haynes L, et al. Murine [corrected] myeloid dendritic cell-dependent toll-like receptor immunity is preserved with aging. Aging Cell 2006;5:473–86. Erratum in: Aging Cell 2007;6:129.PubMedCrossRef
29.
30.
go back to reference Della Bella S, Bierti L, Presicce P, Arienti R, Valenti M, Saresella M, et al. Peripheral blood dendritic cells and monocytes are differently regulated in the elderly. Clin Immunol 2007;122:220–8.PubMedCrossRef Della Bella S, Bierti L, Presicce P, Arienti R, Valenti M, Saresella M, et al. Peripheral blood dendritic cells and monocytes are differently regulated in the elderly. Clin Immunol 2007;122:220–8.PubMedCrossRef
31.
go back to reference Shodell M, Siegal FP. Circulating, interferon-producing plasmacytoid dendritic cells decline during human ageing. Scand J Immunol 2002;56:518–21.PubMedCrossRef Shodell M, Siegal FP. Circulating, interferon-producing plasmacytoid dendritic cells decline during human ageing. Scand J Immunol 2002;56:518–21.PubMedCrossRef
32.
go back to reference Agrawal A, Agrawal S, Jianing Cao, Houfen Su, Kathryn Osann, Gupta S. Altered innate immune functioning of dendritic cells in aging humans: role of PI3Kinase signaling pathway. J Immunol 2007;178:6912–22.PubMed Agrawal A, Agrawal S, Jianing Cao, Houfen Su, Kathryn Osann, Gupta S. Altered innate immune functioning of dendritic cells in aging humans: role of PI3Kinase signaling pathway. J Immunol 2007;178:6912–22.PubMed
33.
go back to reference Lung TL, Saurwein-Teissl M, Parson W, Schonitzer D, Grubeck-Loebenstein B. Unimpaired dendritic cells can be derived from monocytes in old age and can mobilize residual function in senescent T cells. Vaccine 2000;18:1606–12.PubMedCrossRef Lung TL, Saurwein-Teissl M, Parson W, Schonitzer D, Grubeck-Loebenstein B. Unimpaired dendritic cells can be derived from monocytes in old age and can mobilize residual function in senescent T cells. Vaccine 2000;18:1606–12.PubMedCrossRef
34.
go back to reference Steger MM, Maczek C, Grubeck-Loebenstein B. Morphologically and functionally intact dendritic cells can be derived from the peripheral blood of aged individuals. Clin Exp Immunol 1996;105:544–50.PubMedCrossRef Steger MM, Maczek C, Grubeck-Loebenstein B. Morphologically and functionally intact dendritic cells can be derived from the peripheral blood of aged individuals. Clin Exp Immunol 1996;105:544–50.PubMedCrossRef
35.
go back to reference Kurban RS, Bhawan J. Histologic changes in skin associated with aging. J Dermatol Surg Oncol 1990;16:908–14.PubMed Kurban RS, Bhawan J. Histologic changes in skin associated with aging. J Dermatol Surg Oncol 1990;16:908–14.PubMed
36.
go back to reference Steuhl KP, Sitz U, Knorr M, Thanos S, Thiel HJ. Age-dependent distribution of Langerhans cells within human conjunctival epithelium. Ophthalmologe 1995;92:21–5.PubMed Steuhl KP, Sitz U, Knorr M, Thanos S, Thiel HJ. Age-dependent distribution of Langerhans cells within human conjunctival epithelium. Ophthalmologe 1995;92:21–5.PubMed
37.
go back to reference Indrasingh, Chandi G, Jevaseelan L, Vettivel S, Chandi SM. Quantitative analysis of CD1a (T6) positive Langerhans cells in human tonsil epithelium. Anat Anz 1999;181:567–72.CrossRef Indrasingh, Chandi G, Jevaseelan L, Vettivel S, Chandi SM. Quantitative analysis of CD1a (T6) positive Langerhans cells in human tonsil epithelium. Anat Anz 1999;181:567–72.CrossRef
38.
go back to reference Zavala WD, Cavicchia JC. Deterioration of the Langerhans cell network of the human gingival epithelium with aging. Arch Oral Biol 2006;51:1150–5.PubMedCrossRef Zavala WD, Cavicchia JC. Deterioration of the Langerhans cell network of the human gingival epithelium with aging. Arch Oral Biol 2006;51:1150–5.PubMedCrossRef
39.
go back to reference Gilchrest BA, Murphy GF, Soter NA. Effect of chronologic aging and ultraviolet irradiation on Langerhans cells in human epidermis. J Invest Dermatol 1989;79:85–8.CrossRef Gilchrest BA, Murphy GF, Soter NA. Effect of chronologic aging and ultraviolet irradiation on Langerhans cells in human epidermis. J Invest Dermatol 1989;79:85–8.CrossRef
40.
go back to reference Thiers BH, Maize JC, Spicer SS, Cantor AB. The effect of aging and chronic sun exposure on human Langerhans cell populations. J Invest Dermatol 1984;82:223–6.PubMedCrossRef Thiers BH, Maize JC, Spicer SS, Cantor AB. The effect of aging and chronic sun exposure on human Langerhans cell populations. J Invest Dermatol 1984;82:223–6.PubMedCrossRef
41.
go back to reference Choi KL, Sauder DN. Epidermal Langerhans cell density and contact sensitivity in young and aged BALB/c mice. Mech Ageing Dev 1987;39:69–79.PubMedCrossRef Choi KL, Sauder DN. Epidermal Langerhans cell density and contact sensitivity in young and aged BALB/c mice. Mech Ageing Dev 1987;39:69–79.PubMedCrossRef
42.
go back to reference Sprecher E, Becker Y, Kraal G, Hall E, Harrison D, Shultz LD. Effect of aging on epidermal dendritic cell populations in C57BL/6J mice. J Invest Dermatol 1990;94:247–53.PubMedCrossRef Sprecher E, Becker Y, Kraal G, Hall E, Harrison D, Shultz LD. Effect of aging on epidermal dendritic cell populations in C57BL/6J mice. J Invest Dermatol 1990;94:247–53.PubMedCrossRef
43.
go back to reference Fujihashi K, McGhee JR. Mucosal immunity and tolerance in the elderly. Mech Ageing Dev 2004;25:889–98.CrossRef Fujihashi K, McGhee JR. Mucosal immunity and tolerance in the elderly. Mech Ageing Dev 2004;25:889–98.CrossRef
44.
go back to reference Varas A, Sacedon R, Hernandez-Lopez C, Jimenez E, Garcia-Ceca J, Arias-Diaz J, et al. Age-dependent changes in thymic macrophages and dendritic cells. Microsc Res Tech 2003;62:501–7.PubMedCrossRef Varas A, Sacedon R, Hernandez-Lopez C, Jimenez E, Garcia-Ceca J, Arias-Diaz J, et al. Age-dependent changes in thymic macrophages and dendritic cells. Microsc Res Tech 2003;62:501–7.PubMedCrossRef
45.
go back to reference Stichel CC, Luebbert H. Inflammatory processes in the aging mouse brain: participation of dendritic cells and T-cells. Neurobiol Aging 2007;28:1507–21.PubMedCrossRef Stichel CC, Luebbert H. Inflammatory processes in the aging mouse brain: participation of dendritic cells and T-cells. Neurobiol Aging 2007;28:1507–21.PubMedCrossRef
46.
go back to reference Sallusto F, Cella M, Danieli C, Lanzavecchia A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 1995;182:389–400.PubMedCrossRef Sallusto F, Cella M, Danieli C, Lanzavecchia A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 1995;182:389–400.PubMedCrossRef
47.
go back to reference Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M, et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 2001;194:769–79.PubMedCrossRef Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M, et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 2001;194:769–79.PubMedCrossRef
48.
go back to reference Steinman RM, Turley S, Mellman I, Inaba K. The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med 2000;191:411–6.PubMedCrossRef Steinman RM, Turley S, Mellman I, Inaba K. The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med 2000;191:411–6.PubMedCrossRef
49.
go back to reference Wu X, Molinaro C, Johnson N, Casiano CA. Secondary necrosis is a source of proteolytically modified forms of specific intracellular autoantigens: implications for systemic autoimmunity. Arthritis Rheum 2001;44:2642–52.PubMedCrossRef Wu X, Molinaro C, Johnson N, Casiano CA. Secondary necrosis is a source of proteolytically modified forms of specific intracellular autoantigens: implications for systemic autoimmunity. Arthritis Rheum 2001;44:2642–52.PubMedCrossRef
50.
go back to reference Sauter B, Albert ML, Francisco L, Larsson M, Somersan S, Bhardwaj N. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med 2000;191:423–34.PubMedCrossRef Sauter B, Albert ML, Francisco L, Larsson M, Somersan S, Bhardwaj N. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med 2000;191:423–34.PubMedCrossRef
51.
go back to reference van Vliet SJ, Dunnen JD, Gringhuis SI, Geijtenbeek TB, van Kooyk Y. Innate signaling and regulation of Dendritic cell immunity. Curr Opin Immunol 2007; (Jul 11; in press). van Vliet SJ, Dunnen JD, Gringhuis SI, Geijtenbeek TB, van Kooyk Y. Innate signaling and regulation of Dendritic cell immunity. Curr Opin Immunol 2007; (Jul 11; in press).
52.
go back to reference Renshaw M, Rockwell J, Engleman C, Gewirtz A, Katz J, Sambhara S. Cutting edge: impaired Toll-like receptor expression and function in aging. J Immunol 2002;169:4697–701.PubMed Renshaw M, Rockwell J, Engleman C, Gewirtz A, Katz J, Sambhara S. Cutting edge: impaired Toll-like receptor expression and function in aging. J Immunol 2002;169:4697–701.PubMed
53.
go back to reference Gunn MD. Chemokine mediated control of dendritic cell migration and function. Semin Immunol 2003;15:271–6.PubMedCrossRef Gunn MD. Chemokine mediated control of dendritic cell migration and function. Semin Immunol 2003;15:271–6.PubMedCrossRef
54.
go back to reference Kellermann SA, Hudak S, Oldham ER, Liu YJ, McEvoy LM. TheCCchemokine receptor-7 ligands 6Ckine and macrophage inflammatory protein 3 are potent chemoattractants for in vitro-and in vivo-derived dendritic cells. J Immunol 1999;162:3859–64.PubMed Kellermann SA, Hudak S, Oldham ER, Liu YJ, McEvoy LM. TheCCchemokine receptor-7 ligands 6Ckine and macrophage inflammatory protein 3 are potent chemoattractants for in vitro-and in vivo-derived dendritic cells. J Immunol 1999;162:3859–64.PubMed
55.
go back to reference Forster R, Schubel A, Brietfeld D, Kremmer E, Renner-Muller I, Wolf E, et al. CCR-7 coordinates primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 1999;99:23–33.PubMedCrossRef Forster R, Schubel A, Brietfeld D, Kremmer E, Renner-Muller I, Wolf E, et al. CCR-7 coordinates primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 1999;99:23–33.PubMedCrossRef
56.
go back to reference Bhushan M, Cumberbatch M, Dearman RJ, Andrew SM, Kimber I, Griffiths CE. Tumour necrosis factor-alpha-induced migration of human Langerhans cells: the influence of ageing. Br J Dermatol 2002;146:32–40.PubMedCrossRef Bhushan M, Cumberbatch M, Dearman RJ, Andrew SM, Kimber I, Griffiths CE. Tumour necrosis factor-alpha-induced migration of human Langerhans cells: the influence of ageing. Br J Dermatol 2002;146:32–40.PubMedCrossRef
57.
go back to reference Pietschmann P, Hahn P, Kudlacek S, Thomas R, Peterlik M. Surface markers and transendothelial migration of dendritic cells from elderly subjects. Exp Gerontol 2000;35:213–22.PubMedCrossRef Pietschmann P, Hahn P, Kudlacek S, Thomas R, Peterlik M. Surface markers and transendothelial migration of dendritic cells from elderly subjects. Exp Gerontol 2000;35:213–22.PubMedCrossRef
58.
go back to reference Linton PJ, Li SP, Zhang Y, Bautista B, Huynh Q, Trinh T. Intrinsic versus environmental influences on T-cell responses in aging. Immunol Rev 2005;205:207–19.PubMedCrossRef Linton PJ, Li SP, Zhang Y, Bautista B, Huynh Q, Trinh T. Intrinsic versus environmental influences on T-cell responses in aging. Immunol Rev 2005;205:207–19.PubMedCrossRef
59.
go back to reference Cumberbatch M, Dearman RJ, Kimber I. Influence of ageing on Langerhans cell migration in mice: identification of a putative deficiency of epidermal interleukin-1beta. Immunology 2002;105:466–77.PubMedCrossRef Cumberbatch M, Dearman RJ, Kimber I. Influence of ageing on Langerhans cell migration in mice: identification of a putative deficiency of epidermal interleukin-1beta. Immunology 2002;105:466–77.PubMedCrossRef
60.
go back to reference Dillon S, Agrawal A, Van Dyke T, Landreth G, McCauley L, Maliszewski C, et al. TLR2 AND TLR4 ligands stimulate distinct dendritic cell responses and adaptive immunity, by differential modulation of ERK MAP kinase and c-fos. J Immunol 2004;172:4733–43.PubMed Dillon S, Agrawal A, Van Dyke T, Landreth G, McCauley L, Maliszewski C, et al. TLR2 AND TLR4 ligands stimulate distinct dendritic cell responses and adaptive immunity, by differential modulation of ERK MAP kinase and c-fos. J Immunol 2004;172:4733–43.PubMed
61.
go back to reference Agrawal S, Agrawal A, Doughty B, Gerwitz A, Blenis J, Van Dyke T, et al. Cutting Edge: different TLR agonists instruct dendritic cells to induce distinct T-helper responses, via differential modulation of ERK MAP kinase and c-fos. J Immunol 2003;171:4984–9.PubMed Agrawal S, Agrawal A, Doughty B, Gerwitz A, Blenis J, Van Dyke T, et al. Cutting Edge: different TLR agonists instruct dendritic cells to induce distinct T-helper responses, via differential modulation of ERK MAP kinase and c-fos. J Immunol 2003;171:4984–9.PubMed
62.
go back to reference Agrawal A, Kaushal P, Agrawal S, Gollapudi S, Gupta S. Thimerosal affects human dendritic cell functions promoting a TH2 response. J Leukoc Biol 2007;81:474–83.PubMedCrossRef Agrawal A, Kaushal P, Agrawal S, Gollapudi S, Gupta S. Thimerosal affects human dendritic cell functions promoting a TH2 response. J Leukoc Biol 2007;81:474–83.PubMedCrossRef
63.
go back to reference Gutcher I, Becher B. APC-derived cytokines and T cell polarization in autoimmune inflammation. J Clin Invest 2007;117:1119–27.PubMedCrossRef Gutcher I, Becher B. APC-derived cytokines and T cell polarization in autoimmune inflammation. J Clin Invest 2007;117:1119–27.PubMedCrossRef
64.
go back to reference Cua DJ, Sherlock J, Chen Y. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003;421:744–8.PubMedCrossRef Cua DJ, Sherlock J, Chen Y. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003;421:744–8.PubMedCrossRef
65.
go back to reference Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005;201:233–40.PubMedCrossRef Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005;201:233–40.PubMedCrossRef
66.
go back to reference Haruna H, Inaba M, Inaba K, Taketani S, Sugiura K, Fukuba Y, et al. Abnormalities of B cells and dendritic cells in SAMP1 mice. Eur J Immunol 1995;25:1319–25.PubMedCrossRef Haruna H, Inaba M, Inaba K, Taketani S, Sugiura K, Fukuba Y, et al. Abnormalities of B cells and dendritic cells in SAMP1 mice. Eur J Immunol 1995;25:1319–25.PubMedCrossRef
67.
go back to reference Donnini A, Argentati K, Mancini R, et al. Phenotype, antigen-presenting capacity, and migration of antigen-presenting cells in young and old age. Exp Gerontol 2002;37:1097–112.PubMedCrossRef Donnini A, Argentati K, Mancini R, et al. Phenotype, antigen-presenting capacity, and migration of antigen-presenting cells in young and old age. Exp Gerontol 2002;37:1097–112.PubMedCrossRef
68.
go back to reference Sharma S, Dominguez AL, Lustgarten J. Aging affect the anti-tumor potential of dendritic cell vaccination, but it can be overcome by co-stimulation with anti-OX40 or anti-4-1BB. Exp Gerontol 2006;41:78–84.PubMedCrossRef Sharma S, Dominguez AL, Lustgarten J. Aging affect the anti-tumor potential of dendritic cell vaccination, but it can be overcome by co-stimulation with anti-OX40 or anti-4-1BB. Exp Gerontol 2006;41:78–84.PubMedCrossRef
69.
go back to reference Grewe M. Chronological ageing and photoageing of dendritic cells. Clin Exp Dermatol 2001;26:608–12.PubMedCrossRef Grewe M. Chronological ageing and photoageing of dendritic cells. Clin Exp Dermatol 2001;26:608–12.PubMedCrossRef
70.
go back to reference Araki N, Johnson MT, Swanson JA. A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. J Cell Biol 1996;135:1249–60.PubMedCrossRef Araki N, Johnson MT, Swanson JA. A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. J Cell Biol 1996;135:1249–60.PubMedCrossRef
71.
go back to reference Clague MJ, Thorpe C, Jones AT. Phosphatidylinositol 3-kinase regulation of fluid phase endocytosis. FEBS Lett 1995;367:272–4.PubMedCrossRef Clague MJ, Thorpe C, Jones AT. Phosphatidylinositol 3-kinase regulation of fluid phase endocytosis. FEBS Lett 1995;367:272–4.PubMedCrossRef
72.
go back to reference Del Prete A, Vermi W, Dander E, Otero K, Barberis L, Luini W. Defective dendritic cell migration and activation of adaptive immunity in PI3Kgamma-deficient mice. EMBO J 2004;23:3505–15.PubMedCrossRef Del Prete A, Vermi W, Dander E, Otero K, Barberis L, Luini W. Defective dendritic cell migration and activation of adaptive immunity in PI3Kgamma-deficient mice. EMBO J 2004;23:3505–15.PubMedCrossRef
73.
74.
go back to reference Guha M, Mackman N. The PI3K-Akt pathway limits LPS activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. J Biol Chem 2002;277:32124–32.PubMedCrossRef Guha M, Mackman N. The PI3K-Akt pathway limits LPS activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. J Biol Chem 2002;277:32124–32.PubMedCrossRef
75.
go back to reference Martin M, Schifferle RE, Cuesta N, Vogel SN, Katz J, Michalek SM. Role of the phosphatidylinositol 3 kinase-Akt pathway in the regulation of IL-10 and IL-12 by Porphyromonas gingivalis lipopolysaccharide. J Immunol 2003;171:717–25.PubMed Martin M, Schifferle RE, Cuesta N, Vogel SN, Katz J, Michalek SM. Role of the phosphatidylinositol 3 kinase-Akt pathway in the regulation of IL-10 and IL-12 by Porphyromonas gingivalis lipopolysaccharide. J Immunol 2003;171:717–25.PubMed
76.
go back to reference Agrawal A, Lingappa J, Leppa SH, Agrawal S, Jabbar A, Quinn C, et al. Impairement of dendritic cells and adaptive immunity by Anthrax lethal factor. Nature 2003;424:329–34.PubMedCrossRef Agrawal A, Lingappa J, Leppa SH, Agrawal S, Jabbar A, Quinn C, et al. Impairement of dendritic cells and adaptive immunity by Anthrax lethal factor. Nature 2003;424:329–34.PubMedCrossRef
77.
go back to reference Sun H, Lesche R, Li DM, Liliental J, Zhang H, Gao J, et al. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci USA 1999;96:6199–204.PubMedCrossRef Sun H, Lesche R, Li DM, Liliental J, Zhang H, Gao J, et al. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci USA 1999;96:6199–204.PubMedCrossRef
Metadata
Title
Biology of Dendritic Cells in Aging
Authors
Anshu Agrawal
Sudhanshu Agrawal
Jia Tay
Sudhir Gupta
Publication date
01-01-2008
Publisher
Springer US
Published in
Journal of Clinical Immunology / Issue 1/2008
Print ISSN: 0271-9142
Electronic ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-007-9127-6

Other articles of this Issue 1/2008

Journal of Clinical Immunology 1/2008 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine