Skip to main content
Top
Published in: Journal of Assisted Reproduction and Genetics 4/2009

Open Access 01-04-2009 | GENETICS

Evidence that human blastomere cleavage is under unique cell cycle control

Authors: Ann A. Kiessling, Ritsa Bletsa, Bryan Desmarais, Christina Mara, Kostas Kallianidis, Dimitris Loutradis

Published in: Journal of Assisted Reproduction and Genetics | Issue 4/2009

Login to get access

Abstract

Purpose

To understand the molecular pathways that control early human embryo development.

Methods

Improved methods of linear amplification of mRNAs and whole human genome microarray analyses were utilized to characterize gene expression in normal appearing 8-Cell human embryos, in comparison with published microarrays of human fibroblasts and pluripotent stem cells.

Results

Many genes involved in circadian rhythm and cell division were over-expressed in the 8-Cells. The cell cycle checkpoints, RB and WEE1, were silent on the 8-Cell arrays, whereas the recently described tumor suppressor, UHRF2, was up-regulated >10-fold, and the proto-oncogene, MYC, and the core element of circadian rhythm, CLOCK, were elevated up to >50-fold on the 8-Cell arrays.

Conclusions

The canonical G1 and G2 cell cycle checkpoints are not active in totipotent human blastomeres, perhaps replaced by UHRF2, MYC, and intracellular circadian pathways, which may play important roles in early human development.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kiessling AA, Davis HW, Williams CS, Sauter RW, Harrison LW. Development and DNA polymerase activities in cultured preimplantation mouse embryos: comparison with embryos developed in vivo. J Exp Zool. 1991;258(1):34–47. doi:10.1002/jez.1402580105.PubMedCrossRef Kiessling AA, Davis HW, Williams CS, Sauter RW, Harrison LW. Development and DNA polymerase activities in cultured preimplantation mouse embryos: comparison with embryos developed in vivo. J Exp Zool. 1991;258(1):34–47. doi:10.​1002/​jez.​1402580105.PubMedCrossRef
2.
go back to reference Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol. 2000;18(4):399–404. doi:10.1038/74447.PubMedCrossRef Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol. 2000;18(4):399–404. doi:10.​1038/​74447.PubMedCrossRef
4.
go back to reference Braude P, Bolton V, Moore S. Human gene expression first occurs between the four– and eight-cell stages of preimplantation development. (Translated from eng). Nature. 1988;332(6163):459–61. in eng. doi:10.1038/332459a0 Braude P, Bolton V, Moore S. Human gene expression first occurs between the four– and eight-cell stages of preimplantation development. (Translated from eng). Nature. 1988;332(6163):459–61. in eng. doi:10.​1038/​332459a0
6.
go back to reference Polak de Fried E, Ross P, Zang G, Divita A, Cunniff K, Denaday F, et al. Human parthenogenetic blastocysts derived from noninseminated cryopreserved human oocytes. Fertil Steril. 2007;89(4):943–7.CrossRef Polak de Fried E, Ross P, Zang G, Divita A, Cunniff K, Denaday F, et al. Human parthenogenetic blastocysts derived from noninseminated cryopreserved human oocytes. Fertil Steril. 2007;89(4):943–7.CrossRef
7.
go back to reference Revazova ES, Turovets NA, Kochetkova OD, Kindarova LB, Kuzmichev LN, Janus JD, et al. Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells. 2007;9(3):432–49.PubMedCrossRef Revazova ES, Turovets NA, Kochetkova OD, Kindarova LB, Kuzmichev LN, Janus JD, et al. Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells. 2007;9(3):432–49.PubMedCrossRef
9.
go back to reference Canales RD, Luo Y, Willey JC, Austermiller B, Barbacioru CC, Boysen C, et al. Evaluation of DNA microarray results with quantitative gene expression platforms. Nat Biotechnol. 2006;24(9):1115–22. doi:10.1038/nbt1236.PubMedCrossRef Canales RD, Luo Y, Willey JC, Austermiller B, Barbacioru CC, Boysen C, et al. Evaluation of DNA microarray results with quantitative gene expression platforms. Nat Biotechnol. 2006;24(9):1115–22. doi:10.​1038/​nbt1236.PubMedCrossRef
10.
go back to reference Morey JS, Ryan JC, Van Dolah FM. Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biol Proced Online. 2006;8:175–93. doi:10.1251/bpo126.PubMedCrossRef Morey JS, Ryan JC, Van Dolah FM. Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biol Proced Online. 2006;8:175–93. doi:10.​1251/​bpo126.PubMedCrossRef
11.
go back to reference Shi L, Reid LH, Jones WD, Shippy R, Warrington JA, Baker SC, et al. The microarray quality control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol. 2006;24(9):1151–61. doi:10.1038/nbt1239.PubMedCrossRef Shi L, Reid LH, Jones WD, Shippy R, Warrington JA, Baker SC, et al. The microarray quality control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol. 2006;24(9):1151–61. doi:10.​1038/​nbt1239.PubMedCrossRef
12.
go back to reference Tesar P, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature. 2007;448(7150):196–9. doi:10.1038/nature05972.PubMedCrossRef Tesar P, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature. 2007;448(7150):196–9. doi:10.​1038/​nature05972.PubMedCrossRef
14.
go back to reference Jeanblanc M, Mousli M, Hopfner R, Bathami K, Martinet N, Abbady AQ, et al. The retinoblastoma gene and its product are targeted by ICBP90: a key mechanism in the G1/S transition during the cell cycle. Oncogene. 2005;24(49):7337–45. doi:10.1038/sj.onc.1208878.PubMedCrossRef Jeanblanc M, Mousli M, Hopfner R, Bathami K, Martinet N, Abbady AQ, et al. The retinoblastoma gene and its product are targeted by ICBP90: a key mechanism in the G1/S transition during the cell cycle. Oncogene. 2005;24(49):7337–45. doi:10.​1038/​sj.​onc.​1208878.PubMedCrossRef
17.
go back to reference DePamphilis ML. Cell cycle dependent regulation of the origin recognition complex. Cell Cycle. 2005;4(1):70–9.PubMed DePamphilis ML. Cell cycle dependent regulation of the origin recognition complex. Cell Cycle. 2005;4(1):70–9.PubMed
20.
21.
go back to reference Kamada K, Kubota Y, Arata T, Shindo Y, Hanaoka F. Structure of the human GINS complex and its assembly and functional interface in replication initiation. Nat Struct Mol Biol. 2007;14(5):388–96. doi:10.1038/nsmb1231.PubMedCrossRef Kamada K, Kubota Y, Arata T, Shindo Y, Hanaoka F. Structure of the human GINS complex and its assembly and functional interface in replication initiation. Nat Struct Mol Biol. 2007;14(5):388–96. doi:10.​1038/​nsmb1231.PubMedCrossRef
23.
go back to reference Ko CH & Takahashi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet 15 Spec No 2:R271–277. Ko CH & Takahashi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet 15 Spec No 2:R271–277.
24.
go back to reference Mackey SR. (2007) Biological Rhythms Workshop IA: molecular Basis of Rhythms Generation. Clocks and Rhythms, (Cold Spring Harbor Press), pp 7-20 Mackey SR. (2007) Biological Rhythms Workshop IA: molecular Basis of Rhythms Generation. Clocks and Rhythms, (Cold Spring Harbor Press), pp 7-20
25.
go back to reference Ozturk N, Song SH, Ozgür S, Selby CP, Morrison L, Partch C, et al. (2007) Structure and Function of Animal Cryptochromes. Clocks and Rhythms, (Cold Spring Harbor Press), 72:119-31 Ozturk N, Song SH, Ozgür S, Selby CP, Morrison L, Partch C, et al. (2007) Structure and Function of Animal Cryptochromes. Clocks and Rhythms, (Cold Spring Harbor Press), 72:119-31
27.
go back to reference Miller BH, McDearmon EL, Panda S, Hayes KR, Zhang J, Andrews JL, et al. Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc Natl Acad Sci USA. 2007;104(9):3342–7. doi:10.1073/pnas.0611724104.PubMedCrossRef Miller BH, McDearmon EL, Panda S, Hayes KR, Zhang J, Andrews JL, et al. Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc Natl Acad Sci USA. 2007;104(9):3342–7. doi:10.​1073/​pnas.​0611724104.PubMedCrossRef
29.
go back to reference Bertolucci C, Cavallari N, Colognesi I, Aguzzi J, Chen Z, Caruso P, et al. Evidence for an overlapping role of CLOCK and NPAS2 transcription factors in liver circadian oscillators. Mol Cell Biol. 2008;28(9):3070–5. doi:10.1128/MCB.01931-07.PubMedCrossRef Bertolucci C, Cavallari N, Colognesi I, Aguzzi J, Chen Z, Caruso P, et al. Evidence for an overlapping role of CLOCK and NPAS2 transcription factors in liver circadian oscillators. Mol Cell Biol. 2008;28(9):3070–5. doi:10.​1128/​MCB.​01931-07.PubMedCrossRef
32.
go back to reference Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, et al. PERIOD2:LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci USA. 2004;101(15):5339–46. doi:10.1073/pnas.0308709101.PubMedCrossRef Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, et al. PERIOD2:LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci USA. 2004;101(15):5339–46. doi:10.​1073/​pnas.​0308709101.PubMedCrossRef
37.
go back to reference Sage J, Mulligan GJ, Attardi LD, Miller A, Chen S, Williams B, et al. Targeted disruption of the three Rb-related genes leads to loss of G(1) control and immortalization. Genes Dev. 2000;14(23):3037–50. doi:10.1101/gad.843200.PubMedCrossRef Sage J, Mulligan GJ, Attardi LD, Miller A, Chen S, Williams B, et al. Targeted disruption of the three Rb-related genes leads to loss of G(1) control and immortalization. Genes Dev. 2000;14(23):3037–50. doi:10.​1101/​gad.​843200.PubMedCrossRef
38.
go back to reference Bartkova J, Lukas J, Strauss M, Bartek J. Cyclin D3: requirement for G1/S transition and high abundance in quiescent tissues suggest a dual role in proliferation and differentiation. Oncogene. 1998;17(8):1027–37. doi:10.1038/sj.onc.1202016.PubMedCrossRef Bartkova J, Lukas J, Strauss M, Bartek J. Cyclin D3: requirement for G1/S transition and high abundance in quiescent tissues suggest a dual role in proliferation and differentiation. Oncogene. 1998;17(8):1027–37. doi:10.​1038/​sj.​onc.​1202016.PubMedCrossRef
41.
go back to reference Murphy M, Stinnakre MG, Senamaud-Beaufort C, Winston NJ, Sweeney C, Kubelka M, et al. Delayed early embryonic lethality following disruption of the murine cyclin A2 gene. Nat Genet. 1997;15(1):83–6. doi:10.1038/ng0197-83.PubMedCrossRef Murphy M, Stinnakre MG, Senamaud-Beaufort C, Winston NJ, Sweeney C, Kubelka M, et al. Delayed early embryonic lethality following disruption of the murine cyclin A2 gene. Nat Genet. 1997;15(1):83–6. doi:10.​1038/​ng0197-83.PubMedCrossRef
44.
go back to reference Ji P, Bäumer N, Yin T, Diederichs S, Zhang F, Beger C, et al. DNA damage response involves modulation of Ku70 and Rb functions by cyclin A1 in leukemia cells. Int J Cancer. 2007;121(4):706–13. doi:10.1002/ijc.22634.PubMedCrossRef Ji P, Bäumer N, Yin T, Diederichs S, Zhang F, Beger C, et al. DNA damage response involves modulation of Ku70 and Rb functions by cyclin A1 in leukemia cells. Int J Cancer. 2007;121(4):706–13. doi:10.​1002/​ijc.​22634.PubMedCrossRef
45.
go back to reference Carter AD, Wroble BN, Sible JC. Cyclin A1/Cdk2 is sufficient but not required for the induction of apoptosis in early Xenopus laevis embryos. Cell Cycle. 2006;5(19):2230–6.PubMed Carter AD, Wroble BN, Sible JC. Cyclin A1/Cdk2 is sufficient but not required for the induction of apoptosis in early Xenopus laevis embryos. Cell Cycle. 2006;5(19):2230–6.PubMed
46.
go back to reference Vareli K, Frangou-Lazaridis M, van der Kraan I, Tsolas O, van Driel R. Nuclear distribution of prothymosin alpha and parathymosin: evidence that prothymosin alpha is associated with RNA synthesis processing and parathymosin with early DNA replication. Exp Cell Res. 2000;257(1):152–61. doi:10.1006/excr.2000.4857.PubMedCrossRef Vareli K, Frangou-Lazaridis M, van der Kraan I, Tsolas O, van Driel R. Nuclear distribution of prothymosin alpha and parathymosin: evidence that prothymosin alpha is associated with RNA synthesis processing and parathymosin with early DNA replication. Exp Cell Res. 2000;257(1):152–61. doi:10.​1006/​excr.​2000.​4857.PubMedCrossRef
47.
go back to reference Okamoto K, Isohashi F. Macromolecular translocation inhibitor II (Zn(2+)-binding protein, parathymosin) interacts with the glucocorticoid receptor and enhances transcription in vivo. J Biol Chem. 2005;280(44):36986–93. doi:10.1074/jbc.M506056200.PubMedCrossRef Okamoto K, Isohashi F. Macromolecular translocation inhibitor II (Zn(2+)-binding protein, parathymosin) interacts with the glucocorticoid receptor and enhances transcription in vivo. J Biol Chem. 2005;280(44):36986–93. doi:10.​1074/​jbc.​M506056200.PubMedCrossRef
48.
go back to reference Martic G, Karetsou Z, Kefala K, Politou AS, Clapier CR, Straub T, et al. Parathymosin affects the binding of linker histone H1 to nucleosomes and remodels chromatin structure. J Biol Chem. 2005;280(16):16143–50. doi:10.1074/jbc.M410175200.PubMedCrossRef Martic G, Karetsou Z, Kefala K, Politou AS, Clapier CR, Straub T, et al. Parathymosin affects the binding of linker histone H1 to nucleosomes and remodels chromatin structure. J Biol Chem. 2005;280(16):16143–50. doi:10.​1074/​jbc.​M410175200.PubMedCrossRef
51.
go back to reference Arachchige Don AS, Dallapiazza RF, Bennin DA, Brake T, Cowan CE, Horne MC, et al. Cyclin G2 is a centrosome-associated nucleocytoplasmic shuttling protein that influences microtubule stability and induces a p53-dependent cell cycle arrest. Exp Cell Res. 2006;312(20):4181–204. doi:10.1016/j.yexcr.2006.09.023.PubMedCrossRef Arachchige Don AS, Dallapiazza RF, Bennin DA, Brake T, Cowan CE, Horne MC, et al. Cyclin G2 is a centrosome-associated nucleocytoplasmic shuttling protein that influences microtubule stability and induces a p53-dependent cell cycle arrest. Exp Cell Res. 2006;312(20):4181–204. doi:10.​1016/​j.​yexcr.​2006.​09.​023.PubMedCrossRef
53.
55.
go back to reference Boutros R, Ducommun B. Asymmetric localization of the CDC25B phosphatase to the mother centrosome during interphase. Cell Cycle. 2008;7(3):401–6.PubMed Boutros R, Ducommun B. Asymmetric localization of the CDC25B phosphatase to the mother centrosome during interphase. Cell Cycle. 2008;7(3):401–6.PubMed
Metadata
Title
Evidence that human blastomere cleavage is under unique cell cycle control
Authors
Ann A. Kiessling
Ritsa Bletsa
Bryan Desmarais
Christina Mara
Kostas Kallianidis
Dimitris Loutradis
Publication date
01-04-2009
Publisher
Springer US
Published in
Journal of Assisted Reproduction and Genetics / Issue 4/2009
Print ISSN: 1058-0468
Electronic ISSN: 1573-7330
DOI
https://doi.org/10.1007/s10815-009-9306-x

Other articles of this Issue 4/2009

Journal of Assisted Reproduction and Genetics 4/2009 Go to the issue