Skip to main content
Top
Published in: Inflammation 5/2023

21-07-2023 | Obesity | RESEARCH

Regulation of NLRP3 Inflammasome Activation and Inflammatory Exosome Release in Podocytes by Acid Sphingomyelinase During Obesity

Authors: Dandan Huang, Jason M. Kidd, Yao Zou, Xiaoyuan Wu, Todd W. B. Gehr, Pin-Lan Li, Guangbi Li

Published in: Inflammation | Issue 5/2023

Login to get access

Abstract

The activation of nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome has been reported to importantly contribute to glomerular inflammation and injury under different pathological conditions such as obesity. However, the mechanism mediating NLRP3 inflammasome activation in podocytes and subsequent glomerular injury remains poorly understood. Given that the ceramide signaling pathway has been reported to be implicated in obesity-related glomerulopathy (ORG), the present study was designed to test whether the ceramide-producing enzyme, acid sphingomyelinase (ASM), determines NLRP3 inflammasome activation and inflammatory exosome release in podocytes leading to glomerular inflammation and injury during ORG. In Smpd1trg/Podocre mice, podocyte-specific overexpression of Smpd1 gene which encodes ASM significantly exaggerated high-fat diet (HFD)-induced NLRP3 inflammasome activation in podocytes and immune cell infiltration in glomeruli compared to WT/WT mice. Smpd1 gene deletion, however, blocked these pathological changes induced by HFD in Smpd1−/− mice. Accompanied with NLRP3 inflammasome activation and glomerular inflammation, urinary excretion of exosomes containing podocyte marker and NLRP3 inflammasome products (IL-1β and IL-18) in Smpd1trg/Podocre mice on the HFD was much higher than that in WT/WT mice. In contrast, Smpd1−/− mice on the HDF had significantly lower urinary exosome excretion than WT/WT mice. Correspondingly, HFD-induced podocyte injury, glomerular sclerosis, and proteinuria were more severe in Smpd1trg/Podocre mice, but milder in Smpd1−/− mice compared to WT/WT mice. Using podocytes isolated from these mice, we demonstrated that visfatin, a prototype pro-inflammatory adipokine, induced NLRP3 inflammasome activation and enrichment of multivesicular bodies (MVBs) containing IL-1β in podocytes, which was much stronger in podocytes from Smpd1trg/Podocre mice, but weaker in those from Smpd1−/− mice than WT/WT podocytes. By quantitative analysis of exosomes, it was found that upon visfatin stimulation, podocytes from Smpd1trg/Podocre mice released much more exosomes containing NLRP3 inflammasome products, but podocytes from Smpd1−/− mice released much less exosomes compared to WT/WT podocytes. Super-resolution microscopy demonstrated that visfatin inhibited lysosome-MVB interaction in podocytes, indicating impaired MVB degradation by lysosome. The inhibition of lysosome-MVB interaction by visfatin was amplified by Smpd1 gene overexpression but attenuated by Smpd1 gene deletion. Taken together, our results suggest that ASM in podocytes is a crucial regulator of NLRP3 inflammasome activation and inflammatory exosome release that instigate glomerular inflammation and injury during obesity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Martinon, F., A. Mayor, and J. Tschopp. 2009. The inflammasomes: Guardians of the body. Annual Review of Immunology 27: 229–265.PubMed Martinon, F., A. Mayor, and J. Tschopp. 2009. The inflammasomes: Guardians of the body. Annual Review of Immunology 27: 229–265.PubMed
2.
go back to reference Abais, J.M., C. Zhang, M. Xia, Q. Liu, T.W. Gehr, K.M. Boini, et al. 2013. NADPH oxidase-mediated triggering of inflammasome activation in mouse podocytes and glomeruli during hyperhomocysteinemia. Antioxidants & redox signaling 18: 1537–1548. Abais, J.M., C. Zhang, M. Xia, Q. Liu, T.W. Gehr, K.M. Boini, et al. 2013. NADPH oxidase-mediated triggering of inflammasome activation in mouse podocytes and glomeruli during hyperhomocysteinemia. Antioxidants & redox signaling 18: 1537–1548.
3.
go back to reference Boini, K.M., M. Xia, S. Koka, T.W. Gehr, and P.L. Li. 2016. Instigation of NLRP3 inflammasome activation and glomerular injury in mice on the high fat diet: Role of acid sphingomyelinase gene. Oncotarget 7: 19031–19044.PubMedPubMedCentral Boini, K.M., M. Xia, S. Koka, T.W. Gehr, and P.L. Li. 2016. Instigation of NLRP3 inflammasome activation and glomerular injury in mice on the high fat diet: Role of acid sphingomyelinase gene. Oncotarget 7: 19031–19044.PubMedPubMedCentral
4.
go back to reference Cruz, C.M., A. Rinna, H.J. Forman, A.L. Ventura, P.M. Persechini, and D.M. Ojcius. 2007. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. Journal of Biological Chemistry 282: 2871–2879.PubMed Cruz, C.M., A. Rinna, H.J. Forman, A.L. Ventura, P.M. Persechini, and D.M. Ojcius. 2007. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. Journal of Biological Chemistry 282: 2871–2879.PubMed
5.
go back to reference Halle, A., V. Hornung, G.C. Petzold, C.R. Stewart, B.G. Monks, T. Reinheckel, et al. 2008. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nature Immunology 9: 857–865.PubMedPubMedCentral Halle, A., V. Hornung, G.C. Petzold, C.R. Stewart, B.G. Monks, T. Reinheckel, et al. 2008. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nature Immunology 9: 857–865.PubMedPubMedCentral
6.
go back to reference Nour, A.M., Y.G. Yeung, L. Santambrogio, E.D. Boyden, E.R. Stanley, and J. Brojatsch. 2009. Anthrax lethal toxin triggers the formation of a membrane-associated inflammasome complex in murine macrophages. Infection and Immunity 77: 1262–1271.PubMedPubMedCentral Nour, A.M., Y.G. Yeung, L. Santambrogio, E.D. Boyden, E.R. Stanley, and J. Brojatsch. 2009. Anthrax lethal toxin triggers the formation of a membrane-associated inflammasome complex in murine macrophages. Infection and Immunity 77: 1262–1271.PubMedPubMedCentral
7.
go back to reference Chen, G.Y., and G. Nunez. 2010. Sterile inflammation: Sensing and reacting to damage. Nature Reviews Immunology 10: 826–837.PubMedPubMedCentral Chen, G.Y., and G. Nunez. 2010. Sterile inflammation: Sensing and reacting to damage. Nature Reviews Immunology 10: 826–837.PubMedPubMedCentral
8.
go back to reference Lamkanfi, M. 2011. Emerging inflammasome effector mechanisms. Nature Reviews Immunology 11: 213–220.PubMed Lamkanfi, M. 2011. Emerging inflammasome effector mechanisms. Nature Reviews Immunology 11: 213–220.PubMed
9.
go back to reference Martinon, F., K. Burns, and J. Tschopp. 2002. The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Molecular Cell 10: 417–426.PubMed Martinon, F., K. Burns, and J. Tschopp. 2002. The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Molecular Cell 10: 417–426.PubMed
10.
go back to reference Srinivasula, S.M., J.L. Poyet, M. Razmara, P. Datta, Z. Zhang, and E.S. Alnemri. 2002. The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. Journal of Biological Chemistry 277: 21119–21122.PubMed Srinivasula, S.M., J.L. Poyet, M. Razmara, P. Datta, Z. Zhang, and E.S. Alnemri. 2002. The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. Journal of Biological Chemistry 277: 21119–21122.PubMed
11.
go back to reference Boini, K.M., M. Xia, J.M. Abais, G. Li, A.L. Pitzer, T.W. Gehr, et al. 2014. Activation of inflammasomes in podocyte injury of mice on the high fat diet: Effects of ASC gene deletion and silencing. Biochimica et Biophysica Acta 1843: 836–845.PubMedPubMedCentral Boini, K.M., M. Xia, J.M. Abais, G. Li, A.L. Pitzer, T.W. Gehr, et al. 2014. Activation of inflammasomes in podocyte injury of mice on the high fat diet: Effects of ASC gene deletion and silencing. Biochimica et Biophysica Acta 1843: 836–845.PubMedPubMedCentral
12.
go back to reference Griffiths, G., and K. Simons. 1986. The trans Golgi network: Sorting at the exit site of the Golgi complex. Science 234: 438–443.PubMed Griffiths, G., and K. Simons. 1986. The trans Golgi network: Sorting at the exit site of the Golgi complex. Science 234: 438–443.PubMed
13.
go back to reference Gu, F., C.M. Crump, and G. Thomas. 2001. Trans-Golgi network sorting. Cellular and molecular life sciences : CMLS 58: 1067–1084.PubMed Gu, F., C.M. Crump, and G. Thomas. 2001. Trans-Golgi network sorting. Cellular and molecular life sciences : CMLS 58: 1067–1084.PubMed
14.
go back to reference Colombo, M., G. Raposo, and C. Thery. 2014. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual Review of Cell and Developmental Biology 30: 255–289.PubMed Colombo, M., G. Raposo, and C. Thery. 2014. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual Review of Cell and Developmental Biology 30: 255–289.PubMed
15.
go back to reference Schorey, J.S., and C.V. Harding. 2016. Extracellular vesicles and infectious diseases: New complexity to an old story. The Journal of Clinical Investigation 126: 1181–1189.PubMedPubMedCentral Schorey, J.S., and C.V. Harding. 2016. Extracellular vesicles and infectious diseases: New complexity to an old story. The Journal of Clinical Investigation 126: 1181–1189.PubMedPubMedCentral
16.
go back to reference Li, G., J. Kidd, and P.L. Li. 2020. Podocyte lysosome dysfunction in chronic glomerular diseases. International journal of molecular sciences 21. Li, G., J. Kidd, and P.L. Li. 2020. Podocyte lysosome dysfunction in chronic glomerular diseases. International journal of molecular sciences 21.
17.
go back to reference Takahashi, A., R. Okada, K. Nagao, Y. Kawamata, A. Hanyu, S. Yoshimoto, et al. 2017. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nature Communications 8: 15287.PubMedPubMedCentral Takahashi, A., R. Okada, K. Nagao, Y. Kawamata, A. Hanyu, S. Yoshimoto, et al. 2017. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nature Communications 8: 15287.PubMedPubMedCentral
18.
go back to reference Eitan, E., C. Suire, S. Zhang, and M.P. Mattson. 2016. Impact of lysosome status on extracellular vesicle content and release. Ageing research reviews 32: 65–74.PubMedPubMedCentral Eitan, E., C. Suire, S. Zhang, and M.P. Mattson. 2016. Impact of lysosome status on extracellular vesicle content and release. Ageing research reviews 32: 65–74.PubMedPubMedCentral
19.
go back to reference van Balkom, B.W., T. Pisitkun, M.C. Verhaar, and M.A. Knepper. 2011. Exosomes and the kidney: Prospects for diagnosis and therapy of renal diseases. Kidney International 80: 1138–1145.PubMedPubMedCentral van Balkom, B.W., T. Pisitkun, M.C. Verhaar, and M.A. Knepper. 2011. Exosomes and the kidney: Prospects for diagnosis and therapy of renal diseases. Kidney International 80: 1138–1145.PubMedPubMedCentral
20.
go back to reference Zhou, H., H. Kajiyama, T. Tsuji, X. Hu, A. Leelahavanichkul, S. Vento, et al. 2013. Urinary exosomal Wilms’ tumor-1 as a potential biomarker for podocyte injury. American Journal of Physiology. Renal Physiology 305: F553–F559.PubMedPubMedCentral Zhou, H., H. Kajiyama, T. Tsuji, X. Hu, A. Leelahavanichkul, S. Vento, et al. 2013. Urinary exosomal Wilms’ tumor-1 as a potential biomarker for podocyte injury. American Journal of Physiology. Renal Physiology 305: F553–F559.PubMedPubMedCentral
21.
go back to reference Erdbrugger, U., and T.H. Le. 2016. Extracellular vesicles in renal diseases: More than novel biomarkers? Journal of the American Society of Nephrology 27: 12–26.PubMed Erdbrugger, U., and T.H. Le. 2016. Extracellular vesicles in renal diseases: More than novel biomarkers? Journal of the American Society of Nephrology 27: 12–26.PubMed
22.
go back to reference Hara, M., T. Yanagihara, I. Kihara, K. Higashi, K. Fujimoto, and T. Kajita. 2005. Apical cell membranes are shed into urine from injured podocytes: A novel phenomenon of podocyte injury. Journal of the American Society of Nephrology: JASN 16: 408–416.PubMed Hara, M., T. Yanagihara, I. Kihara, K. Higashi, K. Fujimoto, and T. Kajita. 2005. Apical cell membranes are shed into urine from injured podocytes: A novel phenomenon of podocyte injury. Journal of the American Society of Nephrology: JASN 16: 408–416.PubMed
23.
go back to reference Lee, H., K.H. Han, S.E. Lee, S.H. Kim, H.G. Kang, and H.I. Cheong. 2012. Urinary exosomal WT1 in childhood nephrotic syndrome. Pediatric Nephrology(Berlin, Germany) 27: 317–320.PubMed Lee, H., K.H. Han, S.E. Lee, S.H. Kim, H.G. Kang, and H.I. Cheong. 2012. Urinary exosomal WT1 in childhood nephrotic syndrome. Pediatric Nephrology(Berlin, Germany) 27: 317–320.PubMed
24.
go back to reference Lytvyn, Y., F. Xiao, C.R. Kennedy, B.A. Perkins, H.N. Reich, J.W. Scholey, et al. 2017. Assessment of urinary microparticles in normotensive patients with type 1 diabetes. Diabetologia 60: 581–584.PubMed Lytvyn, Y., F. Xiao, C.R. Kennedy, B.A. Perkins, H.N. Reich, J.W. Scholey, et al. 2017. Assessment of urinary microparticles in normotensive patients with type 1 diabetes. Diabetologia 60: 581–584.PubMed
25.
go back to reference Stahl, A.L., K. Johansson, M. Mossberg, R. Kahn, and D. Karpman. 2019. Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatric nephrology 34: 11–30.PubMed Stahl, A.L., K. Johansson, M. Mossberg, R. Kahn, and D. Karpman. 2019. Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatric nephrology 34: 11–30.PubMed
26.
go back to reference Tkaczyk, M., and Z. Baj. 2002. Surface markers of platelet function in idiopathic nephrotic syndrome in children. Pediatric nephrology 17: 673–677.PubMed Tkaczyk, M., and Z. Baj. 2002. Surface markers of platelet function in idiopathic nephrotic syndrome in children. Pediatric nephrology 17: 673–677.PubMed
27.
go back to reference Hong, J., O.M. Bhat, G. Li, S.K. Dempsey, Q. Zhang, J.K. Ritter, et al. 2019. Lysosomal regulation of extracellular vesicle excretion during d-ribose-induced NLRP3 inflammasome activation in podocytes. Biochimica et Biophysica Acta, Molecular Cell Research 1866: 849–860.PubMed Hong, J., O.M. Bhat, G. Li, S.K. Dempsey, Q. Zhang, J.K. Ritter, et al. 2019. Lysosomal regulation of extracellular vesicle excretion during d-ribose-induced NLRP3 inflammasome activation in podocytes. Biochimica et Biophysica Acta, Molecular Cell Research 1866: 849–860.PubMed
28.
go back to reference Huang, D., G. Li, Q. Zhang, O.M. Bhat, Y. Zou, J.K. Ritter, et al. 2021. Contribution of podocyte inflammatory exosome release to glomerular inflammation and sclerosis during hyperhomocysteinemia. Biochimica et Biophysica Acta, Molecular Basis of Disease 1867.PubMed Huang, D., G. Li, Q. Zhang, O.M. Bhat, Y. Zou, J.K. Ritter, et al. 2021. Contribution of podocyte inflammatory exosome release to glomerular inflammation and sclerosis during hyperhomocysteinemia. Biochimica et Biophysica Acta, Molecular Basis of Disease 1867.PubMed
29.
go back to reference Li, G., D. Huang, N. Li, J.K. Ritter, and P.L. Li. 2021. Regulation of TRPML1 channel activity and inflammatory exosome release by endogenously produced reactive oxygen species in mouse podocytes. Redox biology 43.PubMedPubMedCentral Li, G., D. Huang, N. Li, J.K. Ritter, and P.L. Li. 2021. Regulation of TRPML1 channel activity and inflammatory exosome release by endogenously produced reactive oxygen species in mouse podocytes. Redox biology 43.PubMedPubMedCentral
30.
go back to reference Kajimoto, T., T. Okada, S. Miya, L. Zhang, and S. Nakamura. 2013. Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endosomes. Nature communications 4: 2712.PubMed Kajimoto, T., T. Okada, S. Miya, L. Zhang, and S. Nakamura. 2013. Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endosomes. Nature communications 4: 2712.PubMed
31.
go back to reference Trajkovic, K., C. Hsu, S. Chiantia, L. Rajendran, D. Wenzel, F. Wieland, et al. 2008. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319: 1244–1247.PubMed Trajkovic, K., C. Hsu, S. Chiantia, L. Rajendran, D. Wenzel, F. Wieland, et al. 2008. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319: 1244–1247.PubMed
32.
go back to reference Yuyama, K., H. Sun, S. Mitsutake, and Y. Igarashi. 2012. Sphingolipid-modulated exosome secretion promotes clearance of amyloid-beta by microglia. The Journal of biological chemistry 287: 10977–10989.PubMedPubMedCentral Yuyama, K., H. Sun, S. Mitsutake, and Y. Igarashi. 2012. Sphingolipid-modulated exosome secretion promotes clearance of amyloid-beta by microglia. The Journal of biological chemistry 287: 10977–10989.PubMedPubMedCentral
33.
go back to reference Alvarez-Erviti, L., Y. Seow, A.H. Schapira, C. Gardiner, I.L. Sargent, M.J. Wood, et al. 2011. Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiology of Diseases 42: 360–367. Alvarez-Erviti, L., Y. Seow, A.H. Schapira, C. Gardiner, I.L. Sargent, M.J. Wood, et al. 2011. Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiology of Diseases 42: 360–367.
34.
go back to reference Cui, Y., J. Luan, H. Li, X. Zhou, and J. Han. 2016. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression. FEBS Letters 590: 185–192.PubMed Cui, Y., J. Luan, H. Li, X. Zhou, and J. Han. 2016. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression. FEBS Letters 590: 185–192.PubMed
35.
go back to reference Lee, M.J., J.R. Van Brocklyn, S. Thangada, C.H. Liu, A.R. Hand, R. Menzeleev, et al. 1998. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279: 1552–1555.PubMed Lee, M.J., J.R. Van Brocklyn, S. Thangada, C.H. Liu, A.R. Hand, R. Menzeleev, et al. 1998. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279: 1552–1555.PubMed
36.
go back to reference Li, P.L., Y. Zhang, J.M. Abais, J.K. Ritter, and F. Zhang. 2013. Cyclic ADP-ribose and NAADP in vascular regulation and diseases. Messenger 2: 63–85.PubMed Li, P.L., Y. Zhang, J.M. Abais, J.K. Ritter, and F. Zhang. 2013. Cyclic ADP-ribose and NAADP in vascular regulation and diseases. Messenger 2: 63–85.PubMed
37.
go back to reference Liebau, M.C., F. Braun, K. Hopker, C. Weitbrecht, V. Bartels, R.U. Muller, et al. 2013. Dysregulated autophagy contributes to podocyte damage in Fabry’s disease. PLoS One1 8. Liebau, M.C., F. Braun, K. Hopker, C. Weitbrecht, V. Bartels, R.U. Muller, et al. 2013. Dysregulated autophagy contributes to podocyte damage in Fabry’s disease. PLoS One1 8.
38.
go back to reference Lorber, D. 2014. Importance of cardiovascular disease risk management in patients with type 2 diabetes mellitus. Diabetes, Metabolic Syndrome and Obesity 7: 169–183.PubMedPubMedCentral Lorber, D. 2014. Importance of cardiovascular disease risk management in patients with type 2 diabetes mellitus. Diabetes, Metabolic Syndrome and Obesity 7: 169–183.PubMedPubMedCentral
39.
go back to reference Boulanger, C.M., X. Loyer, P.E. Rautou, and N. Amabile. 2017. Extracellular vesicles in coronary artery disease. Nature Reviews. Cardiology 14: 259–272.PubMed Boulanger, C.M., X. Loyer, P.E. Rautou, and N. Amabile. 2017. Extracellular vesicles in coronary artery disease. Nature Reviews. Cardiology 14: 259–272.PubMed
40.
go back to reference Chistiakov, D.A., A.N. Orekhov, and Y.V. Bobryshev. 2015. Extracellular vesicles and atherosclerotic disease. Cellular and molecular life sciences: CMLS 72: 2697–2708.PubMed Chistiakov, D.A., A.N. Orekhov, and Y.V. Bobryshev. 2015. Extracellular vesicles and atherosclerotic disease. Cellular and molecular life sciences: CMLS 72: 2697–2708.PubMed
41.
go back to reference Hessvik, N.P., and A. Llorente. 2018. Current knowledge on exosome biogenesis and release. Cellular and Molecular Life Sciences 75: 193–208.PubMed Hessvik, N.P., and A. Llorente. 2018. Current knowledge on exosome biogenesis and release. Cellular and Molecular Life Sciences 75: 193–208.PubMed
42.
go back to reference Li, G., D. Huang, J. Hong, O.M. Bhat, X. Yuan, and P.L. Li. 2019. Control of lysosomal TRPML1 channel activity and exosome release by acid ceramidase in mouse podocytes. American Journal of Physiology Cell Physiology 317: C481–C491.PubMedPubMedCentral Li, G., D. Huang, J. Hong, O.M. Bhat, X. Yuan, and P.L. Li. 2019. Control of lysosomal TRPML1 channel activity and exosome release by acid ceramidase in mouse podocytes. American Journal of Physiology Cell Physiology 317: C481–C491.PubMedPubMedCentral
43.
go back to reference Li, G., D. Huang, O.M. Bhat, J.L. Poklis, A. Zhang, Y. Zou, et al. 2020. Abnormal podocyte TRPML1 channel activity and exosome release in mice with podocyte-specific Asah1 gene deletion. Biochimica et biophysica acta Molecular and cell biology of lipids 1866.PubMedPubMedCentral Li, G., D. Huang, O.M. Bhat, J.L. Poklis, A. Zhang, Y. Zou, et al. 2020. Abnormal podocyte TRPML1 channel activity and exosome release in mice with podocyte-specific Asah1 gene deletion. Biochimica et biophysica acta Molecular and cell biology of lipids 1866.PubMedPubMedCentral
44.
go back to reference Gupta, S., R. Natarajan, S.G. Payne, E.J. Studer, S. Spiegel, P. Dent, et al. 2004. Deoxycholic acid activates the c-Jun N-terminal kinase pathway via FAS receptor activation in primary hepatocytes. Role of acidic sphingomyelinase-mediated ceramide generation in FAS receptor activation. The Journal of biological chemistry 279: 5821–8.PubMed Gupta, S., R. Natarajan, S.G. Payne, E.J. Studer, S. Spiegel, P. Dent, et al. 2004. Deoxycholic acid activates the c-Jun N-terminal kinase pathway via FAS receptor activation in primary hepatocytes. Role of acidic sphingomyelinase-mediated ceramide generation in FAS receptor activation. The Journal of biological chemistry 279: 5821–8.PubMed
45.
go back to reference Maric, I., J.P. Krieger, P. van der Velden, S. Borchers, M. Asker, M. Vujicic, et al. 2022. Sex and species differences in the development of diet-induced obesity and metabolic disturbances in rodents. Frontiers in nutrition 9.PubMedPubMedCentral Maric, I., J.P. Krieger, P. van der Velden, S. Borchers, M. Asker, M. Vujicic, et al. 2022. Sex and species differences in the development of diet-induced obesity and metabolic disturbances in rodents. Frontiers in nutrition 9.PubMedPubMedCentral
46.
go back to reference Shah, B., K. Tombeau Cost, A. Fuller, C.S. Birken, and L.N. Anderson. 2020. Sex and gender differences in childhood obesity: Contributing to the research agenda. BMJ Nutrition, Prevention & Health 3: 387–390. Shah, B., K. Tombeau Cost, A. Fuller, C.S. Birken, and L.N. Anderson. 2020. Sex and gender differences in childhood obesity: Contributing to the research agenda. BMJ Nutrition, Prevention & Health 3: 387–390.
47.
go back to reference Li, G., J. Kidd, C. Kaspar, S. Dempsey, O.M. Bhat, S. Camus, et al. 2020. Podocytopathy and nephrotic syndrome in mice with podocyte-specific deletion of the Asah1 gene: Role of ceramide accumulation in glomeruli. The American journal of pathology 190: 1211–1223.PubMedPubMedCentral Li, G., J. Kidd, C. Kaspar, S. Dempsey, O.M. Bhat, S. Camus, et al. 2020. Podocytopathy and nephrotic syndrome in mice with podocyte-specific deletion of the Asah1 gene: Role of ceramide accumulation in glomeruli. The American journal of pathology 190: 1211–1223.PubMedPubMedCentral
48.
go back to reference Huang, D., G. Li, O.M. Bhat, Y. Zou, N. Li, J.K. Ritter, et al. 2022. Exosome biogenesis and lysosome function determine podocyte exosome release and glomerular inflammatory response during hyperhomocysteinemia. The American journal of pathology 192: 43–55.PubMedPubMedCentral Huang, D., G. Li, O.M. Bhat, Y. Zou, N. Li, J.K. Ritter, et al. 2022. Exosome biogenesis and lysosome function determine podocyte exosome release and glomerular inflammatory response during hyperhomocysteinemia. The American journal of pathology 192: 43–55.PubMedPubMedCentral
49.
go back to reference Koka, S., M. Xia, C. Zhang, Y. Zhang, P.L. Li, and K.M. Boini. 2019. Podocyte NLRP3 inflammasome activation and formation by adipokine visfatin. Cellular physiology and biochemistry: International journal of experimental cellular physiology, biochemistry, and pharmacology 53: 355–365.PubMed Koka, S., M. Xia, C. Zhang, Y. Zhang, P.L. Li, and K.M. Boini. 2019. Podocyte NLRP3 inflammasome activation and formation by adipokine visfatin. Cellular physiology and biochemistry: International journal of experimental cellular physiology, biochemistry, and pharmacology 53: 355–365.PubMed
50.
go back to reference Chen, Y., A.L. Pitzer, X. Li, P.L. Li, L. Wang, and Y. Zhang. 2015. Instigation of endothelial Nlrp3 inflammasome by adipokine visfatin promotes inter-endothelial junction disruption: Role of HMGB1. Journal of cellular and molecular medicine 19: 2715–2727.PubMedPubMedCentral Chen, Y., A.L. Pitzer, X. Li, P.L. Li, L. Wang, and Y. Zhang. 2015. Instigation of endothelial Nlrp3 inflammasome by adipokine visfatin promotes inter-endothelial junction disruption: Role of HMGB1. Journal of cellular and molecular medicine 19: 2715–2727.PubMedPubMedCentral
51.
go back to reference Xia, M., C. Zhang, K.M. Boini, A.M. Thacker, and P.L. Li. 2011. Membrane raft-lysosome redox signalling platforms in coronary endothelial dysfunction induced by adipokine visfatin. Cardiovascular research 89: 401–409.PubMed Xia, M., C. Zhang, K.M. Boini, A.M. Thacker, and P.L. Li. 2011. Membrane raft-lysosome redox signalling platforms in coronary endothelial dysfunction induced by adipokine visfatin. Cardiovascular research 89: 401–409.PubMed
52.
go back to reference Boini, K.M., C. Zhang, M. Xia, W.Q. Han, C. Brimson, J.L. Poklis, et al. 2010. Visfatin-induced lipid raft redox signaling platforms and dysfunction in glomerular endothelial cells. Biochimica et biophysica acta 1801: 1294–1304.PubMedPubMedCentral Boini, K.M., C. Zhang, M. Xia, W.Q. Han, C. Brimson, J.L. Poklis, et al. 2010. Visfatin-induced lipid raft redox signaling platforms and dysfunction in glomerular endothelial cells. Biochimica et biophysica acta 1801: 1294–1304.PubMedPubMedCentral
53.
go back to reference Speakman, J.R. 2019. Use of high-fat diets to study rodent obesity as a model of human obesity. International journal of obesity 43: 1491–1492.PubMed Speakman, J.R. 2019. Use of high-fat diets to study rodent obesity as a model of human obesity. International journal of obesity 43: 1491–1492.PubMed
54.
go back to reference Tilg, H., and A.R. Moschen. 2008. Role of adiponectin and PBEF/visfatin as regulators of inflammation: Involvement in obesity-associated diseases. Clinical science 114: 275–288.PubMed Tilg, H., and A.R. Moschen. 2008. Role of adiponectin and PBEF/visfatin as regulators of inflammation: Involvement in obesity-associated diseases. Clinical science 114: 275–288.PubMed
55.
go back to reference Hasegawa, M., R. Imamura, K. Motani, T. Nishiuchi, N. Matsumoto, T. Kinoshita, et al. 2009. Mechanism and repertoire of ASC-mediated gene expression. Journal of immunology 182: 7655–7662. Hasegawa, M., R. Imamura, K. Motani, T. Nishiuchi, N. Matsumoto, T. Kinoshita, et al. 2009. Mechanism and repertoire of ASC-mediated gene expression. Journal of immunology 182: 7655–7662.
56.
go back to reference Tang, J., H. Yan, and S. Zhuang. 2012. Inflammation and oxidative stress in obesity-related glomerulopathy. International journal of nephrology 2012.PubMedPubMedCentral Tang, J., H. Yan, and S. Zhuang. 2012. Inflammation and oxidative stress in obesity-related glomerulopathy. International journal of nephrology 2012.PubMedPubMedCentral
57.
go back to reference Mima, A., T. Yasuzawa, G.L. King, and S. Ueshima. 2018. Obesity-associated glomerular inflammation increases albuminuria without renal histological changes. FEBS Open Bio 8: 664–670.PubMedPubMedCentral Mima, A., T. Yasuzawa, G.L. King, and S. Ueshima. 2018. Obesity-associated glomerular inflammation increases albuminuria without renal histological changes. FEBS Open Bio 8: 664–670.PubMedPubMedCentral
58.
go back to reference Hou, X.X., H.R. Dong, L.J. Sun, M. Yang, H. Cheng, and Y.P. Chen. 2018. Purinergic 2X7 Receptor is involved in the podocyte damage of obesity-related glomerulopathy via activating nucleotide-binding and oligomerization domain-like receptor protein 3 inflammasome. Chinese medical journal 131: 2713–2725.PubMedPubMedCentral Hou, X.X., H.R. Dong, L.J. Sun, M. Yang, H. Cheng, and Y.P. Chen. 2018. Purinergic 2X7 Receptor is involved in the podocyte damage of obesity-related glomerulopathy via activating nucleotide-binding and oligomerization domain-like receptor protein 3 inflammasome. Chinese medical journal 131: 2713–2725.PubMedPubMedCentral
59.
go back to reference Xu, X., X. Huang, L. Zhang, X. Huang, Z. Qin, and F. Hua. 2021. Adiponectin protects obesity-related glomerulopathy by inhibiting ROS/NF-kappaB/NLRP3 inflammation pathway. BMC nephrology 22: 218.PubMedPubMedCentral Xu, X., X. Huang, L. Zhang, X. Huang, Z. Qin, and F. Hua. 2021. Adiponectin protects obesity-related glomerulopathy by inhibiting ROS/NF-kappaB/NLRP3 inflammation pathway. BMC nephrology 22: 218.PubMedPubMedCentral
60.
go back to reference Boini, K.M., C. Zhang, M. Xia, J.L. Poklis, and P.L. Li. 2010. Role of sphingolipid mediator ceramide in obesity and renal injury in mice fed a high-fat diet. The Journal of pharmacology and experimental therapeutics 334: 839–846.PubMedPubMedCentral Boini, K.M., C. Zhang, M. Xia, J.L. Poklis, and P.L. Li. 2010. Role of sphingolipid mediator ceramide in obesity and renal injury in mice fed a high-fat diet. The Journal of pharmacology and experimental therapeutics 334: 839–846.PubMedPubMedCentral
61.
go back to reference Zhang, A.Y., F. Yi, S. Jin, M. Xia, Q.Z. Chen, E. Gulbins, et al. 2007. Acid sphingomyelinase and its redox amplification in formation of lipid raft redox signaling platforms in endothelial cells. Antioxidants & redox signaling 9: 817–828. Zhang, A.Y., F. Yi, S. Jin, M. Xia, Q.Z. Chen, E. Gulbins, et al. 2007. Acid sphingomyelinase and its redox amplification in formation of lipid raft redox signaling platforms in endothelial cells. Antioxidants & redox signaling 9: 817–828.
62.
go back to reference Evavold, C.L., J. Ruan, Y. Tan, S. Xia, H. Wu, and J.C. Kagan. 2018. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48 (35–44). Evavold, C.L., J. Ruan, Y. Tan, S. Xia, H. Wu, and J.C. Kagan. 2018. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48 (35–44).
63.
go back to reference He, W.T., H. Wan, L. Hu, P. Chen, X. Wang, Z. Huang, et al. 2015. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell research 25: 1285–1298.PubMedPubMedCentral He, W.T., H. Wan, L. Hu, P. Chen, X. Wang, Z. Huang, et al. 2015. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell research 25: 1285–1298.PubMedPubMedCentral
64.
go back to reference Carta, S., S. Tassi, I. Pettinati, L. Delfino, C.A. Dinarello, and A. Rubartelli. 2011. The rate of interleukin-1beta secretion in different myeloid cells varies with the extent of redox response to Toll-like receptor triggering. Journal of Biological Chemistry 286: 27069–27080.PubMedPubMedCentral Carta, S., S. Tassi, I. Pettinati, L. Delfino, C.A. Dinarello, and A. Rubartelli. 2011. The rate of interleukin-1beta secretion in different myeloid cells varies with the extent of redox response to Toll-like receptor triggering. Journal of Biological Chemistry 286: 27069–27080.PubMedPubMedCentral
65.
go back to reference Carta, S., F. Penco, R. Lavieri, A. Martini, C.A. Dinarello, M. Gattorno, et al. 2015. Cell stress increases ATP release in NLRP3 inflammasome-mediated autoinflammatory diseases, resulting in cytokine imbalance. Proceedings of the National Academy of Sciences USA 112: 2835–2840. Carta, S., F. Penco, R. Lavieri, A. Martini, C.A. Dinarello, M. Gattorno, et al. 2015. Cell stress increases ATP release in NLRP3 inflammasome-mediated autoinflammatory diseases, resulting in cytokine imbalance. Proceedings of the National Academy of Sciences USA 112: 2835–2840.
66.
go back to reference Liston, A., and S.L. Masters. 2017. Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nature Reviews Immunology 17: 208–214.PubMed Liston, A., and S.L. Masters. 2017. Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nature Reviews Immunology 17: 208–214.PubMed
67.
go back to reference Yamagishi, R., F. Kamachi, M. Nakamura, S. Yamazaki, T. Kamiya, M. Takasugi, et al. 2022. Gasdermin D-mediated release of IL-33 from senescent hepatic stellate cells promotes obesity-associated hepatocellular carcinoma. Science immunology 7: eabl7209.PubMed Yamagishi, R., F. Kamachi, M. Nakamura, S. Yamazaki, T. Kamiya, M. Takasugi, et al. 2022. Gasdermin D-mediated release of IL-33 from senescent hepatic stellate cells promotes obesity-associated hepatocellular carcinoma. Science immunology 7: eabl7209.PubMed
68.
go back to reference Rodriguez-Antonio, I., G.N. Lopez-Sanchez, M. Uribe, N.C. Chavez-Tapia, and N. Nuno-Lambarri. 2021. Role of the inflammasome, gasdermin D, and pyroptosis in non-alcoholic fatty liver disease. Journal of gastroenterology and hepatology 36: 2720–2727.PubMed Rodriguez-Antonio, I., G.N. Lopez-Sanchez, M. Uribe, N.C. Chavez-Tapia, and N. Nuno-Lambarri. 2021. Role of the inflammasome, gasdermin D, and pyroptosis in non-alcoholic fatty liver disease. Journal of gastroenterology and hepatology 36: 2720–2727.PubMed
69.
go back to reference Xu, B., M. Jiang, Y. Chu, W. Wang, D. Chen, X. Li, et al. 2018. Gasdermin D plays a key role as a pyroptosis executor of non-alcoholic steatohepatitis in humans and mice. Journal of hepatology 68: 773–782.PubMed Xu, B., M. Jiang, Y. Chu, W. Wang, D. Chen, X. Li, et al. 2018. Gasdermin D plays a key role as a pyroptosis executor of non-alcoholic steatohepatitis in humans and mice. Journal of hepatology 68: 773–782.PubMed
70.
go back to reference Settembre, C., and A. Ballabio. 2014. Lysosomal adaptation: how the lysosome responds to external cues. Cold Spring Harbor perspectives in biology 6. Settembre, C., and A. Ballabio. 2014. Lysosomal adaptation: how the lysosome responds to external cues. Cold Spring Harbor perspectives in biology 6.
71.
go back to reference Xia, M., K.M. Boini, J.M. Abais, M. Xu, Y. Zhang, and P.L. Li. 2014. Endothelial NLRP3 inflammasome activation and enhanced neointima formation in mice by adipokine visfatin. The American journal of pathology 184: 1617–1628.PubMedPubMedCentral Xia, M., K.M. Boini, J.M. Abais, M. Xu, Y. Zhang, and P.L. Li. 2014. Endothelial NLRP3 inflammasome activation and enhanced neointima formation in mice by adipokine visfatin. The American journal of pathology 184: 1617–1628.PubMedPubMedCentral
Metadata
Title
Regulation of NLRP3 Inflammasome Activation and Inflammatory Exosome Release in Podocytes by Acid Sphingomyelinase During Obesity
Authors
Dandan Huang
Jason M. Kidd
Yao Zou
Xiaoyuan Wu
Todd W. B. Gehr
Pin-Lan Li
Guangbi Li
Publication date
21-07-2023
Publisher
Springer US
Keywords
Obesity
Obesity
Published in
Inflammation / Issue 5/2023
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-023-01861-y

Other articles of this Issue 5/2023

Inflammation 5/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine